. ~«wmuy wi ooutnern California
Los Angeles, California
(213) 743-0249

ABSTRACT: Partial differential equations can be found in a
host of engineering and scientific problems. The emergence of new
parallel architectures has spurred research in the definition of par-
allel PDE solvers. Concurrently, highly programmable systems such
as data-flow architectures have been proposed for the exploitation
of large scale parallelism. The implementation of some Partial Dif-
ferential Equation solvers (such as the Jacobi method) on a tagged
token data-flow graph is demonstrated here. Asynchronous methods
(chaotic relaxation) are studied and new scheduling approaches (the
Token No-Labeling scheme) are introduced in order to support the
implementation of the asynchronous methods in a data-driven envi-
ronment. New high-level data-flow language program constructs are
introduced in order to handle chaotic operations. Finally, the per-
formance of the program graphs is demonstrated by a deterministic
simulation of a message passing data-flow multiprocessor. An analysis
of the overhead in the data-ow graphs is undertaken to demonstrate
the limita of parallel operations in data-flow PDE program graphs.

1 Introduction

Partial Differential Equations are an important problem in sci-
entific and engineering areas. Much research has been devoted
to the study of the numerical solutions of these equations. This
paper will show the implementation of several PDE salvers on
a special class of multiprocessor systems, namely data-flow ar-
chitectures.

The data-flow principles of execution (Arvind and lannucci,
1983) offer the programmability needed to synchronize at run-
time the many parallel processes on a large scale multiproces-
sor. Instead of relying on the conventional central program
counter, the availability of data instead renders an instruction
executable. However, in spite of the simplicity of these princi-
ples, much overhead may be introduced in order to respect the
functionality of execution. It is the purpose of this paper to
evaluate the respective effect of the data-flow synchronization
methods on the final performance of the machine for a certain
class of numerical applications.

In this paper, we consider the Jacobi and Chaotic relaxation
methods for solving PDEs. Although we will cantrast the im-

'This material ia based upon work supported in part hy the US Depart-
ment of Energy under Grant No. DE-FG03-87ER25043

plementation of both methods in a data-driven graph, we do not
intend to reflect on the respective intrinsic merits of the two ap-
proaches to solving PDEs. Instead, in both cases, we study the
rules of construction of a U-interpreter data-flow graph (Arvind
and Gostelow, 1982). In order to enforce chaotic behavior of the
data-flow graph, we also introduce specific solutions such as the
token no-labeling approach in which actors are activated with-
out regard for the tag of the incoming token. Special high-level
data-flow language program constructs are introduced in order
to properly describe the asynchronous behavior of data in a
chaotic algorithm. We have conducted a deterministic simula-
tion of a large tagged token data-flow multiprocessor system.
Performance evaluation of the simulated data-flow architecture
centers around the speed-up obtained and analyzes the influence
of the “data-fBow overhead” (i.e., the actors needed to ensure
proper data-driven synchronization). We show how much of
this overhead cannot be easily parallelized and thus presents an
unsurmountable impediment to delivering high speed-ups even
in the presence of large degrees of parallelism.

Overall, the goal of this paper is to demonstrate how such
different implementations of PDE solvers as conventional Ja-
cobi and chaotic relaxation can be executed on a data-driven
machine. This includes the expression in a high-level language,
the construction of the data-flow graphs, as well as the perfor-
mance of the simulated multiprocessor system. In section 2, the
elementary data-flow principles of execution and several meth-
ods for the solution of Partial Differential Equations are shown.
The Jacobi method and the chaotic relaxation method along
their associated data-low implementation are discussed in sec-
tion 3. While section 4 presents the results of a deterministic
simulation of the MIT Tagged Token Data-flow Architecture,
performance observations are analyzed in section 5 and con-
cluding remarks are made in section 6.

2 PDE’s on Data-Driven Machines
In this section, we first introduce the data-flow principles of

execution and review the essentials of the PDE solvers which
are intented to be implemented on these machines.

and

DISTRIBUTION OF THIS DOCUMENT IS UNLlMITEqéw

« actors are purely functional and execution produces no
side-effects.

Data-flow programs are represented by directed, acyclic
graphs which consist of actors connected together with arcs.
Arcs represent the data dependencies between actors and carry
tokens which are the data values being passed between actors.

2.1.1 Interpretation Models and Structure Represen-
tation

Once a data-flow graph has been constructed and allocated, the
issue arises of how to actually execute the graph. Although the
graph defines the operations to be performed and how they are
related to one another, it contains no information about arc
capacity, precise firing rules, actor execution order, token con-
sumption order, simultaneous actor execution order, etc. Sev-
eral approaches have been put forward regarding the interpreta-
tion of data-flow graphs (Dennis, 1974) (Arvind and Gostelow,
1982).

Large structures cannot be easily modified under data-flow
principles of execution since the underlying principle of single

asstgnment prevents the updating of any data structure, Copy-

ing operations are expensive albeit logically acceptable; there-
fore, several schemes(Arvind and Thomas 1980){Gaudiot 1985,
1986)et al. have been designed to alleviate these problems.

2.1.2 The MIT Tagged Token Data-flow Architecture

This machine implements a version of the U-Interpreter, while
array handling mechanisms support [-structure concepts
{Arvind, Kathail and Pingali, 1980). An abstracted structure
of a PE is shown in Fig. 1. In this distributed architecture
model, each PE is independent from its neighbors and there is no
global controller. A hypercube communication network allows
the transmission of data-flow tokens between PEs. Store-and-
Forward capabilities are provided so that a pair of PEs which
are not directly linked may still comraiunicate,

2.2 PDE Solvers

We now describe in general terms the computational problems
posed by Partial Differential Equations. A partial differential
equation is an equation which contains one or more partial
derivatives. An example of a PDE is Laplace's equation.

2.2.1 Jacobi Method

In the evaluation of basic iterative methods (Varga, 1962), we
assume that A is a nonsingular nxn (sparse or dense) matrix.
Let b be a given column vector, then the system of linear equa-

tions can be expressed as Az = b . The Jacobi iterative method
is derived as:

-. e Lag toen terminate
the iterations and accept z(*) as the answer when the following
condition is satisfied : |z(¥) — z(k=1)| < ¢

2.2.2 Chaotic Relaxation

In the asynchronous approach (Baudet, 1978), communication
between processes is achieved by reading the dynamically up-
dated variables, while each process continues the execution for
the updating of the common variables. A subset of asynchronous
methods, called chaotic relazation schemes, was introduced by
Chazan and Miranker (1969) to solve linear systems. Generally,
the chaotic relaxation method is more satisfactory in praczical
applications although the definition of asynchronous methoda is
mathematically more rigorous.

2.3 High-Level Language Constructs

The numerical PDE solvers which we have described must also
be expressed by high-level language constructs. We have cho-
sen for this purpose SISAL (Streams and Iterations in a Single
Assignment Language), a high-level applicative language devel-
oped by McGraw, Skedzielewski, et al. (1985). In addition, we
will demonstrate our new synchronization constructs necessary
to describe chaotic behavior. As we have seen before, we can
distinguish between two forms of PDE solvers: synchronous or
asynchroaous methods. Each of these two approaches will be
expressed by different high-level language program constructs
which we will now study in turn.

2.3.1 Synchronous Constructs

Assume that we have to implement a relaxation problem with
a stopping criterion evaluated by the function Notconverge().
The function Notconverge() checks the array Y at every iter-
ation to determine whether it converges. Therefore, the whole
relaxation procedure behaves in a synchronous manner. The
corresponding program construct is shown below:

(1) Function relax (x:OneDim

(2) N:Integer

(3) returns OneDim)
(4) for initial

() Y :=x;

(8) while (Notconverge(Y)) repeat
(1) T:=for[in 1, IMAX
(8) returns array of F (old Y{l-1], old Y{I}, old Y[I+1])

(8) end for

(10) Y := array[0: X[0]]

(11) I T

(12) || array| IMAX+1 : X{IMAX+1] |
(13) returns value of Y

(14) endfor

(18) Endfunction .

—gwssvaun, &0 the above example (line 8), we now
allow the function F to execute over different versions of the
Y's. This means that whenever a value of index I completes
the evaluation of the function F, it proceeds with the execution
of the next computation without waiting for other index val-
ues which are executing the function. Hence, we can rewrite
the above program for asynchronous computations by changing
line(6) to:

while (Notconverge(Y(1))) async-repeat

Once ar index 1 has completed the evaluation of F in line(8),
the value of the grid point at index 1 is checked by the function
Notconverge(). If the function returns a true value (i.e., all
the points still do not converge), then the index is allowed to
produce a new iteration.

3 Program Graph Constructions

The numerical methods of PDE solvers described in the previous
sections can be easily adapted to the data-driven principles of
execution.

3.1 Jacobi Method

As described earlier, the Jacobi method is an iterative solution
of a system of linear equations.

3.1.1 The Token Relabeling Implementation of Jacobl

In order to insert the data inputs into the Jacobi data-flow
graph, special actors must be used for tag modification. In
particular, these actors modify the context and the iteration
number portion of the tag. In the actual implementation, the
matching of the iteration number portion of the tag of the data
tokens is handled through the use of two primitive actors ép
“and bw. The function of the g actor is to extract the iteration
number from the input token while that of the &y actor is to
set the iteration field of the tag of one of the input tokens with
the data field of another input token. A detailed presentation of
these actors was made by Gaudiot (1985) and by Gaudiot and
Wei (1986).

3.1.2 Data-flow Implementation

In the Jacobi method, the major computation consists of re-
peatingly computing the value of z(¥*1) from (1) and evaluating
the termination criterion for n steps, where n is the size of the
matrix A. The data-flow graph of this algorithm will accept
a matrix A (nxn, dense), a columnn vectar b, an initial column
vector z and two constants n and ¢. The output would be the
solution vector z with required accuracy ¢. In Fig. 2, the block
diagram of the Jacobi computation are presented. Note that
each block of the body of the graph is iteratively performed:

o Distributor: The set of input data tokens from the two
dimensional array A is routed to the distributor which
separates diagonal elements from non-diagonal elements.

o Mgjor Jacobi Computationa: These data tokens are then
forwarded along with the other input data tokens to the
terminals of the major Jacobi computations block (body
of the graph). This block processes paired tokens and
generates the new tokens (new z vector) by using equation

(1).

Termination Computations: This stage computes the er-
ror vector from the old and the new vectors of z.

Loop Control: The loop control block then checks whether
a solution has been reached by checking the output of the
terminator block against the prescribed accuracy ¢ and
makes a decision of whether to Joop the tokens back or to
route them to the output module.

8.2 Chaotic Relaxation Method

As was seen before, chaotic relaxation is another approach which
is particularly successful in parallel environments. In order to
efficiently implement it on a data-flow multiprocessor, we intro-
duce here the token no-labeling approach in order to observe the
appropriate asynchronous behavior in a data-Sow environment.

3.2.1 The Token No-labeling Approach

In order to solve PDE problems by chaotic relaxation, we pro-
pose the token no-labeling scheme based on the MIT Tugged
Token Data-flow Architecture. In the MIT architecture, the U.
interpreter uses < u,c,s,¢ > to describe every activity (a single
execution of an operator), where u is the context field, ¢ is the
code block name, s is the instruction number, and ¢ is the iter-
ation number. For synchronous methods, the U-interpreter can
be used for the data-flow graph (token relabeling). However,
it is not directly suitable for chaotic relaxation. We therefore
introduce the following scheme: we no-label the iteration field,
that is, we ignore the ¢ field in the < u,c,s,i > label. When
the interpreter compares the tokens in the matching store, only
u,¢, and & need to be compared. If two input tokens have the
same < u,¢,8 >, then they can be matched and the correspond.
ing activity scheduled for execution. This is shown in Fig. 3a.
When tokens A and B enter the F actor, as long as A and B
have the same u, ¢, and a then they can be executed to produce
the output,

In order to guarantee the proper behavior of the no-labeling
actor, we also introduce the notion of locks at the inputs of
the actors. When an actor is tired, the input tokens remain in
the input lock until the next input token is received. In this
fashion, the incoming token will replace the stored value and

g ey

« suvenng mavcning method in the Matching Store:

1. Initially, when either token A or token B comes into the
actor F, it will be locked inside the actor.

2, When another token arrives, actor F will be fired and will
produce an output token. Note that the iteration tag is
undetermined because the output will be used by other
no-labeling actors.

3. After firing actor F, both input tokens remain locked inside
the actor. In other words, the rules of execution are non-
swallowinyg.

4. When another token is later received by the actor, the
actor is fired with the locked token on the other port and
the new value on the first port. The incoming token will
remain locked in the actor. Note that it overwrites the
previous token value.

3.2.2 Data-flow Implementation

The implementation of chaotic relaxation in a data-flow graph
form is quite similar to the Jacobi method mentioned in the
previous section. When executing the chaotic relaxation algo-
rithm, every z; in equation (1) is kept evaluating by taking the
latest updated values of other points. This process will termi-
nate as soon as, for each z;, the condition: | z.(.") -~ z'(k'l) |< €
and Ixf-"_l) - x,(A""z) |< € where k is the number of iteration
steps, is satisfied. The main difference between the two math-
ods is in the loop control block of Fig. 2. The loop control
block must wait for the completion of all the processes, before
it can proceed with the next evaluation. In the chaotic method,
every process can proceed uninterrupted without waiting for
other processes. This unsynchronized loop control represents
the chaotic behavior which simplifies the design of the graph.
Note that translating the graph into such a low-level graph con-
struct can be easily effected by the compiler upon encountering
an async-repeat high-level language instruction as was described
in section 2.8.2.

4 Simulation Results

The principles developed in the previous sections were imple-
mented in several data-flow graphs, Their execution was verified
by a deterministic simulation of a data-flow machine.

4.1 Simulation Assumptions

The architecture model of the Arvind/MIT Tagged Token Data-
flow Architecture was adopted for the simulator. It consists
of a multiprocessor system with a maximum of 64 processors
interconnected by a packet switching 6-dimension hypercube
network. In order to gather reasonable performance statistics
on the two PDE solvers, we made appropriate assumptions on
the various hardware and software delays. We also assume that
all functional units as well as each network node all require a
single unit of delay to perform their function.

«.4 oiumulation Results

Both the Jacobi method and the chaotic relaxation approach
have been programmed in a tagged token data-flow graph and
their execution simulated. When no confusion ie possible, they
will be respectively referred to as “ non-chaotic” and “chaotic”
from now on. In both sets of experiments, the following data
were noted:

¢ Ezecution time: Program sizes range from an 8x8 matrix
(¢.e., an 8-point grid) to a large 32x32 problem (i.e., a
32-point grid). Figs. 4a through 4c show the effect of in-
creasing the machine size for 8, 16, and 32 point grids and
display the execution time of the given problem size for
various machine configurations (from 1 to 64 Processing
Elements).

o Speed-up: The speed-up can be obtained by comparing
the execntion time of N PEs with the execution time of
one PE. While the results obtained in the previous section
indicate that any computation will be taxed by the over-
head in processing, they do not directly explain the serious
apeed-up limitations observed in the simulation (Figs. 5a
through 5¢). Indeed, it appears that several factors are
responsible for this effect: A large overhead portion can-
not be parallelized (Amdahl’s law), the increasing com-
munication costs and increased forced sequentiality (also
referred to as resource dependency), the I/0 problem, as
well as the allocation problem. We will analyze the rela-
tive effects of these factors in the next section.

Overhead analysis: Table 1 displays a dynamic count of
the actors executed during the processing of an 8x8 prob-
lem in both the chaotic and the non-chaotic relaxation
modes for various machine configurations. For our pur-
poses, we define a non-overhead actor as an actor directly

involved in the algorithm. Table 2 shows, for the chaotic

relaxation algorithm, the count of sequential overhead ac-
tors and sequential non-overhead actors in an 8-PE ma-
chine for an 8x8 problem size and in a 16-PE machine for
a 16x16 problem size. In an iterative part of the algo-
rithm, sequential overhead actors are located on a erits.
cal path of the loop while non-sequential overhead actors
can be executed in parallel. The total number of actors
has simply been obtained by counting, during the simula-
tion, the number of actor executions. This number gives
a measure of the complexity of the problem. The number
of overhead actors has then been evaluated in a similar
fashion: it was obtained by counting only the execution
of certain marked actors. Marking actors involves two
steps:

1. Mark “overhead” actors as those not involved di-
rectly in the algorithm itself but instead participate
only in operations related to the U-interpretation
model such as production of iteration indices with
the appropriate tags, etc. The rest are marked as
“nonoverhead” actors.

w0

<. niark actors according to their functional relatious
with other actors in the graph structure as “sequen-
tial overhead” or “sequential nonoverhead”.

We use a simple program graph whose function is to square
the diagonal values of a matrix to illusirate the actor
marking operation: in Fig. 6, assume we use n? PEs for
a nxn matrix. There are five actors (A to E) in each PE
to perform this function. The E-actor (SQUARE) is the
only actor relevant to the problem, while others are just
inserted for the purpose of insuring correct synchroniza-
tion and safe execution. Therefore, we mark the E-actor
as “nonoverhead” while the actors A, B, C, and D are
marked as “overhead”. By a closer inspection, a “sequen-
tial” path can be found (either A-C-D-E or B-C-D-E).
These two strings represents a forced sequential execution.
Hence, if we choose A, C, and D as “sequential overhead”
actors, the B-actor remains simply an overhead actor, be-
cause it could be executed in parallel with other actors,
Note that the marking of actors as sequential only refers
to their execution relative to other actors in the neighbor-
ing program graph construct. Indeed, it will be scen in
the next section that these sequential actors will cause a
“drying-up” of the various pipelines in the machines.

o Utilization: Table 3 shows the utilization ratio of each
functional unit (Matching Store Unit, Instruction Fetch
Unit, ALU, and Token Formating Unit) in a Processing El-
ement for chaotic relaxation with different machine sizes.

6 Performance Analysis

Although the rate of convergence in chaotic relaxation is hard
to obtain theoretically, the simulation results shown in Figs.
4a-4c indicate that the chaotic relaxation is faster than Jacobi's
method. The chaotic relaxation can perform 2 to 5 times better
than the conventional Jacobi approach. This ia due to the fact
that in Jacobi's method, each processor must synchronize with
other processors at each iteration whick creates a bottleneck.

The result of more crucial relevance to this paper, how-
ever, is the fact that both of these two methods have a limited
speedup (Figs. ba through 5c). The speedup is limited to 3 by
using B PEs in an 8x8 problem size, and the speedup is 5 by
using 1R PFs in a4 16x16 problem size, while it is limited to ©
by using 32 PEs in a 32x32 problem size. As mentioned, there
are several factors to explain this. The main reasons for this
phenomenon are two-fold:

* High amount of sequential overhead.

¢ The existing type of parallelism associated with the algo-
rithm itself is not suitable to this implementation.

From Table 1, it can be seen that the overhead associated with
the computation is large: only 20 % of the actors involved in
the computation are actually directly related to the algorithm,
while most of the remaining overhead actors (80 %) have to be
sequentially executed. In the following discussion, we extend
Amdahl’s law to analyze this phenomena.

Our data-flow multiprocessor is in fact a collection of
pipelined processors (since each data-fiow processor (Fig. 1)

is composed of 4 sequential blocks, the Matching Store Unit,
the Instruction Fetch Unit, the ALU, and the Token Format-
ing Unit). For a parallel algorithm on such a multi-pipelined.
processor system, we should consider two types of parallelism:
pipeline-type parallelism and MIMD-type parallelism
(sometimes referred to as concurrency). The pipeline-type par-
allelism is a temporal parallelism which is suitable for execution
on a multi-stage pipeline processor. At the same time, MIMD.
type parallelism is a spatial parallelism which can be efficientiy
executed in several simple Processing Elements. Thereflore, &
process with MIMD-type parallelism can be divided into sev-
eral parts for several processors with a speedup P (the number
of processars). This is not, however, the case for a process with
pipeline parallelism. Assuming that we have a process contain-
ing pipeline-type parallelism which can be executed in a single
processor with throughput T, it cannot be claimed that by us-
ing P processors for the same process, every processor will still
have a throughput T and gain a speedup P for these processors.
Matrix multiplication is a case in point:

Matrix multiplication can be writlen as A x B =
C, where A, B, and C are nxn matrices. For every
element ¢ in C, ¢ j= $5. (a4 x biy). The opera-
tions of multiplication are of MIMD-type parallelism
and the operations of summation are of pipeline-type
parallelism. Hence, a total of n® MIMD-type paral-
lelism (the multiplications) and n? of pipeline-type
parallelism (the summations) can be found. If we
use a pipelined processor to execute the n® multipli-
cations, n® PEs can achieve n speedup of n®, How-
ever, for the n? summations, n® PEs will not obtain
a speedup of n?. The reason is that if only one PE is
used, many summations can share the stages of the
pipe and saturate it. However, when many PEs be-
come available, it correspondingly becomes possible
to allocate only one operation to one PE. Therefore,
the pipe cannot be fully utilized due to the data
dependency inside the summation operation. This
automatically degrades the speed-up.

According to Amdahl’s law, the total execution time
(ET) of a program can be expressed as:

ET(1) = (Sequential part) + (Parallel part) (2)
with 1 PE

ET(P) = (Sequential part) + (Parallel part)/ P (3)
with P PEs

The total execution time can also be rewritten as:

ET(1) = (Sequential part) + (Pipeline part)
+(MIMD part) (4)
ET(P) = (Sequential part) + (Pipeline part/P) x T(P)
+(MIMD part/P) (5)

P : number of PEs.
T(P) : interoutput time = 1/throughput,
for each PE of P PEs.

The speed up can be written as:

S:(P) = BT (©

In equation (5), the value of T(P) would be 1in the ideal case
which means that an output is generated at each pipeline cycle.
Instead, T(P) will increase when the number of processors (P)
increases. This is due to the fact that pipeline stages become un-
saturated and that resources become idle. The amount of actors
in each part of equation (5) (Sequential part, Pipeline part,
and MIMD part) can be obtained from the simulation results
summarized in Tables 1 and 2. For example, there is a total
of 4085 dynamic actors (Table 1) for an 8x8 matrix in chaotic
relaxation using 8 PEs. We separately counted 64 actors in the
Sequential part due to the sequential input block. The actors
in the Pipeline part can be calculated from Table 2: add the
total sequential nonoverhead actors in all PEs (734) and the
total sequential overhead actors in all PEs (2436), for a total
of 3170. Finally, there are 831 actors in the MIMD part. This
last figure has been obtained by subtracting the number of ac-
tors in the Sequential part and in the Pipeline part from the
total number of actors. If we asaume that T(1) is equal to 1,
from equation (6), we obtain ET(F) = ET(1) / S,(P), in which
Sp(P) is the speedup observed during the simulation and ET(1)
is obtained from equation (4). Hence, we can calculate ET(P)
and obtain T(8) = 2.7 Similarly, we can also obtain T(2) = 1.1,
T(4) = 1.8 Therefore, when the number of processors increases,
the increasing values of T(P) show that it becomes harder to
fully utilize every functional unita in a PE. This is a good intu-
itive explanation for the poor speed-up behavior with increasing
numbers of Processing Elements: adding more Processing Ele-
ments simply lowers the load on each PE with no possible gain
due to the high sequentiality of the program graph.

By inspecting Table 3, we can further verify that the utiliza-
tion actually decreases in each stage of functional units as more
PEs are used. The problem has also been noticed by Gajski
et al. (1982) for pipeline-type parallelism. For example, in the
matrix multiplication case, the summation operation can be ex-
ecuted by using the tree height reduction method. In a data-
driven machine, when an algorithm ccatains pipeline-type par-
allelism (such as our PDE solver), those overhead actors which
are needed to insure the correctness of computations, will be
forced to execute sequentially since they are usually loop index
producers, etc. which are highly sequential operations. There-
fore, it is not possible to use the traditional methods such as
tree height reduction to handle the problem.

In the macro-actor scheme (Gaudiot and Ercegovac, 1985),
several operations are grouped into a single actor. Macro-actors
can also be used in this context if we lump all the sequential
overhead actors. This would reduce the execution time by re-
ducing the length of the sequential path. However, it should be
noted that the inverse throughput T(P) of a PE would slightly
increase since each actor requires more processing time but the
pipelining will be improved. Indeed, the sequential overhead ac-
tors in each PE can be grouped in various sizes of macro-actors.
From equation (5), it can be seen that the amount of Pipeline
part actors are actually reduced by the above scheme. For ex-

ample, if a macro-actor containg two sequential overhead oper-
ations, then the number of actors in Pipeline part of equation
{5) will be reduced to 253, which is the sum of the sequential
nonoverhead actors and half of the sequential overhead actors
in a PE for an 8x8 problem size. If we assume the through-
put of each PE remained unchanged, the speedup, according
to equations (4), (5), and (8), will tend to increase while the
actors in Pipeline part are reduced. The speedup, calculated
from equation (68), using 8 PEs for an 8 x8 matrix problem, can
be predicted in Fig. 7 with respect to different amounts of se-
quential overhead macro-actors in each PE. It should be noted
that the reduction in the amount of sequential overhead actors
is limited. This is due to the fact that the sequential part is not
independent of the rest of the computation but in fact presents
certain data dependencies with the rest of the computation. For
instance, it could be estimated that the number of sequential
actors could not be leas than 100 in Fig. 7.

6 Conclusions

In this paper, we have demonstrated how two different ap-
proaches to solving Partial Differential Equations could be im-
plemented on a data-driven multiprocessor architecture. The
two PDE solvers were chosen for their known inherent paral-
lelism of execution: the conventional Jacobi method and the
chaotic relaxation approach. While the “conventional princi-
ples of the U-interpreter were used in the graph construction
of the Jacobi method, chaotic behavior could not be easily se-

quenced in this model of interpretation. We therefore proposed
a new schemae for the implementation of chaotic relaxation: the

“token no-labeling” scheme proceeds with the execution as soon
as any change has been detected on the input arcs, instead of
allowing execution upon arrival of a matched token set. This
low level data-flow graph scheme can be easily inserted in the
program graph by the compiler, provided that our proposed
special, asynchronous, high-level language constructs can be in-
cluded in the target language. An extensive simulation of the
execution of these two PDE solvers on a simulated data-flow
machine was carried out, It demonstrated that a combination
of excessive overhead ratio, large sequentiality of overhead pro-
gram graph, high communication costs, and poor locality of
allocation could seriously limit final speed-up, regardless of the
machine configuration.

In summary, it can be said that this paper has demonstrated
the following points:

1. Data-flow principles of execution can be used to provide
high-programmability efficiently in the numerical evalu.
ation of highly concurrent numerical algorithms such as
PDE solvers. Indeed, we have demonstrated the graph
construction of data-driven Jacobi.

2. While previous data-flow research has concentrated on
“conventional” mechanisms of execution, asynchronous ex-
ecution (chaotic relaxation) can also be enforced. Due to
their low inherent communication costs, this type of al-
gorithms will be more efficient in large-acale, distributed
multiprocessora. Our token no-labeling approach has eas-
ily and efficiently solved the problem.

3. Programmability of these two types of algorithms can be
verified not only at the Inw-level discussed in the previ-
oua pointas (graph conatruction) but also in the high-level
language. To this end, we have introduced new asyn.
chronous program constructs which ean be used to create
no-labeling program graphs,

4. Even these highly parallel applications can entail a large
amount of overhead processing (up to 80 %). In addi-
tion, lack of pipelining within this overhead is a major
hindrance to speeding up the computations. The creation
of larger computing entities must be undertaken in order
to ensure better resource utilization.

Future resenarch issues will indeed include using maero-actor
techniques and designing an optimal instruction set to reduce
the overhead.

REFERENCES

[t] Arvind, and Gostelow, K.P,, “The U-interpretet,” in IEEE
Computer, Vol. 15, No. 2, February 1082,

[2] Arvind and lannucci, R.A., Two fundamental issues in mul-
tiproceasors: the data-flow solution, MI'T Lab, for Comp. Sc.
Technical Report MIT/LCS/TM-241, Sept. 1983.

[3] Arvind, Kathail, V., and Pingali, K., A data-flow architec-
ture with tagged tokens, Lab. for Comp. Sc. (TM-174), MIT,
Cambridge, Massachusetts, Sept. 1980,

[4] Arvind, and Thomas, R.E., I-atructures: An efficient data
type for functional languages, Rep. LCS/TM-178, Lab. for
Computer Science, MIT, June 1080.

(6] Baudet, G.M., *Asynchronous iterative methods for multi-
processors,” in Journal of ACM, April 1978,

[6] Chazan, D., Miranker, W., “Chaotic relaxation,” Linear Al-
gebra and Application, 1969, pp. 199-222

|7] Dennis, 3.B., “First version of a data flow procedure lan-
guage,” in Programming Symp.: Proc. Collogue sur la Program-
mation (Paris, France, Apr, 1974), Lecture notes in Computer
Science, vol. 19, Springer-Verlag, 1974, pp. 362.376,

[8] Cajski, D.D., Padua, D.A., Kuck, D.J,, and Kuhn, R.H., “A
second opinion on data-flow machines and languages,” in IEEE
Computer, February 1882, pp. 58-89,

[9] Gaudiot, J.L., and Ercegovac, M.D., *Performance evalu-
ation of a simulated data-flow computer with low resolution
actors,” in Journal of Parallel and Distributed Computing, Aca-
demic Press, November 1985,

{10] Gaudiot, J.L., and Wei, Y.11., “Token relabeling in a tagged
data-flow architecture,” in Proc. 1886 Inlernational Conference
on Parallel Proceasing, August 1988,

{11} Gaudiot, J.L., “Structure handling in data-flow aystems,”
in IEEE Transactions on Computers, June 1986,

{12] Gostelow, K.P., and Thomas, R.E.,*Performance of a sim-
ulated data-flow computer,” in IEEE Transactions on Comput-
ers, Vol. €28, No. 10, October 1980,

{13] McGraw, J.R., and Skedsielewski, 8.K., SISAL: Streams
and lleralion in a Single Ansignment Language, Language Re/-
erence Manual, Version 1.2, Lawrence Liverimore National Lab.
TR M-146, March 1085,

[14] Varga, R.S., Malriz iterative analyais, Prentice Hall, 1902,

PROM NFTWORE

MATCHING
stont

mstaveron | e 1
FETCH UAIT . MEMONY]

AL

-

TONEN
FOAMAYING

S

AOCAL PATR

LETRUCIURE
tonge

TO NETWORN

Fig. 1 Simplified model of & PE in the MIT Tagged Token Data-Row Architecture

»

L

IvFCY
ADATTOR

|1
e
Fi | PN f QF
l IJ,

clvuul

il

{ommrwnj

‘ outrUY

Fig. 2 Block diagram of Jacoh!

- o

A’..
T P B
A J A j By P
. -
F ¥ Y I3 %
Py - o

FAup Mot F(Au1 Bughe
ep 2 '

o don’t onre

Fig. 3a Token No-laheling 8cheime

alep 3 atep 4

¢ cdon't eate

remalning sctor

Fig 3b Token no-labeling matching

4
If‘ . sreedup
(LT 1
: Tokens Input
Yuve g,) / /’“”‘““"ZM&:
1
i |
s |1 l — j
L ?
. . Hanchantic Actor A - L omis Artor Y
2,800 T READ "HB
hantie ! Tag | Tar j,
>-
]) o [T}] 6 " ((F:)l;':\?\
1e " o Actor TRUFE %MV L
. ! xR e
Fig. 4a Execution time with problem size axg Fig. b Speedup with problem size 8
Time apeedup Actor C
80,000 [}
{ Actor B squank
80 oo [
[nonchantic
m’m
an o < ehantie
! Tokens Output
nenehaori 1 j k
Ry | Actor A overhead, sequential overhoar
R r
-) el 3 ¢ e ™ " r Actor B : overhead.
H 61
. 4 f . tial d
Fig. 4b Execution time with problem sire 16x16 Fig. 8b Speedup with probler: size 16x16 Actor C : overhesd, sequentia overhea
Tine ' . Wneedup Actor D : averhead, sequential overhead
4
mo!m; R Actor £ ¢ nonoverhead, sequertisl nonoverhead
{
: nonchaetic
150.0n0]
Fig ¢ An example of Matking Actnrs
chaotic
100, [}
0]
_ﬂhmn ipo-dnp
ch.{.‘m e . ' []
[2 c ™ L n L
Flg. 4¢ Execution time with problem size 32532 Fla. < 8poedup wilh problem sise 32532 Problem sige ox8
' []
number of PE HERNRENEIrE
-Ruiber of ptatic actory 8! ‘
nen- numbes of dynamic actors 5318
theotic | number of overhead attors 4880
gt LAULLILY
percentage 86 ’
. (1]
number of sequentjai overhead
chaotic number of dynamic actors . 3512 actons In & PE
v 3 24 e it
Percentage 81 [} ! 0 100 200 300 400
Rumber of ovethead actor
Peteeniage x 100 percent
oo number of dynamic actors pere Fig. 7 The efiect of reducing the number of sequential
Table 1. Actor tracer overhead nctors by macro-actors on the spred.up
Ll it s [T TS
oxh 80 10 1os Tos Jos Jos ot 05
sequeniisl overheyd A Ins [318 | s f:u 38 | s
LrE
PE 4 [1 l ?] L] s [] ? ng Store Unit "
sentisl nonoverheyd 87 1115 |1 e e |1 1 Mgr!gggn Feteh Untt (X}
loure |~22utnUs everheyd m 107 L 1ES RN ALD |
’ * PE id(continued) ’ AR AR IR l Token Formating Unit | o
quential nonoverhead 17 [0 Jar [y 1 Tme v [
l vequential overhead N2 {11 | 62 887 | 687 | oa1 | oy [T} Table 3 Utilisation ratio of each functions!
Table 2. Sequentia) it trace wnit with Increasing machine sige {oxp matrix),

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Ndmmumdsumdmugmmmwcy
impiied, or

thereof, nor any of their empioyees, makes awy warranty, express or
the accuracy, compisteness, or use-

mm&aﬁwwfamﬁngbymummmcmww
hetein do oot necessarily stats or

The views and opinions of authors
reflect those of the United Siates Government or any agency tharenf.

.
L]

