ORNL/TM-12165

Engineering Physics and Mathematics Division

INPUT RELEGATION CONTROL FOR
GROSS MOTION OF A KINEMATICALLY
REDUNDANT MANIPULATOR

M. A. Unseren ORNL/TM--12165
DE93 002735

DATE PUBLISHED — October 1992

Office of Engineering Research Program
Basic Energy Sciences
and
Office of Technology Support Programs
Office of Nuclear Energy

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
managed by
MARTIN MARIET’I‘Af ENERGY SYSTEMS, INC.
or the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R21400

aif EER



CONTENTS

ABSTRACT

v
1. INTRODUCTION . 1
2. PROBLEM STATEMENT AND SYSTEM DESCRIPTION 3
2.1 SYSTEM VARIABLES AND COORDINATE FRAMES 3
2.2 KINEMATIC MANIPULATOR MODEL 3
2.3 DYNAMIC MANIPULATOR MODEL 5
3. RESOLUTION OF KINEMATIC REDUNDANCY 7
3.1 SELECTION OF € AND ¢ . 8
3.2 SELECTION OF B SUCH THAT ¢ IS A SUBSET OF ¢ 9
3.3 CHOOSING B ORTHOGONAL TO THE ROWS OF J .. 13
3.4 SELECTING B BY APPLICATION OF THE ZERO-EIGENVALUE
MATRIX THEOREM . . . . 16
3.5 THE VECTOR CROSS PRODUCT METHOD FOR PLANAR
MANIPULATORS . . . 17
4. RIGID BODY DYNAMICAL MODEL AND CONTROL ARCHITECTURE 23
5. CONCLUSION AND FUTUREWORK . . . . . . . . . . 25
6. ACKNOWLEDGMENT . . . . . . . . . . . . . . .21
APPENDIX A . . . . . . . . . . . . . . . ... .2
APPENDIXB . . . . . . . . . . . . . . ... .3
APPENDIXC . . . . . . . . . . . .. ... .39

REFERENCES . . . . . . . . . . . . . . . . . .4

1ii



&
N e et

LIST OF FIGURES

System configuration and coordinate system assignment

System configuration and coordinate system assignment for the
CESARm research manipulator

Planar revolute redundant manipulator

v

11

18



ABSTRACT

"This report proposes a method for resolving the kinematic redundancy of a serial
link manipulator moving in a three-dimensional workspace. The underspecified
problem of solving for the joint velocities based on the classical kinematic velocity
model is transformed into a well-specified problem. This is accomplished by
augmenting the original model with additional equations which relate a new vector
variable quantifying the redundant degrees of freedom (DOF) to the joint velocities.
The resulting augmented system yields a well specified solution for the joint
velocities. Methods for selecting the redundant DOF quantifying variable and the
transformation matrix relating it to the joint velocities are presented so as to obtain
a minimum Euclidean norm solution for the joint velocities. The approach is also
applied to the problem of resolving the kinematic redundancy at the acceleration
level. Upon resolving the kinematic redundancy, a rigid body dynamical model
governing the gross motion of the manipulator is derived. A control architecture is
suggested, which according to the model, decouples the Cartesian space DOF and
the redundant DOF.



1. INTRODUCTION

The historical trend of minimality in design is manifested in the majority of
present day robotic manipulators including their control systems [1]. It is argued
in [1] that this historical trend has impeded, to some extent, the development of
new theory and new computational and analytical tools needed for the design of
future robotic systems. Two of the attributes proposed in [1] for the design and
control of future robots are the enlargement of the input and state spaces of the
manipulator such that it has a larger number of degrees of freedom (DOF) than the
minimum required. The additional DOF enable several tasks to be accomplished
simultaneously during motion of the manipulator. The concept of relegation of
control which involves assigning specific tasks to subsets of the control inputs to a
manipulator system with enlarged state and input spaces is proposed as a particular
type of generalized, nonlinear decoupling control in [1]. The control philosophy
framework [1] is presented in a conceptual, qualitative manner.

A kinematically redundant manipulator [2,3,4,5,6] is a classical example of an
actuated mechanical system possessing enlarged input and state spaces. This
report formalizes analytically and mathematically the input relegation control
philosophy (1] to the decoupling of the nonredundant and redundant DOF during
gross motion of a kinematically redundant manipulator. The approach to resolving
the kinematic redundancy as well as deriving a rigid body dynamical model and a
control architecture for the manipulator are based on a general method for modeling
and controlling constrained mechanical systems {7,8,9].

In the previous work [7,8,9], the motion of the dynamical system studied was
restricted by a set of k bilateral constraint equations imposed on n generalized
velocities which describe the configuration of the system, where k¥ < n. Thus the
problem of solving the constraint equations to obtain generalized velocities which
satisfy the constraints is underspecified and there are infinitely many solutions.
(n — k) new scalar variables (termed pseudovelocities in [7,9]) consisting of linear
combinations of the generalized velocities were introduced, which, together with the
original constraints, yielded a well specified solution for the generalized velocities.

The Jacobian matrix which transforms the joint velocities to obtain the
Cartesian velocities of a point, link, or end effector located on a kinematically
redundant manipulator is rectangular with fewer rows than columns. Thus the
problem of solving the kinematic velocity transformation equations for the joint
velocities is underspecified and there are infinitely many solutions. Interestingly,
the problems of resolving the redundancy of a manipulator and of determining
generalized velocities which satisfy the constraint equations in a constrained
mechanical system appear to be intimately related. It will be investigated here if
the approach in [7,8,9] can be extended to the problem of modeling a kinematically
redundant manipulator.

The report is organized as follows. A general procedure for resolving the
kinematic redundancy is first presented. Several techniques for applying the
procedure are discussed. A rigid body dynamical model is derived which consists
of separate equations of motion for the nonredundant and redundant DOF. Finally,
a decoupled control architecture is developed based on the separated form of the
mode].



2. PROBLEM STATEMENT
AND SYSTEM DESCRIPTION

The problem is to resolve the kinematic redundancy of a serial-link manipulator
moving in a three-dimensional workspace. The manipulator has a stationary base
and contains N single DOF joints. Upon resolving the kinematic redundancy, a rigid
body dynamical model and a control architecture are developed. The kinematical
and dynamical models of the redundant manipulator are assumed to be known. The
configuration of the system i< shown in Fig. 1.

2.1 SYSTEM VARIABLES AND COORDINATE FRAMES

The joint positions of the manipulator are the generalized coordinates describing
the configuration of the system. The system variables include the generalized
coordinates, velocities, accelerations, and the generalized input forces (i.e., the joint
torques) applied to the joint actuators.

As shown in Fig. 1, the coordinate frame (Xk, Yk, Zx) is assigned to the kyj, link
of the manipulator, where k = 0,1,..., N. The origin of the moving (Xn,Yn,ZnN)
coordinate system is located at the centerpoint of the end effector. The (Xo, Yo,
Zo) coordinate frame is the stationary base reference system.

2.2 KINEMATIC MANIPULATOR MODEL

The kinematic model for a serial-link manipulator which relates the Cartesian
velocities of a point, link, or end effector to the joint velocities is given by:

T = J(g)q. (1)

The joint positions of the manipulator defined by the vector ¢ = [q1, g2,...,qn]T
are the generalized coordinates, where superscript 7' denotes a transposition. The
Cartesian velocities of a point, link, or end effector on the manipulator are defined
by the (M x 1) vector z. It is assumed that M < N. For the case where the
Cartesian translational and rotational velocities of one of the rigid links (e.g., the
k = Nth link is the rigid body end effector) are to be controlled, M = 6 and

z = [(v&)7, (w(’,‘)T]T. The (3 x 1) vector v§ is the translational velocity of the kth
link at the point coinciding with the origin of the (X, Yk, Zx) coordinate system.
The (3 x 1) vector wg is the angular velocity of the kth link. v& and wf are expressed
in the base coordinates. For the case where only the Cartesian translational velocity
of a point on the manipulator is to be controlled, then M = 3 and 7 = vf. In
Eq. (1), J(g) is the (M x N) manipulator Jacobian matrix. J(g) is assumed to
possess full rank M.

The corresponding kinematic manipulator model at the acceleration level is
obtained by differentiating Eq. (1) in:

i=Ji+ Jg. (2)
The (M x N) matrix J = (8J/0q)4 in Eq. (2) is a function of (g, ).
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PROBLEM STATEMENT AND SYSTEM DESCRIPTION 5
2.3 DYNAMIC MANIPULATOR MODEL

The dynamical model in the joint space for the manipulator is given in
Lagrange’s formulation by:

T =D(q)§ + Clg, 9) + G(q). (3)
The generalized input forces (i.e., the joint torques) are denoted by the vector
T = [r,7,...,7n]7. The (N x N) symmetric, positive definite, inertia matrix is

D(g), and the Coriolis and centripetal forces are described by the (N x 1) vector
C(g,49). The gravity forces acting on the manipulator are described by the (N x 1)
vector G(q).

The problem of resolving the kineu.atic redundancy based on the kinematic
model given by Eq. (1) is discussed next.



3. RESOLUTION OF KINEMATIC REDUNDANCY

The problem is to solve Eq. (1) for the generalized velocities ¢ given the
Cartesian velocities £ and the generalized coordinates. The solution to the inverse
kinematics is underspecified because the number of unknown generalized velocities
(N) exceeds the number of equations (M) in the kinematic model. Equation (1)
has infinitely many solutions for q.

Motivated by the previous work ([7,8,9], a new vector variable
€ = [e1, €,...,en—pm]T is introduced to resolve the kinematic redundancy. The
number of scalar elements contained in € is equal to the number of redundant DOF
contained in the system, namely (N — M). It is defined by:

e = B(g)g . (4)
The (N — M) x N) matrix B(q) in Eq. (4) is selected so that the composite

(N x N) matrix (J7(q), BT(¢))T is nonsingular. It is convenient to partition the
inverse of (JT(q), BT(¢))” into two matrices:

-1

| 38] =11, =) ©
wherz II{g) is a (N x M) matrix and X(g) a (N x (N — M)) matrix. Equation (5)
implies that JII = Iyxm, JZ = O(Mx(N -M))s BIl = 0((N —~M)x M)

BY = Iyn-myx(n-m))and (I1J + EB) = Inxn. (Here I, x, denotes an (r x )
identity matrix and O,x, an (r X s) matrix of zeros). The choice of matrix B(q)
and vector € by the designer is somewhat arbitrary. Several examples are provided
later in this section.

Differentiating Eq. (4) establishes a relation between ¢ and §:
= Bj+ Bg . (6)

The ((N — M) x N) matrix B = (8B/8q)4 in Eq. (6) is a function of (q, q).
Equations (1) and (4) can be solved for ¢, and Egs. (2) and (6) for ¢:

=i+ e , (7)

= i + 3¢ - (IJ + B) (I + B¢ (8)

in which Eq. (5) has been invoked. In Egs. (7) and (8), ¢ and ¢ have been expressed
as functions of the variables {z, ¢, ¢} and {2, Z, €, ¢, ¢}, respectively. Substituting
the right hand side of Eq. (7) into the kinematic veloclty model (Eq. 1) reveals
that the expression (J I ¢) identically vanishes regardless of the value of ¢, since
(JZ) = Omx(n-m)). Likewise, substituting the right hand side of Eq. (7) into
Eq. (4) reveals that the expression (BII ) identically vanishes regardless of the
value of z, since (BII) = O¢(n-ar)xm). Therefore the physical motion of the point,
link, or end effector being controlled in Cartesian space {1z} is independent of vector
€.
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The preceding general development demonstrates that it is possible to produce
equations of the form of Eqs. (7) and (8) by introducing additional Eqs. (4) and (6)
which quantify the behavior of the redundant DOF. However, it does not present a
criteria for selecting e. Moreover, the development does not indicate an operational
procedure for determining matrix B(g). This matrix is not unique, and several
methods for constructing it as well as a method for determining € are discussed
next.

3.1 SELECTION OF ¢ AND ¢

The achievement or fulfillment of additional tasks or goals other than controlling
the motion of a point or link on the manipulator (i.e., z) to track a reference
trajectory will be relegated to the (N — M) redundant DOF. The specific additional
task or goal is pertinent to the selection of € and é. To illustrate the quantification of
the redundant DOF, analytical expressions for ¢ and € are developed in this section
which lead to minimum Euclidean norm solutions for the generalized velocities and
accelerations, respectively. Starting with redundancy resolution at the velocity level,
¢ is selected to minimize ||¢||? using Eq. (7):

Nil> = (T2 + Se)T (IIz + Se) . (9)

Taking the partial derivative of Eq. (9) with respect to € and equating the result to
zero give:

2TTe+ 2Td = O nonnyx1) - (10)

Since ¥ has full rank (N — M), then matrix (£7 £) is positive definite, symmetric,
and therefore nonsingular. Thus Eq. (10) can be solved for e:

e=-(2T8) ' 2Tz . (11)

It is important to note that matrices Il and ¥ are unknown quantities whereas z
is known on the right-hand side of Eq. (11). To determine € using Eq. (11), the
designer first chooses a matrix B(g) which immediately leads to the determination
of [TI(¢), £(g)] by Eq. (5). Sufficient information is now available to calculate e.
Substituting the right-hand side of Eq. (11) into Eq. (7) and grouping terms give:

i=(Inen =2 (379)7'57) 0s (12)

Equation (12) provides a minimum Euclidean norm solution for the generalized
velocities as a function of the variables {g, z}. It is straightforward to verify that
Egs. (11) and (12) satisfy Eqs. (1) and (4). The generalized accelerations, if desired,
are obtained by first solving for € by differentiating Eq. (11). 7 may be determined
by differentiating Eq. (12) or by applyir.g Eq. (8). The generalized coordinates are
obtained by numerical integration.

In summary, given any B(gq) such that (JT(q), BT(¢))7 is nonsingular, a value
for € can be determined using Eq. (11) which yields the minimum norm solution for
g. It should be mentioned that it is invalid to substitute J(g)¢ for & on the right-
hand side of Eq. (11) in the preceding optimization procedure because ¢ is unknown.
There would be insufficient information available to solve for e. Moreover, this would
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incorrectly imply that B = —(27%)~*E£711J based on the definition of € in Eq. (4).
Indeed, this expression for B does not satisfy the matrix relations given in Eq. (5).

For redundancy resolution at the acceleration level, the redundant DOF
quantified by ¢ are determined to minimize ||§||? using Eq. (8):

g7 = {707 + €TST — (W + BeT(1J + 2B)T} {1z + ne "
13
—(IIJ + £B) (I + Ee)}

Taking the partial derivative of Eq. (13) with respect to €, equating the result to
zero, and rearranging yield a solution for é:

~(2Tg) T [n i— (I +£B) (s +3 e)] . (14)

In Eq. (14), the quantities {II, £} are unknown. To determine € using Eq. (14),
the designer chooses matrix B which immediately yields [II(q), £(q)] by Eq. (5).
The time derivatives of {J B} are then obtained. Given an initial value for € (at
the starting time) or using its last known value (e.g., from the previous sampling
period), sufficient information is now available to compute €.

Substituting the right-hand side of Eq. (14) into Eq. (8), rearranging terms, and
simplifying give:

{7'=(IN><N—E(ET) ZT)H( J(Hm+26)) . (15)

Equation (15) provides a minimum norm solution for the generalized accelerations
as a function of the variables {g, ¢, £, }. It is straightforward to verify that
Eqs. (14) and (15) satisfy Eqs. (2) and (6). The solution for € is obtained by
numerically integrating Eq. (14). The generalized coordinates and velocities are
obtained by numerically integrating Eq. (15).

3.2 SELECTION OF B SUCH THAT ¢ IS A SUBSET OF ¢

In our first approach, we choose B to relegate the control of the redundant DOF
to (N — M) of the N joints. In this case B is a constant matrix consisting of ones
and zeros. The approach is illustrated by examples.

Ezample 1: The problem is to control the Cartesian translational and rotational
motions of the end effector of the CESARm research manipulator [6,10,11,12]
operating in a three-dimensional workspace, as shovn in Fig. 2. In this configuration
CESARm has a smg}e degree of redundancy with N = 7, M = 6, and
¢ = [(v))T, (wl)T)?. Suppose we relegate the control of the redundant DOF
to the third (upper arm roll) joint, i.e., € = ¢3. The choice is reasonable and logical.
Indeed, it is the inclusion of that joint which makes CESARm redundant. B is
defined as:
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B=10,0,1,0,0,0,0] . (16)

Given the (6 x 7) Jacobian matrix J(g) defined in Eq. (1) and the choice of
vector B in Eq. (16), the (7 x 7) composite matrix (J7(g), BT)T can be inverted
symbolically using the method of inverse by partitioning [13]:

10 00 007( [200O0O0 07y
010000 010000
000000 0000000

=100 10 00/§J/0 01000, (17)
000100 000100
000010 000010
00000 1)U looo oo 1))
-1000007(-100000”“
010000 010000
00000 O 0000000

S=]Lx—=|00 100 0[<J|0 01000y J|BT

000100 000100
000010 000010
00000 1JU Looooo 1)

= (Iy7 — 1J)BT (18)

where II is a (7 x 6) matrix, X is a (7 x 1) vector and, here again, I,«, denotes
an (r x r) identity matrix. Upon calculating II(¢q) and ¥(q), € and ¢ are obtained
usings Eqs. (11) and (12), respectively, when it is desired to minimize ||¢||°.

Ezample 2: The problem is to control the Cartesian translational motion of
the end effector of the CESARm research manipulator at its centerpoint. In this
counfiguration CESARm is a spatial mechanism with four degrees of redundancy
(N =7, M=3,i = v)). A practical application of suck a configuration is having
the end effector tra;e a circle where its orientation is of no consequence. We choose
€ = [q-3a gs, éﬁa q7] , thus:

0010000
“loooo10 0

B=10000010 (19)
000000 1
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Fig. 2. System configuration and coordinate system assignment for the CESARm
research manipulator.
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Given the (3 x 7) matrix J(q) defined in Eq. (1) and matrix B defined by
Eq. (19), the (7 x 7) matrix (JT(g), BT)T can be inverted symbolically [13]:

r 1( 7T 07y !

0 1
0 0
0 0
1| ¢ 0
0 0
0 0
0 0

—

I
coocooo—
coococor~o
coococo~o

SCoOo—~OoO

UL

J
——
—

g
Il

Irxq7 -

COOOOOO
COOCOoOO—O
cCoOCcoOoOoO~O

L
”
L

SOOHOODO
™
<

SO OCODOO

= (I7x7 - IIJ

—

BT (21

where II and T are (7 x 3) and (7 x 4) matrices, respectively.

The principal benefit of choosing B in this way is that the inversion of the
(N x N) matrix (J7(q), BT)T is reduced to inverting the (M x M) matrix consisting
of M columns of the Jacobian J. Moreover, by choosing B as a constant matrix,
the problem of deriving an analytical expression for B is avoided.

Interestingly, the particular gp and homogeneous ¢, solutions to Eq. (1)
proposed in [6] are just special cases of the components {IIz} and {Z¢} of
the general solution for ¢ proposed in Eq. (7). Indeed, by selecting B as a
constant matrix such that € is a subset of ¢, the results of [6] have been obtained
here as shown in Example 1 for manipulators with one degree of redundancy.
For the case of multiple degrees of redundancy, a procedure is suggested in (6]
which is equivalent to transforming the (N — M) linearly independent columns
of the orthogonal complement & so they become mutually orthogonal using the
Gram-Schmidt procedure {14]. Such techniques are numerically intensive and may
produce computed vectors that are far from orthogonal [14]. The case of picking B
such that € is a subset of the generalized velocities as presented here is motivated in
part by its simplicity. The columns of ¥ obtained by the method are only linearly
independent. The benefits of orthogonalizing the columns of ¥ as suggested in [6]
are not clearly demonstrated. Besides, this would require recalculating B to ensure
that Eq. (5) is satisfied in the method presented here. Thus the minimum Euclidean
norm solution for ¢ given in Eq. (12) differs from that in [6] when N — M > 1.

The problem of resolving the kinematic redundancy at the acceleration level is not
addressed in [6).
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3.3 CHOOSING B ORTHOGONAL TO THE ROWS OF J

This approach to selecting B(q) is inspired in part by the recent work on the
modeling and force control of the constrained nonholonomic motion of a platform
with multiple, steerable wheels [15]. The partitioned inverse in Eq. (5) only requires
that J and B be full rank matrices, and further that the rows of B be linearly
independent of the rows of J. Here a method is suggested for choosing B(q) to be
orthogonal to the rows of J(g). It is assumed that the serial-link manipulator has a
single redundant DOF(N = M + 1), e.g., the CESARm research manipulator in its
most general configuration with M =6 and N = 7 [6,10,11,12]. Thus € is a scalar
and B(q) is an N-dimensional row vector.

Expanding along the last row of (J7(q), BT(q))T using the Laplace
expansion [13], the determinant of (J7(q), BT(q))7 is:

Hﬂ}

det [ = B(qg)A 22
3| = B (22)
where det [] denotes the determinant of []. In Eq (22),
A [: (AN1, AN,y oy ANN)T} is the vector of cofactors, where A p; is the cofactor

of the ith element of the Nth row of (J7(g), BT(¢))T. Vector A is a function of
the generalized coordinates, but not of the elements of B.

The general class of (N x 1) orthogonal complements £ of J is defined as the
last column of {(JT(g), BT(q))T}~":

1

T = ma (23)

where a specific ¥ is obtained by the designer’s choice of B.
We select BT to maximize the determinant of [J7(q), BT(q)]T subject to the
constraint of normalizing the Euclidean norm of BT to a constant value, i.e.,

HBTH2 = u, where the positive scalar p is a normalization factor selected by the
designer. We introduce the Lagrangian L:

L(BT, \)=AT BT + \(BBT - ) (24)

in which Eq. (22) has been invoked. Taking the partial derivative of £ with respect

to the vector BT and scalar A, respectively, and equating the results to zero provide
the necessary optimality conditions:

A+22BT = 0Onxy (25)

BBT —p=0 . (26)
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Equation (25) can be solved for BT:

1
T - . 2
B 2/\A (27)

Eliminating {B, BT} from Eq. (26) using the right-hand side of Eq. (27) and
rearranging terms give:

M =—ATA (28)

1 /ATA
/\=—§1/ p | (29)

where the negative sign in the general solution +1./(ATA)/u for A has
been selected to maximize det[JT(q), BT(g))T. Indeed, it is easy to see that
8* £/ BT (=2 X Inxn) is negative semidefinite when ) is defined by Eq. (29).

Backsubstituting Eq. (29) into Eq. (27) and transposing yield the solution for
B:

which yields a solution for A:

_ JEAT
B=Ye . (30)

Substituting the right-hand side of Eq. (30) into Eq. (22) reveals that:

det [é((g))J =VATA, . (31)

A relationship between B and T can be obtained from Egs. (23) and (31):

BT
Y¥=— 32
p (32)
Since J¥ = Oy, then B is orthogonal to the rows of J. Furthermore,

postmultiplying the matrix identity IIJ + B = In.n by JT gives:

nJsJT = J7 | (33)

Since J has full rank M, then matrix (JJT)is symmetric, positive definite, and
therefore nonsingular. Thus Eq. (33) can be solved for the right inverse II of J:

n=JT@@Jn" (34)
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It is immediately evident that the columns of II are orthogonal to the columns of

=

HTE = 0M)<l . (35)

The general solution for ¢ given in Eq. (7) becomes:

A
JATAp

When the redundant DOF are relegated to achieve a minimum Euclidean norm
solution for ¢, we substitute Eq. (35) into Eq. (11) to yield € = 0. Thus Eq. (36)
simplifies to ¢ = J7(J JT)~! & which is the classic Moore Penrose pseudoinverse
solution for the generalized velocities [2,3]. Furthermore, the minimum Euclidean
norm solution for the generalized accelerations given by Eq. (15) simplifies to:

g=JTJJIN) i+ (36)

G=JT(JJT)? (:1: —J (JT (JIT) &+

A

Ezample $: The problem is to control the Cartesian translational motion of the
centerpoint of the wrist of the CESARm research manipulator as shown in Fig. 2. In
this configuration CESARm has a single redundant DOF with M =3, N =4, and
& = v§. The matrix (JT, BT)T can be expanded to reveal its component elements:

; Ju Ji2 J13 Jus
= |Jzn Ja2 J23 Jaa|
[B] J31 J32 J33 ]34 (38)

bll b12 b13 bl4

Expanding along the fourth row of matrix (J7, BT)7T defined in Eq. (38), the vector
of cofactors A (= [Ay;, D42, A3, Agg]T) is given by:

—J12 (23734 — J2ajs3) + jis(J22J34 — Jeajaz) — jia(Jo2jas — joajsz)
A= | Ju(J2sdsa — J2ads3) + 713 (J2a931 ~ J21Jaa ) + 914 (J21733 — J23)31)
—Jn ()22_]34 = J24J32) + J12 (_321]34 —,124]31) = J1a\J21J32 —.122331)
J11(J22733 — Jaajaz ) + Ji2(J2sda1 — jaijss) + J13(J21J32 — JazJ31)

(39)

The Jacobian matrix for this particular configuration of CESARm is defined in
Appendix A. Substituting for jim in Eq. (39) using the appropriate equation from
Appendix A yields the solution for the cofactors Ay; (¢ = 1,2,3,4) as a function
of the lower four joint angles of CESARm:

2 2 2 2
Ay = — {asadcicasy + adascasy + aldzesc? (40)

+ azasdsczes}
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2 2 2 .
D2 =azajsyszcysy — ajdy sycy sy + ajay sy s3 sy
2 2 2 2

—azagdy sy sy + ajds sy szci + aldyeq ey c; (41)

+ azasds sy sy cq + azasdycyczey

2 2 2

Ags =_{a4d2c2c«333c434——a3a4czcac4s4 + ajds sy cq 54
2

+a3a4d262C333S4 + a4d2d3325334—a3a40203s4

2 2 2 2
— a3 a4 d3 S 84 + a, dg 82 83 C4 — Uy d3 C2C3¢Cy (42)
——aaa:‘;szci — azagdycyczcy — agdisycy

2 2
—a4d23233 + a3a4s2} ,

2 2 2 2
Ayqy =ajdrsycycysy + azaq ds s3c3 84 —agdacycscy
—2a3zasdzcacica — agdads sgcy cs — aidycy c2 (43)

— a3z dy d; 82 C3

where ¢; = cos(q;), s; = sin(g;) and where {as, a4, dy, d3} are constant
Denavit-Hartenberg link length parameters defined in Appendix A.

In [4], the orthogonal complement was selected to be & = A for M even and
¥ = ~Afor M odd when N — M = 1. Although not discussed, this implies
that det[J7, BT]T = £1. It is not clear why the sign of the determinant is
dependent on M being even or odd. The approach presented here selects B so as
to maximize det[JT, BT]T subject to the constraint |BT||2 = g, in addition to

satisfying BJT = 0,xp. In Appendix B symbolic expressions for det [JT, BT]T
and ¥ are derived as functions of B for the case N — M = 2. They are the
two-redundant-DOF counterparts to Egs. (22) and (23). Additionally, a method

for choosing B to set det [ JT, BT]T to a desired reference value is discussed.

3.4 SELECTING B BY APPLICATION OF THE ZERO-

EIGENVALUE MATRIX THEOREM

An approach to selecting B(q) is now suggested which is an application of the
zero-eigenvalue matrix theorem [14,16,17,18). Here we only assume that (N > M),
With this approach, B(q) will again be chosen to be orthogonal to the rows of J(q).

Let us first consider the properties of the (N x N) matrix (J7 J). It is proven
in Appendix C by analytical techniques that (JTT)is a singular matrix and that
its rank is equal to M. Furthermore, it is shown that (N — M) of the eigenvalues of
(JT J) are identically zero. Let the (Nx1)vectorY;(s =1,2,..., N= M) denote
the ith eigenvector of (J7 J) corresponding to the ith zero eigenvalue. Then « Y;,
where a is any nonzero scalar, is also an eigenvector of (J7 J) associated with the
tth zero eigenvalue. This indeterminancy can be removed by further requiring that
|Yill> = 1. It is straightforward to verify that:
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JTT Y1, Y, -, Ynom] = O(nsn—m)) - (44)
Premultiplying Eq. (44) by II7 yields:

J M, Yz, -, Ynom] = Omx(n=-m)) (45)

in which Eq. (5) has been invoked. Equation (45) reveals an obvious choice for
matrix B whose rows are orthogonal to those of J:

r yrl T 9

T
..YN——M .

Given matrix B as defined, in Eq. (46), suppose matrix ¥ is chosen as:

* = BT(BBT)"! (47)

where for computational reasons it should be mentioned that the main diagonal
elements of (B BT) are all ones. It is easy to see that J ¥ = O(Mx(N-Mm)) and
nry = O(mx(N-M)), where matrix II is defined by Eq. (34).

When picking vector € to minimize ||¢||* as shown in Eqgs. (9) and (11), it is easy
to see that € = O ny..pyx1 and ¢ = JT(J JT)~1i when B is defined by Eq. (46). The
minimum Euclidean norm solution for the generalized accelerations can be obtained
by substituting the above results into Eq. (15). Since analytical methods for
obtaining B such that J BT = O(Mx(N-M)) have been developed in the preceding
section for N — M = 1, the zero-eigenvalue matrix method is particularly useful
for the case of N — M > 2. 1t is a numerical approach that requires determining
the eigenvectors Y; using various computational iterative algorithms (18,19].

3.5 THE VECTOR CROSS PRODUCT METHOD FOR PLANAR
MANIPULATORS

In this section a method is proposed for determining a full rank orthogonal
complement of the Jacobian matrix for the inverse kinematics of a serial-link planar
manipulator with revolute joints. The planar manipulator shown in Fig. 3 contains
N revolute joints, where N > 2. Only the translational motion of the end effector
is to be specified and controlled. Therefore, the planar system contains (N -2)
redundant DOF. Let the (2x 1) vectors p)¥ (= [p{), p{,‘;] T)and vd¥ (= [, v{,\; 1)
denote the Cartesian translational position and velocity of the end effector in the
base coordinate system. p)’ is related to the joint positions as follows:



18 RESOLUTION OF KINEMATIC REDUNDANCY

ol = 116(91§+12CE‘11+92§+-'-+INCEQJ+92+---+QN% (48)
0 hs(g) +Ls(q +g)+ ...+ Iys 9+ g+ ...+ qn

where /; is the constant length of link i and ¢(-) = cos(:), s(-) = sin(.).

Yo

A

J .
g@pg > X
2%
Fig. 3. Planar revolute redundant manipulator.

Differentiating Eq. (48) provides a relation between the joint velocities and the
Cartesian translational velocities of the end effector:

vy = J(g)g (49)

where ¢ = [g1,¢5,..., ¢n]T. In Eq. (49), the (2 x N) Jacobian matrix J(q) is
defined by:

J1s o Ji2s iz, ..., JIN
J=1 . (50)
J21s J220 J23, ...y JanN

where its elements are defined by:
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Juu=-hs(a1) —bs(g+q@)—...—Ins(ar+q@+...+qv) , (51)
Jiz=—bs(q1+q@)—...—Ins(gg+ g+ ... +aqnv) , (52)

AN = =Ins(a1 + ¢ + ... +qn) , (53)
j21=IIC(QI)+I2C(QI+q2)+---+lNC(QI+92+-..+QN) ) (54)
Jez=hbe(qr + @)+ ... +invc(gr + g+ ... +qn) , (85)

Jan = Inc(@1 + g2+ ... + gn) . (56)

The problem is to determine the (N x (N — 2)) orthogonal complement ¥ of
the matrix J such that JE = O(2x(~-2))- We propose the “vector cross product
method” to obtain ¥. The (k —2)th column of ¥ is determined by taking the vector
cross product of two (3 x 1) vectors { vk, vqx } whose components consist of subsets
of the rows of the Jacobian. v,x and vy, are defined by:

Vig = [jll’ le,jlk]T ) (57)

Vok = [j21aj227j2k]T (58)
where k = 3,4,..., N.

The cross product between vy and vy may be expressed in a matrix-column
vector notation [13]:

0,  —Jw J12 J21 J12J2k = JikJ22
Ursitk = [ ik, 0, —jn J22 | = | JikJ21 — Ji1J2k (59)
—J12,  Ji, J2k J11J22 — J12 )21

where (3 X 1) vector v,k is the resultant of the cross product.
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Let (N x 1) vector ¥(x_;) denote the (k — 2)th column of £ (k = 3,4, ..., N).
It is defined by:

1, 01 0 Ursltk
0, 13 0 Ursltk

E(k_g) = 0((k-—3)x1) . (60)
[01 0, 1] Vraltk

O¢(N-k)x1)

By invoking the definition of v,y in Eq. (59), it is seen that J Z(x_z) = 0zx3.

Ezample 4: Suppose N = 5. The orthogonal complement of the (2 x 5) Jacobian
J is given by:

J12J23 — Jiajez  J12j24 — J1aJ22  Ji12J2s — J1sJ22
J13J21 — J11J23  JiaJ2r — JunJ2a JasJ21 T J11J2s
= |juj2 = Jizjmn 0 0 (61)
0 Jujez = 2y 0
0 0 Jujae = Jizjn

in which Egs. (59) and (60) have been applied. Matrix £ can be expressed as a
function of the five joint angles {qi, ¢2, ..., ¢5 } by applying Eqs. (51)—(56) with
N =35.

GivenL = [T, 2, ..., Z(n-gy ] , suppose we choose the ((N —2) x N) matrix
B(q) such that:

B=(2Tg)'sT . (62)

Then it is easy to verify that JBT = O(¢2x(n-2)) and that II is defined by
Eq. (34).

In (4], a set of equations of the form of Eq. (4) was introduced with the restriction
that € = O¢~v—m)x1)- Equations (1) and (4) were combined and solved for §. The

square matrix ( JT, BT )T was referred to as the extended Jacobian. Matrix B was
obtained by taking the Lie derivative of a scalar objective function to be optimized
in the independent directions of the null space of J to yield J BT = O(Mx(N=M))-
The problem of determining the null space of the Jacobian, that is, the orthogonal
complement X, is not addressed for the case of N —~ M > 1 in [4]. In the approach
used here, the components of € can be nonzero. The general development leading to
Egs. (7) and (8) only requires that the rows of B be linearly independent of the rows
of J. As a special case it is shown that B can be selected to be orthogonal to the
rows of J, which results in € = O(n-pm)x1) when minimizing the Euclidean norm

ll4)I*. In Section 3.2 it has been shown that matrices II and  can be determined

analytically thus avoiding the numerical inversion of (J7, BT )T for calculating
their values, which was not addressed in [4].

The general solution for ¢ given by Eq. (8) obtained when resolving the
kinematic redundancy at the acceleration level is useful in the development of
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a dynamical model and control architecture for the gross motion of a redundant
manipulator. This is discussed next.



4. RIGID BODY DYNAMICAL MODEL
AND CONTROL ARCHITECTURE

A dynamical model for the entire system is formed by first combining the joint
space dynamical model of the manipulator with the inverse kinematic solutions
derived in the previous section. The model is then transformed to separate it into
two distinct sets of equations of motion. Additionally, a control architecture of the
input relegation decoupling type [1] is suggested based on the model.

To determine a rigid body model, the generalized velocities and accelerations
are eliminated from the joint space dynamical model in Eq. (3) using Egs. (7) and

(8):

D{Hfé+§3€'}=T+D{Hj+EB}{H:t+Ee}—C—G. (63)

Premultiplying Eq. (63) by the (N x N) nonsingular matrix [D~! [JT, BT)]”
and utilizing the matrix relations in Eq. (5) separates the model into two sets of
equations:

§=JDYr—-C-G}+ J{lli + Z¢} , (64)

¢=BD ' {r-C-G}+ B{lli + Xe} . (65)

The M second order differential equations of motion governing the motion of the
point, link, or end effector being controlled in Cartesian space are given by Eq. (64)
as functions of the variables {&, Z, €, ¢, 7}. On the other hand, Eq. (65) is comprised
of (N — M) second order differential equations of motion which govern the behavior
of the redundant DOF in terms of the variables {z, ¢, ¢, ¢, 7}.

The problem now considered is to determine a control input 7 to Eqgs. (64) and
(65) so that the Cartesian variables {&, £} and the redundant DOF variables {e¢, ¢}
will be controlled independently. The proposed controller consists of the sum of
the outputs of a (N x 1) primary controller (7P) that is designed for cancellation of
nonlinear terms in the model and a (IV x 1) secondary controller (7*) that performs
closed-loop servoing. The composite control (7) is specified as 7 = 77 + 7°. The
primary and secondary controllers are defined by:

sz_f){ﬁ3+2i'3}{ﬁ%+2e}+é+@, (66)

r = D [frtu + Drivaun) (67)

where the superscript ~ denotes that the quantity is estimated as a function of
the desired (reference) feedforward trajectory (¢"¢/, "¢/, £7¢f) and/or the feedback

23
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variables (q, ¢, ). In Eq. (67), 72,,, and Tredun ar€ (M x 1) and (N - M) x 1)

vectors, respectively, representing new control input variables to be determined,
Substituting the composite controller + = 7P + 7° defined by Eqs. (66) and

(67) into Egs. (64) and (65), under the assumption that the following relations hold:

D=D C=C ¢6=6¢ Jj=J B=B j-j

B =358 0, %] = {[JT,BT]T}-I (68)
leads to the closed-loop system:

i.' = 7-c‘..]art ) (69)

€ = T:edun (70)
in which Eq. (5) has been used. Suppose 73,,, and Tredun are selected by the
designer to control {z, i} and {e, €} to track reference or commanded trajectories,
respectively. Since Egs. (69) and (70) reveal that the (nonredundant) Cartesian- and
redundant-controlled DOF have been completely decoupled, then Teare and 77,
are noninteracting controllers. The structure of the proposed composite controller
reveals that all N actuated manipulator joints contribute simultaneously to the

control of the Cartesian- and the redundant-DOF during motion of the manipulator.



5. CONCLUSION AND FUTURE WORK

The conceptual input relegation control philosophy [1] has been applied to the
problem of resolving the kinematic redundancy of a serial-link manipulator as well
as to dynamically modeling and controlling such a system. A new vector variable e
quantifying the redundant DOF was introduced and defined as linear combinations
of the generalized velocities. The equations defining vector e together with
the kinematic velocity model yielded a well-specified solution for the generalized
velocities. The general procedure was also used to resolve the redundancy at the
acceleration level. A criteria for choosing € and several approaches for selecting
the B(g) matrix were presented. In the first approach, B was picked to be a
constant matrix such that e is a subset of the generalized velocities. This resulted
in determining the inverse of the composite matrix (J7(¢), BT)T analytically thus
avoiding a numerical inversion. Furthermore, analytical and numerical methods for
determining B(q) such that it is orthogonal to the rows of the Jacobian matrix
J(g) were suggested, some of which applied to manipulators with multiple degrees
of redundancy. The advantages of this were demonstrated through relegating the
redundant DOF to produce minimum Euclidean norm solutions for the generalized
velocities and accelerations, respectively. Additionally, a rigid body dynamical
model consisting of two distinct sets of equations of motion was derived. One set is
the Cartesian space equations of motior governing the behavior of the nonredundant
DOF. The other set governs the redundant DOF. A control architecture was
suggested, which according to the separated form of the model, decouples the
Cartesian- and redundant-DOF.

The research in this report has uncovered and identified a wealth of open
research issues that warrant future attention. Vectors {e, é} were selected to
minimize the Euclidean norm of the generalized velocities and accelerations,
respectively. Clearly other criteria and analytical methods for selecting {€, €} need
to be developed. The analytical methods for choosing B(q) to be orthogonal to
the rows of the Jacobian matrix in Section 3.3 need to be extended to allow for
an arbitrary number of degrees of redundancy. The vector cross product method
in Section 3.5 for deriving the orthogonal complement of the Jacobian allows
for multiple degrees of redundancy. Unfortunately, the method is restricted to
Jacobians having only two rows. Further research is needed to generalize this
approach.

It has been shown in this report that the problems of resolving the kinematic
redundancy of a serial link manipulator and of dynamically modeling a constrained
mechanical system [7,8,9] are intimately related. In view of this, another suggested
future work area is to investigate the uses of the redundant DOF during hard
contact motion of a serial-link redundant manipulator. Additionally, it is felt
to be very worthwhile to combine the results presented here with those on
modeling the constrained motion of a nonholonomic omnidirectional wheeled mobile
platform [15,20] to study the problems of kinematic redundancy and rigid body
constraints in a combined mobility /manipulation system.
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APPENDIX A

THE JACOBIAN MATRIX FOR THE
CESARm RESEARCH MANIPULATOR

In this appendix the (3 x4) Jacobian matrix which transforms the joint velocities
of the lower four joints of the CESARm research manipulator [6,10,11,12] to obtain
the Cartesian translational velocities of the centerpoint of the wrist is specified. Let
Jim denote the element located at the intersection of the lth row and mth column
of J(q). Let ¢; = cos(gi) and s; = sin(g;), ¢t = 1,2,3,4. The elements are defined
by:

J11 = Q4 81 8284 — 04(01 83 + 81 0203)04 — a3} S3 — a3z $1C2C3

—d3sysg + dyey (A1)
J12 =—0G4C1C284 — G4C152C3C4 — A3C152C3

+dsccp (A.2)
Juis=a4(—ci1c283 — s1c3)cq — az(c1cz283 + s1¢3) (A.3)
Jua=—as(c1coc3 — 8183)84 — agcys2¢4 (A4)
Jan=—agc18284 + ag(crcacs — 8183)c4 — a3 $183 + azcycacy

+ dzc1 82 + dy sy (A.5)
J22 = — G481C284 — A48182C3€C4 — A3 5] $2C3

+ d3sicz (A.6)
J2s =aq(ci1cs — $1¢283)cq — az(syco83 — cyc3) (A.T)
Joa=— ag(c183 + s1¢2¢3 )84 — ag 818264 (A.8)
J31 =0 , (A.9)
Jaz=a4(—8284 + c2c3¢4) + azcacy

+ d3se , (A.10)
J33 = — a48283¢C4 — A3 5283 (A.11)
Jaa =aq(c2cq — S2€384) (A.12)

29



30 Appendiz A

where [a3, a4, d, d3] are constant Denavit-Hartenberg link length parameters which
are illustrated in Fig. 2 and whose values are:

[as, a4, d2, d3] = [0.029, 0.508, 0.356, 0.635] (m ) . (A.13)



APPENDIX B
EXTENSION TO MANIPULATORS
WITH TWO REDUNDANT DOF

The problem is to extend the analytical method for selecting B to specify
a desired, reference value for the determinant of ( J7, BT )T for manipulators
containing two degrees of redundancy (N — M = 2). Let the (2 x N) matrix
B = (BIT, B2T)T, where B; = [bj, bi2, ..., bin], 1 =1,2.

Expanding along the last row of (JT(g), BT(¢))T using the Laplace
expansion [13], the determinant of (JT(q), BT(¢))7 is:

J(g) | _
where, here again, det[] denotes the determinant of [ || In Eq. (B.1),
A(= [AN1, ANg, ..., AnN]T) is the vector of cofactors, where A y; is the cofactor

of the ith element of the Nth row of (J7(q), BT(¢))T. Vector A is a function
of the generalized coordinates and the elements of B;. The scalar cofactor
Ani(t=1,2,..., N) is defined by:

Ani = (1) B AN (B.2)
where ‘An_; is a (N x 1) vector defined by:

‘AN-1 =[AN-11, AN-12s- o0 ANC1i=1, 0, AN P ANL i1 - AN v-1]T

(B.3)
where l'AN_L,;,(k =1,2,..., N = 1) is the cofactor of the kth element of the
(N - 1)th row of the (N — 1) x (N — 1)) matrix contained within cofactor Apn;.
The ith element of *An_; is zero.

Using the quantities defined above, the determinant of (J7(q), BT(q))7 can be
expressed in a concise notation:

det [ égg ] - B,0BT (B.4)

where © is an (N x N) matrix defined by:

-

] ]Aﬁ—l ( -1 )N+1

2A%_1 ( -1 )N+2
0= . (B.5)

| VAR (DN

-
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whose main diagonal elements are all zero. O is a function of the generalized
coordmates and it will be shown by examples that it is a skew-symmetric matrix,
-0 = 07,
The general class of (N x 2) orthogonal complements ¥ of J is defined as the
last two columns of {(J7(q), BT(¢))T}*:

©

E(Q) = Bg@B;T [

- BT, BT ] (B.6)

where a specific T is obtained by the designer’s choice of B; and Bj.
Suppose we select B as:

1 T AL (=N (B.7)
I}

B, = <{0©
2 { ON-1)x1)

If we select B, as:

(B.8)

1 o« | J
5 - s[4 oo

where B; is defined in Eq. (B.7) and where det*[J7(q), BT(¢)]T is a constant,
desired value of det[JT(q), BT(q)]T selected by the designer, e.g., select

det*[JT(q), BT(¢)]T # 0 to make (JT(q), BT(¢))T an invertible matrix. Then
substituting Egs. (B.7) and (B.8) into Eq. (B.4) yields:

det [é%] = det® [é%] . (B.9)

Given this choice of By and By, the determinant of [J7(¢), BT(¢)]7 is non-negative
and can only be zero when vector 'An_; = O(nx;). Should all the components

of 'AN-; be identically zero, B, may be selected as —‘A%_l (-1 )N“ for any
i(= 2,3,..., N) for which at least one of the components of ‘A% _, (other than
the :th component) is nonzero. B; would then be selected as:

By = | Oux(i-1)) B, BT ——= det* [é((g))},o(xxw—s))] : (B.10)

An alternate a.nalytlcal approach to picking B so as to specify a desired reference

value of det[ JT BT] is now discussed. It is assumed that the row vector B; has

been selected to be linearly independent of the rows of J. Suppose B is selected
as:

eT BT J © BT J
T i S
By = Bg@@TBTdt [B} 132@213Tdt [B] (B.11)
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where the skew-symmetry of © has been exploited. ©? is a symmetric matrix whose
main diagonal elements are negative. Thus, the denominator of the right-hand side
of Eq. (B.11) is a quadratic form [14]. Substituting Eq. (B.11) into Eq. (B.4) yields
the solution for the determinant given by Eq. (B.9). Since J ¥ = 0psx2, it is easy
to see that JBIT = Oprx1-

The former method for determining matrix B is now illustrated through two
examples.

Ezample B1. Consider the problem of the determining matrix B for the case of
controlling a serial-link planar redundant manipulator with N = 4 revolute joints.
The configuration of the system is shown in Fig. 3. Only the Cartesian translational
motion of the end effector is specified and controlled. Thus M = 2 and the system
has 2 redundant DOF. The composite matrix ( JT, BT )T can be expanded to reveal
its component elements:

J ]:11 ‘7:12 1:13 .7:14
— | J21 J22 J23 J24

[B] B bii b1z bz by ) (312)
b21 b22 b23 b24

Applying Eq. (B.1) with N = 4, the vector of cofactors A(= [A41, Agz, Aga, Ag4]T)
is defined by:

Ju J13 Jia
J21 J23 J24
n bz by

iz J13 Jua
J22  J23  J24
bia b1z by

A = - ) [}

Ju  Jiz Jis
J21 J22 )23
1 bz b3

Ju  Jiz Jia
J21 J22 )24
bin b2 bis

b

T
] (B.13)

where |- | denotes the determinant of {-}.
Applying the definition of the *An-, given by Eq. (B.3), we have:

p- 0 -
1A _ | J13J2a — J1aJes
A; = 13 14 14
3 J1aJ22 — 1224 | ' (B-14)
[ J12J23 — Ji3J22 |
[ j13J24 5 J1ajas |
2A = . . . . *
3 JieJan = Ji1ja ’ (B.15)
[ J11J23 — J13J21 |
[ Ji2j2a = Jiad22 ]
3A; = | J1421 '6 J11J24 , (B.16)
| JuJ22 —  Jizda1
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Ji2J23 — JisJ22

4 — | J13J2r — Ji1]z3 _ _
B Ji1J22 6 J12J21 (B.17)

Substituting Eqgs. (B.14)-(B.17) into the right-hand side of Eq. (B.5) with N =4
gives the solution for ©:

i 0 —J13J24 + J14J23  —J14J22 + J12J24  —J12J23 + J13je2 )
o J13J24 — J14J23 0 J1aJ21 — J11J2a  J11jes — J13Jz
- ~J12J24 + J14J22  —J14J21 + J11j24 0 —J11j22 + J12J21
L J12J23 — J18J22 J1ad21 —Jides Jiidee — Jizda 0 J
(B118)

Equation (B.18) reveals that © is skew-symmetric. B; is given by:

By = [0, j13J24 — J14 J23, J1aJ22 — J12J24, J12J23 — J13J22] (B.19)

in which Eq. (B.7) has been invoked with N = 4. Given © and B; as defined by
Eqs. (B.18) and (B.19), the quantities By, det [ J T, BT]T, and ¥ are obtained by
using Eqs. (B.8), (B.4), and (B.6), respectively.

Ezample B2. Consider the problem of determining matrix B for the case of
controlling a serial-link planar redundant manipulator with N = 5 revolute joints.
Both the Cartesian translational and rotational motions of the end effector are

specified and controlled. Thus M = 3 and the system has 2 redundant DOF. The
composite matrix ( JT, BT )T can be expanded to reveal its component elements:

i Jiz J1iz Jua Jis

J J21 J22 J23  J24 J25
B| = |91 Js2 Js3 Jsa J3s . (B.20)
by bz biz by bys

ba1 baa bz bay  bos

The (5 x 1) vectors ‘A4(i = 1,2, ..., 5) are obtained by applying Eq. (B.3)
with N = 5:



113,
- 223)
2337
J12,
2221
J32,
112)
- 122’
J32,
112a
122»
J32,

J13,
123’
J33,

111’
121)
J31,
111)
- 1217
Ja1,
111)
121’
J31,

1]4,
1243
234,
1143
124a
J34,
213)
2231
2331
113»
123)
J33,

1]4&
124a
J34,

J14,
1247
J34,
113a
l23a
Z33a
113v
223)
J33,

J1s
J25
J35
J1s
J25
J35
J1s
J2s
J3s
J14
J24
J34

J1s | ]

J25
J3s

J1s
J25
Jas
J1s
J2s
J35
J14
J24
J34

-
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(B.21)

(B.22)
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jl27
1221
1327
111’
121»
J31,

111a
121»
J3la
111:
121a
J31,

J12,
J22,
J32,
illa
1213
131)
Ji1,
121a

J31,

J11,
121a
J31,

J14,
124’
134a
ll4a
]24)
J34,

1121
J22,
232,
J12,
122»
J32,

J13,
J23,
J33,
J13,
1231
J331
1125
122,
J32,

1121
122’
J32,

J1s | ]
J2s
J35
3_15)

J2s
J35

J15
J25
.7_35
J14
J24
J34

J1s
J25
J3s
J1s
J25
J3s
J1s
J25
J35

J13
J23
J33

(B.23)

(B.24)



1121
2227
232»
1117
2211
23la
llla
121a
J31,
Ji1,
J21,
J31,

J13,
123a
133,
J13,
J23,
J33,
1127
J22a
132y
JlZa
1227
132,

Jia | ]

J24
J34
J14
J24
J34
J14
J24
J34
J13
J23
J3s

-l
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(B.25)

Substituting Egs. (B.21)-(B.25) into the right-hand side of Eq. (B.5) with
N =5, it is easy to see that © is skew-symmetric. B, is given by:

J33 \J14J25 — J15J24) + Ja4
By = |32 (J15J24 — J1aJa2s) + Jaa
J32 \J13J25 — J15J23) + J33
J32 \J14J23 — J13J24) + )33

in which Eq. (B.7) has been invoked.

0

J1sJ23 — J13J2s) + Jas (j13J24 — JiaJos

J12J25 — J15 )22

JisJj22 = J12J25) + J35 (12923 — J13J22

J12J24 — J14 )22

T
+ J35 (J14 922 — J12J24
+ 734 (J13J22 — J12J23
(B.26)

Vector B; can be determined from Eq. (B.8).



APPENDIX C
DETERMINING SINGULARITY
AND RANK OF MATRIX (JTJ)

In this appendix it will be proven by analytical techniques that matrix (JTJ)
has less that full rank and thus is singular. The matrix relations given by Eq. (5)
will be used in evaluating the rank of (JT J). Additionally, the following matrix
property will be used. Two (n x n) real matrices X and Y are given. Matrix
X is assumed to possess full rank n and thus is nonsingular. Then the following
mathematical relation applies [13]:

rank(Y) = rank(XY) = rank(YX) = rank(XTY) = rank(YXT) . (C.1)

The rank of (J7 J) may now be determined. By the property of Eq. (C.1), the
following relation holds:

rank(JT J) = rank{[g;] T[T, BT} (C.2)

The rank of the (N x N) matrix within the braces on the right-hand side of Eq. (C.2)
1s now analyzed by first carrying out the multiplications:

nrgrygJT, nrtyrypBT
. (C.3)
2TgTgJr, ©TyTyRBT

The right-hand side of Eq. (C.3) is simplified by invoking the matrix relations in
Eq. (58):

JJT J BT
rank(JT J) = rank{ [ } } . (C4)
On-myxmy  O(N=M)x(N=M))

rank(JT J) = rank{

Equation (C.4) reveals that the last (N - M ) rows of matrix
([0, )T JTJ[JT, BT)) contain all zeros. Thus matrix (I, =T JTJJT, BT)
is singular. Furthermore, the rank([Il, £)7 JT J[JT, BT]) = M. It should be
mentioned that the upper M rows on the right-hand side of Eq. (C.4) form the
matrix (J [JT, BT]), which has rank M because the rank of J (= M) is unchanged
by postmultiplying it by the (N x N) nonsingular matrix [J7, BT [13].

Since matrix ([IT, £]7 JT J[JT, BT)) is singular, then matrix (JT J) is also
singular with rank(JT J) = M because the ranks of these two matrices are the
same as shown in Eq. (C.2). It should be mentioned that matrices (JJT) and
(JT J) have the same eigenvolues, except that (JTJ) has (N — M) extra zero
valued eigenvalues [14], which is readily confirmed by Eq. (C4).
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