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ABSTRACT: Partialdilferentialequationscanbefoundina plementationofbothmethodsinadata-drivengraph,wedo not

hostofengineering_nd scientificproblems.The emergenceofnew intendtoreflectontherespectiveintrinsicmeritsofthetwo ap-
par_Uelarchitectureshasspurredresearchinthedefinitionofpar- proachestosolvingPDEs. Instead,inbothcases,we studythe

dlelPDE solvers.Concurrently,highlyprogr_'nmablesystemssuch rulesofconstructionofa U-interpreterdata-flowgraph(A.rvind
M data.flowa.rchitectureshavebeenproposedfortheexploitation andGostelow,1982).Inordertoenforcechaoticbehaviorofthe
oflargeKalep_dleliJm.The implementationofsomePartiMDif- data-flowgraph,we alsointroducespecificsolutionssuchasthe

ferentiM Equation solvers (such u the J_obi method) on a tagged token no.labeling approach in which actors are activated with-
token data_flow graph is demonstrated here. Asynchronotmmethods out regard for the tag of the incoming token. Special high-level
(chaetic relaxation) are studied and new _z.heduUngapproaches (the data-flow language program constructs are introduced in order
Token No-LabeRng scheme) are introduced in order to support the to properly describe the asynchronous behavior of data in a
implementation of the uynchronous methods in a data-driven envi. chaotic algorithm. We have conducted a deterministic simul_-
ronment. New high-level data-flow language program constructs axe tion of a large tagged token data-flow multiprocessor system.
introducedinordertohandlechaoticoperations.Finally,theper- Performanceevaluationofthesimulateddata-flowarchitecture
formanceoftheprogramgraphsisdemonstratedby a deterministic centersaroundthespeed-upobtainedandanalyzestheinfluence

simulationofamessagepmmingdata-flowmultlproces_r.Ananalysis ofthe _data-flowoverhead"(i.e.,theactorsneededtoensure

oftheoverhe_linthedata-flowgraphsk undertakentodemonstrate properdata-drivensynchronization).We show how much of
theUmit_ofparalleloperationsindata-flowPDE programgraphs, thisoverheadcannotbeeasilypaxallelizedand thuspresentsan

unsurmountableimpedimenttodeliveringhighspeed-upseven

inthepresenceoflargedegreesofparallelism.
I Introduction Overall,thegoalofthispaperistodemonstratehow such

differentimplementationsofPDE solversas conventionalJa-
PartialDifferentialEquationsarean importantprobleminsci- cobiand chaoticrelaxationcan be executedon a data-driven

entificand engineeringareas.Much researchhasbeendevoted machine,Thisincludestheexpressionina high-levellanguage,

tothestudyofthenumericalsolutionsoftheseequations.This theconstructionofthedata-flowgraphs,aswellastheperfor-
paperwillshow theimplementationofseveralPDE solverson manceofthesimulatedmultiprocessorsystem.Insection2,the
a specialclassofmultiprocessorsystems,namelydata-flowar- elementarydata-flowprinciplesofexecutionand severalmeth-

chitectures, odsforthesolutionofPartialDifferentialEquationsareshown.

The data-flowprinciplesofexecution(Arvindand lannucci, The Jacobimethod aJadthe chaoticrelaxationmethod along
1983)offertheprogrammabilityneededtosynchronizeatrun- theirassociateddata-flowimplementationarediscussedinsac-
timethemany parallelprocesseson a largescalemultiproces- tion3. Whilesection4 presentstheresultsofa deterministic

sot. Insteadof relyingon the conventionalcentralprogram simulationofthe MIT TaggedToken Data-flowArchitecture,
counter,theavailabilityofdatainsteadrendersan instruction performanceobservationsare analyzedinsection5 and con-

executable.However,inspiteofthesimplicityoftheseprinci- cludingremarksaremade insection6,
plea,much overheadmay beintroducedinordertorespectthe

functionalityofexecution.Itisthe purposeofthispaperto 2 PDE's on Data-Driven Machines
evaluatethe respectiveeffectofthedata-flowsynchronization

methodson thefinalperformanceofshemachinefora certain Inthissection,we firstintroducethe data.flowprinciplesof
classofnumericalapplications, executionand reviewthe essentialsofthePDE solverswhich

Inthispaper,we considertheJacobiand Chaoticrelaxation areintentedtobe implementedonthesemachines.
methodsforsolvingPDEs. Althoughwe willcontrasttheire-
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the _terations and accept x(k) as the an_rwerwhen the following
. _c_ors are purely functional and execution produces no condition is satisfied : [z(_} - z(k-x) I <

side-effects.

Data-flow progran'm are represented by directed, acyclic 2.2.2 Chaotic Relaxation
graphs which consist of actors connected together with arcs.

In the asynchronous approach (Baudot, 1978)_ communication
A.rcsrepresentthedatadependenciesbetweenactorsand carry betweenprocesse_isachievedby readingthedynamicallyup-
tokenswhicharethedatavaluesbeingpassedbetweenactors.

datedvariables,whileeachprocesscontinues.theexecutionfor

theupdatingofthecommon variables.A subsetofa._ynchronous

2.1.1 Interpretation Models and Structure Repre_en- methods, called chaotic relazation schemes, was introduced by
tatlon Chazanand Mir_mker(1969)tosolvelinearsystems.Generally,

Once adata-flowgraphhasbeenconstructedand allocated,the thechaoticrelaxationmethod ismore satisfactoryinprac*.ical

issuearisesofhow toactuallyexecutethegraph.Althoughthe applicationsalthoughthedefinitionofasynchronousmethodsis

graphdefinestheoperationstobe performedand how theyare mathematicallymore rigorous.

relatedtoone another,itcontainsno informationabout axc

capacity,precisefiringrules,actorexecutionorder,tokencon- 2.3 High-Level Language Constructs

sumptionorder,simultaneousactorexecutionorder,etc.Sev- The numericalPDE solverswhichwe havedescribedmust also

oral approaches have been put forward regarding the interprets- be expressed by high-level language constructs. We have cho-
tionofdata-flowgraphs(Dennis,1974)(Arvindand Gostelow, mn forthispurposeSISAL (Streamsand Iterationsina Single

1982). AssignmentLanguage),ah/gh-levelapplicativelanguagedevel-

Largestructurescannotbeeasilymodifiedunderdata-flow opedby McGraw, Skedzielewski,eta/.(1985).Inaddition,we

principlesofexecutionsincetheunderlyingprincipleuf$ingle willdemonstrateournew synchronizationconstructsn_essary

a_signmentpreventsthe updatin#ofany datastructure.Copy- todescribechaoticbehavior..Aswe haveseenbefore,we can

ingoperationsareexpensivealbeitlogicallyacceptable;there- distinguishbetweent_,oformsofPDE solvers:synchrono_or

fore,severalschemes(Arvindand Thomas 1980)(Gaudiot1985, a.Wnchronot_methods.Each ofthesetwo approacheswillbe

1986)etaL havebeendesignedto_lleviatetheseproblems, expressedby differenthigh-love|languageprogramconstructs

whichwe willnow studyinturn.
2.1.2 The M:IT Tagged Token Data-flow Architecture

Thismachineimplementsa versionoftheU-Interpreter,while 2.3.1 Synchronous Constructs

arrayhandlingmecha4_srnssupport I-structureconcepts Assumethatwe havetoimplementa relaxationproblemwith

(Arvind,Katha£1and Pingali,1980).An abstractedstructure a stoppingcriterionevaluatedby thefunctionNotcan_ergeO.

ofa PE isshown inFig.I. Inthisdistributedarchitecture The functionNotconverg_()checksthearrayY ateveryiter-

model,eachPE isindependentfromitsneighborsand thereisno ationtodeterminewhetheritconverges.Therefore,thewhole

globalcontroller.A hypercubecommunicationnetworkallows relaxationprocedurebehavesina synchronousmanner. The

thetransmissionofdat_-flowtokensbetweenPEa. Store-and- correspondingprogramconstructisshown below:
Forwardcapabilitiesareprovidedsothata pairofPEa which

arenotdirectlylinkedmay stillcornr_mnicate. (I) Function relax(x:OneDlm
(2) N:Integer
(3) returnsOneDim)

2.2 PDE Solvers (4) forinitial

We now describeingeneraltermsthecomputationalproblems (5) Y :=x;

posedby PartialDifferentialEquations.A partialdifferential (6) while(Notconverge(Y))repeat

equationisan equationwhich containsone or more partial (7) T :=for [ 111I,IMAX
derivatives.An exampleofa PDE isLaplace'sequation. (8) returnsarray ofF (oldY[I-I},oldY[I],old Y[I+I])

(9) end for

(10)v:=array[0X{0]l
2.2.1 Jacobi Method (11) I[ T

Intheevaluationofbasiciterativemethods(Varga,1962),we (12) IIarray[IMAX+L :X{_V[A_X+I]]

assumethatA isa nonsingularnxn (sparseordense)matrix. (13) returnsvalueofY

Letbbe a givencolumnvector,thenthesystemoflinearequa- (14) endfor
tionscanbeexoressedasAz = b ,The J_cobiiterativemethod (16) Endfllnctlon
is derived as:



--o ..... ,., m the above example (line 8), we now • Distributor; The set of input data tokens from the two
t allow the function F to execute over different versions of the dimensional array A is routed to the distributor which

Y's. This means that whenever's value of index I completes separates diagonal elements from non-diagonal elements,
the evaluation of the function F, it proceeds with the execution
of the next computation without waiting for other index val. • Major Jacobi Computations: These data tokens are then
ues which are executing the function. Hence, we can rewrite forwarded along with the other input data tokens to the

the above program for asynchronous computations by changing terminals of the major Jacobi computations block (body
line(6) to: of the graph). This block processes paired tokens and

generates the new tokens (new z vector) by using equation
while (Notconverge(Y(l)) ) async-repeat (1).

Once an index I has completed the evaluation of F in line(8), • Termination Computations: This stage computes the er-
the value of the grid point at index I is checked by the function rot vector from the old and the new vectors of x.

Notconverge(). If the function returns a true value (i.e., all
the points still do not converge), then the index is allowed to • Loop Control: The loop control block then checks whether
produce a new iteration, a solution has been reached by checking the output of the

terminator block against the prescribed accuracy _ and
m_kes a decision of whether to loop the tokens back or to

3 Program Graph Constructions route them to the output module.

The numericalmethodsofPDE solversdescribedintheprevious 3.2 Chaotic Relaxation Method
sectionscan be easilyadaptedtothedata-drivenprinciplesof

execution. Aswa_seenbefore,chaoticrelaxationisanotherapproachwhich

8.1 Jacob| Method isparticularlysuccessfulinparallelenvironments.Inorderto
e_icientlyimplementiton adata-flowmultiprocessor,we intro-

As described earlier, the Jacobi method is an iterative solution duce here the token no.labeling approach in order to observe the
of a system of linear equations, appropriate asynchronous behavior in a data-flow environment,

3.1.1 The Token Relabellng Implementation of Jacobl 3.2.1 The Token No-labeling Approach

In order to insert the data inputs into the 3acobi data-flow In order to solve PDE problems by chaotic relaxation, we pro-
graph, special actors must be used for tag modification. In pose the token no.labeling scheme based on the MIT Ttgged

particular, these actors modify the context and the iteration Token Dare.flow Architecture, In the MIT architecture, the U-
number portion of the tag, In the actual implementation, the interpreter uses < tt, c, e,i > to describe every sctivlty (s single

matching of the iteration number portion of the tag of the data execution of an operator), where u is the context fieldj c is the
tokens is handled through the use of two primitive actors 6._ code block name, mis the instruction number, and i is the leer.
and 614/.The function of the 6R actor is to extract the iteration ation number. For synchronous methods, the U.interpreter can
number from the input token while that of the _ actor is to be used for the data-flow graph (token relsbeling). However,

set the iteration field of the tag of one of the input tokens with it is not directly suitable for chaotic relaxation. We therefore
the data field of another input token. A detailed presentation of introduce the following scheme: we no.label the iteration field,

these actors was made by Gaudiot (1985) and by Gaudiot and that is, we ignore the i field in the < tt, c,s,i > label. When
Wei (1986), the interpreter compar_ the tokens in the matching store, only

u, c, and R need to be compared, If two input tokens have the

3,1.2 Data.flow Implementation same < u,c, s >, then they can be matched and the correspond- _ _
ing activity scheduled for execution, This is shown in Fig. 8a,

Inthe Jac.'>bimethod, the majorcomputationconsistsofre- When tokensA and B entertheF actor,aslongasA and B

peatingly computing the value of z (t+l) from (1) and evaluating have the same u, c, and e then they can be executed to produce
the termination criterion for n steps, where n is the size of the the output,

matrixA. The data-flowgraphofthisalgorithmwillaccept Inordertoguaranteetheproperbehavioroftheno-labeling
a matrix A (nxn, dense), a column vector b, an initial column

actor, we also introduce the notion of locks at the inputs of
vectorz and two constantsn and e.The outputwouldbe the theactors.When anactorisbred,theinputtokensremainin

solutionvectorz withrequiredaccuracy_.hlFig.2,theblock theinputlockuntilthe nextinputtokenisreceived.In this

diagramofthe Jacobicomputationarepresented.Note that fashion,theincomingtokenwillreplacethe storedvalueand
eachblockofthebody ofthegraphisiterativelyperformed:

't



_._ _mmlation Results, .1 _j_

.......... y ma_cmng method in the Matching Store: Both the Jacobi method and the chaotic relaxation approach

1. Initially, when either token A or token B comes into the have been programmed in a tagged token data-flow graph and
actor F, it will be locked inside the actor, their execution simulated, When no confusion ie possible, they

will be respectively referred to as " non-chaotic" and "chaotic"
2, When another token arrives, actor F will be fired and will from now on. In both sets of experiments, the following data

produce an output token. Note that the iteration tag is were noted:
undetermined because the output will be used by other
no.labelino actors. • Ezecution time: Program sizes range from an 8x8 matrix

(i.e., _n 8-point grid) to a large 32x32 problem (i.e., a
3. After firing actor F, both input tokens remain locked inside 32-point grid). Figs. 4a through 4c show tile effect of in.

the actor. In other words, the rules of execution are non. creasing the machine size for 8, 16, and 32 point grids and
swallowing, display the execution time of the given problem size for

various machine configurations (from 1 to 64 Processing4. When another token is later received by the actor, the

actor is fired with the locked token on the other port and Elements),

the new value on the first port. The incoming token will • Speed.up: The speed-up can be obtained by comparing
remain locked in the actor. Note that it overwrites the the execution time of N PEs with the execution time of

previous token value, one PE, While the results obtained in the previous section
indicate that any computation will be taxed by the over-

3.2.2 Data-flow I.mplementation head in processing, they do not directly explain the serious

The implementation of chaotic relaxation in a data-flow graph speed-up limitations observed in the simulation (Figs. 5a
form is quite similar to the Jacobi method mentioned in the through 5c). Indeed, it appears that several factors are

previous section. When executing the chaotic relaxation algo- responsible for this effect: A large overhead portion can-
rithm, every xi in equation (1) is kept evaluating by taking the not be parallelized (Amdahl's law), the increasing corn-
latest updated values of other points. This process will termi- munication costs and increased forced oequentiality (also

note as soon as, for each xi, the condition: [ xl _) (L-t) ]< e referred to as resource dependency), the I/O problem, as

_(_-l) _(_-2) 1< c where k is the number of iteration well as the allocation problem. We will analyze the rela-
and [ _i - _i tire effects of these factors in the next section.
steps, is satisfied. The main difference between the two meth-

ods is in the loop control block of Fig. 2. The loop control • Overhead analysis: Table 1 displays a dynamic count of
block must wait for the completion of all the processes, before the actors executed during the processing of an 8x8 prob-
it can proceed with the next evaluation. In the chaotic method, lem in both the chaotic and the non-chaotic relaxation

every process can proceed uninterrupted without waiting for modes for various machine configurations. For our pur-
other processes. This unsynchronized loop control represents poses, we define a non-overhead actor as an actor directly
the chaotic behavior which simplifies the design of the graph, involved in the algorithm. Table 2 shows, for the chaotic
Note {_hattranslating the graph into such a low-level graph con. relaxation algorithm, the count of sequential overhead ac-
struct can be easily effected by the compiler upon encountering tots and sequential non-overhead actors in an 8-PE mo-

an async.repeat high-level language instruction as was described chine for an 8x8 problem size and in a 16-PE machine for
in section 2.3.2 a lexle problem size. In an iterative part of the algo-

rithm, sequential overhead actors are located on a criti.

4 Simulation Results col path of the loop while non-sequential overhead actors
can be executed in parallel. The total number of actors

The principles developed in the previous sections were imple, has simply been obtained by counting, during the simula-
mented in several data-flow graphs, Their execution was verified tion, the number of actor executions. This number gives
by a deterministic simulation of a data-flow machine, a measure of the complexity of the problem, The number

of overhead actors has then been evaluated in a similar

4.1 Simulation Assumptions fashion: it was obtained by counting only the execution
of certain marked actors, Marking actors involves two

The architecture model of the Arvind/MIT Tagged Token Data- steps:
flow Architecture was adopted for the simulator, It consists

of a multiprocessor system with a maximum of 64 processors 1. Mark "overhead" actors as those not involved di-
interconnected by a packet switching 6-dimension hypercube rectly in the algorithm itself but instead participate
network. In order to gather reasonable performance statistics only in operations related to the U-interpretation

on the two PDE solvers, we made appropriate assumptions on model such as production of iteration indices with
the various hardware and software delays. We also assume that the appropriate tags, etc. The rest are marked as
allfunctionalunitsaswellaseachnetworknode allrequirea "nonoverhead"actors.

single unit of delay to perform their function.

w



_. r_aarh actors according tc_ their fuT_ctit,nal relati_ms is castorised of 4 ,equential blocks, th_ MatchiIig Store Unit,
! with other actors in the graph structure as "sequea- the Instruction Fd'tch Unit, the ALU, ant] tile "]'c_kenFormat.

, tial overhead" or %equeatial nonovcrhead", ing Unit). For a parallel algorithm oI_ _urh a multi.pipelined.
processor system, we should consider two types of parallelism'

We use a simple program graph whose function is to square pipeline-type parallelism and MIMD-type parallelism
the diagonal values of a matrix to illustrate the actor (sometimes referred to as concurrency), The pipeline.type par-
marking operation' in Fig. 6, a.ssume we use n2 PEa for allelism is a,temporal parallelism which is suitable for execution

a nxn matrix. There are five actors (A to E) in each PE on a multi-stage pipelme processor, At the same time, MIMD-
to perform this function. The E-actor (SQUARE) is the type parallelism is a spatial parallelism which can be efl'icientiy
only actor relevant to the problem, while others are just executed in sev,_ral simple Processing Elements. Therefore, a
inserted for the purpose of insuring co!:rect synchronize- process with MIMD-type parallelism can be divided into sev-

tion and safe execution. Therefore, we mark the E-actor eral parts for several processors with a speedup P (the number
as "nonot,erhead" while the actors A, B, C, and D are of processors). This is not, however, the case for a process with
marked _ "overhead". By a closer in:,pection, a "sequen- pipdine parallelism. Assuming that we have a proc_ss contain-
tial" path can be found (either A-C-D-E or B.C-D-E). ing pipeh'ne.type parallelism which can be executed in a single

These two strings represents a forced t_equential execution, processor with throughput T, it cannot be claimed that by us-
Hence, if we choose A, C, and D ms "sequential overhead" ing P processors for the same process, ever)' processor will still
actors, the B-actor remains simply an overhead actor, be- have a throughput T and gain a speedup P for these processors.

cause it could be executed in parallel with other actors. Matrix multiplication is a case in point:
Note that the marking of actors a.s sequential only refers

to their execution relative to other actors in the neighbor- Matrix multiplication can be written as A × B ==
ing program graph construct. Indeed, it will be seen in C, where A, B, and C are nxn matrices. For every
the next section that these sequetltial actors will cause a element cid in C, c_.,'= _=l(ai,k x bk,;). The opera-

_drying.up" of the various pipelir,es in the machines, tionq of multiplication are of MIMD-type parallelism
and the operations of summation are of pipeline-type

• Utilization: Table 3 shows the utilization ratio of each parallelism. Hence, a total of n s MIMD-type paral-
functional unit (Matching Store Unit, Instruction Fetch lelism (the multiplications} and n2 of pipeline-type

Unit, ALU, and Token Yormatit_.g Unit) in a Processing El- p_ralleiism (the summations) can be found. If we
ement for chaotic relaxation with different machine sizes, use a plpelined processor to execute tt_e ns multipli-

5 Performance Analysis cations, n s PEs can achieve a speedup of n s. ltow.ever, for the n_ summations, n '_PEs will not obtain

Although the rate of convergence in chaotic relaxation is hard a speedup of n_. The reason is that if only one PE is
to obtain theoretically, the sbnulation results shown in Figs. used, many summations can share the stages of the
4a-4c indicate that the chaotic relaxation is faster than dacobi'n pipe and saturate it. However, when many PEa be-

method. The chaotic relaxation can perform 2 to 5 times better come available, it correspondingly becomes possible
than the conventional dacobi approach. This is due to the fact to allocate only one operation to one PE. Therefore,
that in Jacobi's method, each processor must sljnehronize with the pipe cannot be fully utilized due to the data
other processors at each iteration which creates a bottleneck, dependency inside the summation operation. This

The result of more crucial relevance to this paper, how- automatically degrades the speed.up.
ever, is the fact that both of these two methods have a limited

speedup (Figs. 5a through 5c). The speedup is limited to 3 by According to Amdahi's law, the total execution time
using 8 PEa in an 8x8 problem size, and the speedup is 5 by (ET} of a program can be expressed as:

using la PE,. in a 16x 16 problem size, while it is limited to 9 ET(I) = (Sequential part) + (Parallel part) (2)
by using 32 PEa in a 32x32 problem size. As mentioned, there with 1 PE
are several factors to explain this. The main reasons for this
phenomenon are two-fold: ET(P) = (Sequential part} + (Parallel part)/P (3)

• High amount of sequential overhead_ with P PEa

• The existing type of parallelism associated with the alga- The total execution time can also be rewritten as:

rithm itself is not suitable to this implementation. ET(1) = (Sequential part} + (Pipeline part}

From Table 1, it can be seen that the overhead a.,_sociated with +(MIMD part} (4)the computation is large: only 20 % of the actors involved in

the computation are actually directly related to the algorithm, ET(P) = (Sequential part} Jr (Pipeline partP) x TiP )

while most of the remaining overhead actors (80 %) have to be +(MIMD partP) (5)

sequentially executed. In the following discussion, we extend P : number of PEa.

Amdahl's law to analyze this phenomena, T(P) : interoutput time = 1/throughput,
Our data-flow multiprocessor is in fact a collection of for each PE of P PEa.

pipelined processors (since eneh data.flow processor (Fig. 1)



The speed up car, be written as: ample, if a macro-actor contains two sequenti;_l overhead oper-

ET(I) _,_ions, then the number of actors in Pipeline part of equation

. Sp(P) - ET(P) (6) (5) will be reduced to 253, which is the sum of the sequential
nonoverhead actors and half of the sequential overhead actors

in a PE for an 8x8 problem size. If we assume the through-
In equation (5), the value of T(P) would be 1 in the ideal case put of each PE remained unchanged, the speedup, according

which means that :_noutpul; is generated at each pipeline cycle, to equations (4), (5), and (6), will tend to increase while the
Instead, T(P) will increase when the number of processors (P) actors in Pipeline part are reduced. The speedup, calculated
increases. This is due to the f_ct that pipeline stages become un- from equation (6), using 8 PEs for an 8_,:8matrix problem, can
saturated and that resources become idle. The amount of actors be predicted in Fig. 7 with respect to different amounts of se-

in each part of equation (5) (Sequential part, Pipeline part, quential overhead macro-actors in each PE. It should be noted
and MIMD part) can be obtained from the simulation results that the reduction in *,he amount of sequential overhead actors
summarized in Tables 1 and 2. For example, there is a total is limited. This is due to the fact that the ,_equential part is not

of 4065 dynamic actors (Table 1) for an 8×8 matrix in chaotic independent of the rest of the computation but in fact presents
relaxation using 8 PEs. We separately counted 64 actors in the certain data dependencies with the rest of the computation. For
Sequential part due to the sequential input block. Tile actors instance, it could be estimated that the number of sequential
in the Pipeline part can be c_lcuiated from Table 2: add the actors could not be less than 100 in Fig. 7.
total sequential nonoverhead actors in all PEs (734) and the

total sequential overhead actols in all PEs (2436), for a total 6 Conclusions
of 3170. Finally, there are 831 ,_ctors in the MIMD part. This

last figure has been obtained by subtracting the number of ac- In this paper, we have demonstrated how two different ap-
tera in the Sequential part and in the Pipeline part from the preaches to solving Partial Differential Equations could be ira-

total number of actors. If we assume that T(1) is equal to l, plemented on a data-driven multiprocessor architecture. The
from equation (6), we obtain ET(P) = ET(1) / Sp(P), in which two PDE solvers were chosen for their known inherent paral-
Sp(P) is the speedup observed during the simulation and ET(1) lelism of execution', the conventional Jacobi method and the

is obtained from equation (4), llence, we can calculate ET(P) chaotic relaxation approach, While the "conventions?' princi-
and obtain T(8) = 2,7 Similarly, we can also obtain T(2) = 1.1, pies of the U-interpreter were used in the graph construction

T(4) = 1.6 Therefore, when the number of processors increases, of the Jacobi method, chaotic behavior could not be easily se-
theincreasingvaluesofT(P) show thatitbecomesharderto quencedinthismodelofinterpretation.We thereforeproposed
fullyutilizeeveryfunctionalunitsina PE. Thisisa good intu- a new schemefortheimplementationofchaoticrelaxation:the

itive explanation for the poor speed-up behavior with increa.qing Utoken no.labelin#" scheme proceeds with the execution as soon

numbers of Processing Elements: adding more Processing Ele-. as any charger has been detected on the input arcs, instead of
ments simply lowers the load on each PE with no possible gain allowing execution upon arrival of a matched token set. This
due to the high aequentiality of the program graph, low level data-flow graph scheme can be easily inserted in the

By inspecting Table 3, we can further verify that the utiliza- program graph by the compiler, provided that our proposed

tion actually decreases in each stage of functional units as more special, asynchronous, hlgh-levei language constructs can be in-
PEs _e used. The problem has also been noticed by Gajski cluded in the target language. An extensive simulation of the
etai.(1982)forpipeline-typeparallelism.Forexample,inthe executionofthesetwo PDE solverson a simulateddata-flow

matrixmultiplicationcase,thesummationoperationcanbeex- machinewas carriedout.Itdemonstratedthata combination

ecutedby usingthe treeheightreductionmethod. Ina data- ofexcessiveoverheadratio,largesequentiaiityofoverheadpro-

driven machine, when an algorithm contains pipeline.type par- gram graph, high communication costs, and poor locality of
allelism (such as our PDE solver), those overhead actors which allocation could seriously limit final speed-up, regardless of the

are needed to insure the correctness of computations, will be machine configuration.
forced to execute sequentially since they are usually loop index In summary, it can be said that this paper has demonstrated
producers, etc. which are highly sequential operations, There- the following points:
fore, it is not possible to use the traditional methods such as
tree height reduction to h_dle the problem. 1. Data-flow principles of execution can be used to provide

high-programmability efficiently in the numerical evalu-
Inthemacro.actorscheme{Gaudiotand Ercegovac,1985),

severaloperationsaregroupedintoasingleactor.Macro-actors stiesofhighlyconcurrentnumericalalgorithmssuchas
PDE solvers.Indeed,we have demonstratedthe graph

can alsobe used inthiscontextifwe lump allthesequential constructionofdat_drivenJacobi.
overheadactors.Thiswouldreducetheexecutiontimeby re-

ducingthelengthofthesequentialpath.However,itshouldbe 2.While previousdata-flowresearchhas concentratedon

notedthattheinversethroughputT(P) ofa PE wouldslightly _conventional"mechanismsofexecution,asynchronousex-

increasesinceeachactorrequiresmore procemsingtimebutthe ecution(chaoticrelaxation)can alsobeenforced.Due to

pipeliningwillbeimproved.Indeed,thesequentialoverheadac- theirlow inherentcommunicationcosts,thistypeofal-

tersin each PE can be 9rouped in various sizes of macro-actors, gorithma will be more efficient in large-scale, distributed
From equation (5), it can be seen that the amount of Pipeline multiprocessors. Our token no-labeling approach has eas-
part actors are actually reduced by the above scheme. For ex- ily and efficiently solved the problem.



'3,Programnmbilityofthese two i,ypesoralgorithmscan be "_" ....

verifiednotonlyatthelow.leveltliscussedintl_eprt,vi. _o_-,_,,,,.............J

language, To this end, we have introduced new maya. / l
chronous program constructs which can be used to create I........,"_¢_i,c..........}

/ I "°" Ino-labeling program graphs.

4.Wenthesehighlyp.raU01applications_anent.llatang0 I,.,,,*-,',,.I[ '' L--I-';;'::.........j
• l?OIk_,Gl I | tI_?CH It/_l/ I [ glltl/|X_ iamount or overhead processing (up to 80 _ ) In addi- [........... L................. r_

tion, lackofpipeliningwiU, in this overhead is a major FI....... ,u,_--']]
hindrance to speeding up the computations. The creation
of larger computing entities must be undertaken in order

to ensure better resource utilization. ----_ " 'F---t-::::._ I
Future research issues will indeed include using macro-actor • ,o_,',,_: I

techniques and designing an optimal instruction set to reduce ....... ]-..........

the overhead, t"
1"0 I_rrwolt
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