skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HYLIFE-II tritium management system

Technical Report ·
DOI:https://doi.org/10.2172/10179076· OSTI ID:10179076

The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li{sub 2}BeF{sub 4}) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction {Phi}{approx}10{sup {minus}5} of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%.

Research Organization:
EG and G Idaho, Inc., Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC07-76ID01570
OSTI ID:
10179076
Report Number(s):
EGG-FSP-9971; ON: DE93019025; TRN: 93:019125
Resource Relation:
Other Information: PBD: Jun 1993
Country of Publication:
United States
Language:
English