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Abstract

This dissertation studies methods for estimating extremely small probabilities by
Monte Carlo simuiation. Problems in radiation transport typically involve estimating
very rare events or the expected value of a random variable which is with overwhelm-
ing probability equal to zero. These problems often have high dimensional state
spaces and irregular geometries so that analytic solutions are not possible. Monte
Carlo simulation must be used to estimate the radiation dosage being transported to
a particular location. If the area is well shielded the probability of any one particu-
lar particle getting through is very small. Because of the large number of particles
involved. even a tiny fraction penetrating the shield may represent an unacceptable
level of radiation. It therefore becomes critical to be able to accurately estimate this
extremely small probability.

Importance sampling is a well known technique for improving the efficiency of rare
event calculations. Here. a new set of probabilities is used in the simulation runs.
The results are multiplied by the likelihood ratio between the true and simulated
probabilities so as to keep our estimator unbiased. The variance of the resulting
estimator is very sensitive to which new set of transition probabilities are chosen. It
is shown that a zero variance estimator does exist, but that its computation requires
exact knowledge of the solution.

A simple random walk with an associated killing model for the scatter of neutrons

is introduced. Large deviation results for optimal importance sampling in random
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walks are extended to the case where killing is present. An adaptive “learning”
algorithm for implementing importance sampling is given for more general Markov
chain models of neutron scatter. For finite state spaces this algorithm is shown to
give. with probability one. a sequence of estimates converging exponentially fast to
the true solution.

In the final chapter. an attempt to generalize this algorithm to a continuous state
space is made. This involves partitioning the space into a finite number of cells. There
is a tradeoff between additional computation per iteration and variance reduction
per iteration that arises in determining the optimal grid size. which require more
work. but achieve a greater variance reduction. All versions of this algorithm can
be thought of as a compromise between deterministic and Monte Carlo methods.

capturing advantages of both techniques.
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Government. Neither the United States Government nor any agency thereof, nor any of their
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Chapter 1

Introduction

Problems in radiation transport often involve estimating extremely small proba-
bilities or the expected value of a random variable which is with overwhelming prob-
ability equal to zero. High dimensional state spaces and irregular geometries make
the problems complex enough to require Monte Carlo simulation for their solution.
Ordinary simulation for such rare events is typically insufficient to produce reliable
estimates in a reasonable amount of computer time.

Importance sampling is one technique which can dramatically improve the effi-
ciency of our calculations (see Glynn & Iglehart [9]). Here the transition probabilities
for the path of the particle are changed in the simulation. The result is multiplied by
the likelihood ratio between the true and simulated probabilities in order to keep our
estimator unbiased. The variance of the resulting estimator depends heavily on how
we choose our new set of transition probabilities. A good choice can give us a substan-
tial variance reduction while a poor choice can increase the variance of our estimator.
This dissertation studies methods for making that choice so that the variance of our

estimator is made as small as possible.
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1.1 Radiation Transport

Suppose we have a neutron emitter at a known site and wish to predict the
radiation dosage transported to a particular location. A neutron leaving the emitter
will travel a random distance before colliding with a molecule. Upon collision. it may
be absorbed with a certain probability, or it may scatter in a random direction with
a random chanee in its energy level. This continues until the neutron is absorbed.

We assume that interactions between neutrons are negligible so that we may sim-
ulate their paths one at a time. The radiation dosage at our target location will be
the rate at which the source is emitting neutrons multiplied by the expected enexrgy
delivered to the target per neutron leaving the source.

The probabilistic mechanism for the scatter of the neutron is assumed to be known
from the theory of physics (see Lux & Koblinger [13] and Lewis & Miller [12]). Its
path may be modelled as a Markov chain provided the state space contains enough
information on time. location, velocity, and energy level.

Figure 1.1 shows a two dimensional version of a simple transport problem. Suppose
we have a radioactive source inside a nuclear reactor. We want to shield off a control
room so that operators will not be exposed to an unacceptable level of radiation.
The arrows show a potential path a particle may take to introduce radiation into
our “protected” area. Realistic problems are complicated by the irregular geometries
within the reactors: machinery, bending pipes. air ducts, etc.

The probability of reaching the target location is very small for any one particular
neutron leaving the source. In order for our particle to score, or hit the target, it must
penetrate the lead shield. leave the shield at an angle in the general direction of the
control room. avoid being absorbed or deflected away from the control room by the
pipe. penetrate the cement wall. and scatter off the wall in the direction necessary

to reach the target. Because of the large number of neutrons being emitted by the
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Figure 1.1: A sample transport problem
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source, some will reach the target. To predict the amount of radiation at the target
we must be able to accurately estimate the expected energy delivered to the target
by a single neutron leaving the source.

These types of transport problems are of great interest in reactor design. Ap-
plications include reactor safety, shielding problems. criticality safety. and nuclear
safeguards. Transport problems also arise in oil well logging where a nuclear source is
placed in a borehole along with a detector. By observing how the radiation is trans-
ported from the source to the detector. inferences can be made about the geology
surrounding the borehole (see Ullo [24]).

Deterministic methods of solution are difficult because of the high dimension of the
state space. The problem may require as many as seven dimensions (three for position.,
three for velocity. and one for time). To sclve deterministically. it is necessary to
approximate the continuous state space with a finite number of cells. The number of
cells required. and hence the amount of work needed for solution. grows rapidly as
the partition becomes finer and finer.

The problem is further complicated by a very erratic probability transistion kernel.
Figure 1.2 shows the cross section of iron as a function of energy. The cross section
represents the instantaneous hazard rate for a collision within an iron medium. We
can see that a very slight change in the particle's energy level can change the collision
probability by orders of magnitude. Thus. for the discrete version of the problem to
closely resemble the continuous problem, the partition must be very fine. In seven
dimensions, this requires an excessive number of cells.

Monte Carlo simulation is an alternate method of solution that does not suffer from
the curse of dimensionality. The simulation can be done directly in the continuous
“space avoiding the need for a discrete approximation. By the central limit theorem,
we know that the acc.racy of our estimator grows as the square root of the amount

of work done. This rate does not depend on the dimension of the problem so that
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Figure 1.2: Nuclear cross sections of iron at various energy levels.
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Monte Carlo may be superior in high dimensional state spaces. However. without
methods of variance reduction. simulation would be impractical to estimate such
small probabilities.

A great deal of effort has been made to develop methods of efficient simulation of
transport problems. The problem is discussed frequently in the nuclear engineering
literature. Booth [4]. [3]. & [6]. Troubetzkoy [23]. and Cramer et al {8] are good
examples. Much progress has been made towards creating programs that can give
accurate solutions to realistic problems (see [14]). but these problems are difficult

enough so that more efficient methods are still being sought.

1.2 Importance Sampling

Suppose we have a probability space (2. F, P) and a random variable X defined
on that space. Ve wish to use simulation to estimate the expected value of that
random variable, EPX. If we choose a probability measure. Q. on that space such
that @ > P (ie Q does not assign probability zero to an event having positive
probability under P). we may wish to perform the simulation under Q instead of the
“true” probability measure P. By multiplying the random variable by the likelihood
ratio between P and @), we obtain an unbiased estimator for the expected value of X
under P. That is.

EPX = F9 (55 - X) (1.1)

which is the result of the well known Radon-Nikodym theorem (see Theorem 32.2 of
Billingsley [1].

In transport problems. (2 is the set of all possible paths a particle can take leaving
the source. The random variable X is the amount of energy delivered to the target
(which is zero when the particle fails to reach the target). The measure P represents

the true probabilities for the scatter of the particle which is assumed to be known
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from the theory of physics, and the measure @ represents the probabilities for the
scatter of a simulated particle in our computer runs.

As an example. suppcse we perform importance sampling on the problem in Figure
1.1. and our simulation run has produced the path indicated. Let us say a particle
following that path delivered 2 units of energy to the target. Suppase that in choosing
our simulation measure (), we made that particular path 10 times as likely as it should
have been under the true probabilities P. \We then count that s'mulation run as having
delivered 2 - & = 0.2 units of energy to the target.

Under P. the particle has an extremely small chance of scoring (reaching our
target location). The idea of importance sampling is to choose @ in such a way so
that the particle is more likely to score. This way, we do not need an extreme number
of computer runs before our simulated particle hits the target. \We can do this by
making collisions less likely to occur under @), and making absorption less likely when
the particle does collide. When choosing the scattering angle, we can give more weight
to directions towards the target rather than away from it.

To simply say that we want to change the probabilities so that the particle is more
likely to score is very vague. There are many ways this can be done and not all of
them will result in a variance reduction. We may decide. for example. to choose Q
so that with very high probability the particle goes straight from source to target
without a single collision. While this would lead to our simulations producing many
scores in a reasonable amount of time, it will not necessarily give us a good estimator.
We need to be very careful about just exactly how we make the particle more likely
to score.

Ideally, we would like to choose @) to make the variance of our estimator as small
as possible. From (1.1) if @ > P then

Varq(gg— . X) = E9 (-j—g -x)" - [E9 (% x)|* = E9 (-j-g -x)* - [EPX]".



CHAPTER 1. INTRODUCTION 3

If we choose @ by

= - EP Yy 9
=X EPY (L.2)
then
dP 2 - -2 g -2
QIYY v\ o Qv FPvIY w2 — PPV
E(dQ V) = E9(XNTHOEPX|T XY = EPY
and hence
AP
\arQ\IQ—-.\)zt)

It should be nointed out that (1.2) is cneating a little bit since it does not satisfyv
Q> P. Note trat Q{.\' = 0} =0 while P{X = 0} may be positive. [nfact. { X =0}
represents the neutron not reaching the target which has probabiiity very close to one

under P. Nevertheless. it can be shown that (1.1) still holds so iong as

dQ -
(Tﬁ>0 on the event {.X > 0}.

This is clearly satisfied by (1.2).

This choice gives us a perfect estimator. Clearly this is not practical since the
formula for @ depends on the unknown quaﬁtity EPX. However. this can give us
some insight into how we want to go about choosing (). As an heuristic. we can
think of EPX as a "sum” over all possible paths of the true prooability of the path
multiplied by the energy that a particle following the path will deliver to the target.

" expected energy delivered x Z P{path} - Energy{path}. (1.3)

1(l paths
Formula (1.2) essentially says to take dQ proportional to .X - /P or equivalently,
take

Q@{path} x P{path} - Energy{path}.

- We should sampie each path in proportion to its contribution to rhe sum in (1.3). or

its importance.
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Let us consider the path mentioned before where the particle goes straight from
source to target without a single coilision. A particle following this path does not lose
energy in collisions and may deliver a high dose to the detector. but its probability
would typicallv be so small that its term in (1.3) would be negligible. This path
would have very low importance and anyv choice ¢ which gave it high probability
would likely lead to an estimator with very high variance. A particularly poor choice
of Q can actuaily give our estimator infinite variance.

To sucesstully perform importance sampling we need to identifv which paths have
-he high importance and adapt our simulations to favor those paths. For the high
dimensional transport problems this is not an easy task. \We need to find the op-
timai tradeoff between paths with few collisions (and hence high energy) and low

propability. and paths with more collisions (less energy) but higher probability.

1.3 Summary

In Chapter 2. neutron scatter is modelled as a random walk with killing. While
these models are much too simple to cover realistic transport problems. theyv do pro-
vide exellent intuition into the trade-off between paths with many and few collisions.
A probability measure Q with the interpretation of “stretching” the distances between
collisions is considered. Unlike the measure given by (1.2) this one can be obtained
without prior knowledge of EX.X. The theory of large deviations is used to prove this
choice of Q to be asymptotically optimal among a large class of potential probability
measures.

| In Chapter 3. more general Markov chain models are considered for neutron scat-
ter. The problem is simplified by considering only finite state spaces. An algorithm is
presented which adaptively "learns™ which paths are important and iteratively modi-

fies the simulation probabilities in an attempt to converge to the ideal choice of (1.2).
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Because. the probabilities are continuously being changed. the aigorithm avoids the
n~% rate of convergence given by iid simulations. The convergence rate is shown to
be exponential. paralleling deterministic methods of solution.

Various methods of extending the algorithm to continuous state spaces are dis-
cussed in Chapter 4. The algorithm needs to divide the state space into a finite
number cells giving it the flavor of deterministic methods. Indeed. the algorithm can
pe viewed as a compromise hetween deterministic and Monte Cario methods. If we
irv a very fine aivision of the state space. our algorithm will suffer the same curse of
.limensionality ¢i *ae deterministic metnods. However. even a coarse :livision of the
continuous space. “which would not suffice for deterministic soiutions. may provide a
large variance reauction so that simulation can provide good estimates in a reasonable

amount of time.



Chapter 2

A Random Walk Model

Instead of a general transport problem. let us consider a simple shielding prob-
lem where the particle is penetrating a homogenous solid. For example. suppose a
lead shield is placed directly in front of a neutron source. \Ve are interested in the
probability that a given particle leaving the source passes completely through the
lead before it is absorbed.

A particle penetrates a random distance within the shield before it collides with
a molecule. If it is not absorbed. it travels another distance until the next collision.
This continues until the particle passes through the shield or is absorbed. Because
the shield is homogenous. we would expect the probability law for the inter-collision
distance to be independent of the previous collision site. It also seems reasonable
that the absorption probability would be independent of collision site. Thus, we
could model the path of the particle as an iid random walk with killing.

Let us assume that the shield’s height and width are large compared to its depth.
\We model these two dimensions as being essentiallyv infinite so that we need only keep
track of the particle’'s depth. Note that the particle’s depth is itself a one dimensional
iid random walk with killing.

In general. suppose we have a one dimensional random walker taking iid steps with

11
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finite mean. After each step he survives with probability p > 0. ard is killed with
probability 1 — p. We wish to use importance sampling to estimate the probability
that the walker crosses some large level M > 0. corresponding to the edge of the
shieid. before he is killed.

To perform importance sampling we need to choose a new probability measure for
the step sizes used in the simulation. As we shall see in Section 2.2. there is only one
choice that can give us reasonable results for very “large” values of .M. corresponding
to “rare events.

Jiegmund .2. studies level crossing probabilities for random walks in the context
ol sequential test:ng. He introduces the idea of using ezponential tusts of the original
distribution in importance sampiing. Lehtonen and Nyrhinen (11, study the problem
mentioned here for a negative mean random walk without killing \p = 1). They
arrive at the same optimal distribution as does Siegmund (21]. but use a different,
asvmptotic. notion of optimality and consider a wider class of potential distributions.
This chapter extends their results to the case of general 0 < p < 1. Note that due to
the killing. this is an interesting problem even when the step sizes have a non-negative
mean.

The general setup for a random walk with killing and the use of importance
sampling is given in the next section. In Section 2.2 a new probability measure is
introduced and is shown to give minimal variance asymptotically as M/ — 2. The
theory of large deviations is used to obtain a lower bound on the variance over the
entire class of eligible probability measures on the real line. The proposed probability
measure is shown to be unique in achieving this bound. The method of proof is analo-
gous to that given by Lehtonen and Nyrhinen {11]. An example using a simple model
of neutron scatter is provided in Section 2.3 to demonstrate the variance reduction

achieved by using the optimal importance measure.
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2.1 Preliminaries

Let {X,}%, be iid random variables with common cdf £ having finite mean.
They represent the distances travelled by the particle between collisions. Take S, =
Xy + -+ Xa. Let {Z,}%, be iid Bernoulli(p) random variables independent of
{X.}2,. Define Ty =inf{n >0: 5, > M}and U =inf{n >0:2Z, =0}. If Pis
the measure induced on path space. (i.e. the set of seqyuences {\X,.Z,}2,). then we
are interested in P{Ty < ("}. That is. the probability that the random walk crosses
A before killing occurs.

To avoid trivial cases assume that £ is not a unit mass so that P{\|, =z} < |
for all £ € R. Let EP(.) denote expectation under P. Let ¢ denote the collection of
ail cdf’s G on the real line having positive mean such that G > F. That is. G does
not assign probability zero to a set that has positive probability under F. Let G
be the measure induced on path space by taking {X;}?2, iid with cdf G instead of F.
Note that since G has a positi.e mean Ty < oo with probability one under G®. By

Wald's likelihood ratio identity (see Siegmund [21] Eq. (33))

P{Ty<U}=EPP(Ty<U ' Ty}=EPp™ 1Ty < x} =

,, Tv dF
EC™ p T =1.\0). (2.1)
= dG

We can periorm importance sampling on this problem by choosing G € G and
generating .X,..\3,... iid under G until S, > M for some value n. Taking T to be

this value n. we can estimate P{Ty < '} by the random variable

TvdF
. def ,
Yo = p™ - H —=(Xi).
Equation (2.1) shows that Y, ¢ is an unbiased estimator for P{Ty < U’} under
G>. Note that by conditioning on Ty the actual realization of {Z,}72, becomes
irrelevant. This has the effect of removing the killing from the problem. multiplying

the “weight” of the neutron by p at each step instead.
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We want to select G to minimize Var(}t,s) under G in some asvmptotic sense
as M — =. Since the mean of Y\ s under G™
equivalent to minimizing

's the same lor all G € §. this is

niM.G)E BTy,
2.2 Optimal Importance Sampling

Let c18) = iog{ EPe*V'} be the cumulant generating function of F. Define

D={f:c10) < x}

dFy

and let T’ denote its interior. For 8 € D. let F; be the tuisted cdf given by
—_—(r) = eé:-cli)_
IF (Z)

Assume there exists a w € D® N (0.>c) such that

1
c(w) = log =

and
Note that

c(w)>0.

ﬁ' ) = et
aF \‘TIEPE
Take Q to be the measure on path space induced by taking {.\'}

=<
instead of F'. This will turn out to be the optimal measure to use in importance
sampling.

<, iid with cdf F,

The cdf F has mean ¢'(0) while F,, has mean c¢'(w). For § € D°. ("(9) is the

variance of the cdf Fy. Because F is not a unit mass neither is Fy. and so ¢”(8)
's strictly positive. [t follows that c'(w) > ¢/(0)
[ <

Thus. under () the random walk
{Sn}2., has a larger (positive) drift and should cross the level V! in a smaller number
of steps. These shorter paths have higher importance due to the killing. The more

steps a path takes to cross the level M. the more times the random walk is vulnerable
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to killing. If we condition on the random walk under P having crossed a large level M
before killing occured. we would therefore expect it to have happened in a relatively
small number of large steps. This is exactly what happens under ().

It will be shown that F\, given by (2.3) represents just the right amount of “stretch-
ing" of the inter-collision distances. Any less. and Q would be giving too much weight
to paths with many collisions. More stretching would give too much weight to paths
with to few collisions. Note by (2.2) the higher the killing. the higher the value of w
and hence the more the drift of the random walk gets stretched under Q.

Now £9X =c:w) >0 and by 12.3) £, > F. Thus F,, € ¢ and we may choose
(G = F,. In this case G™ = () so (2.1) becomes

Tv |

P{Tw < U}y =E9p™ [[(=-ev&) = EQemsmu. (2.4)

r=

Theorem 2.1 }xm i7l0g P{Ty < U} = ~w.
Proof: Since w > 0 and St,, > M. (2.4) implies:

lim sup — [09 P{Ty < U} € —w. (2.5)

M=o \I
Let c*(y) = supy 0y — c(0) be the convex dual of ¢(-) (see Bucklew |7} or Rockafellar

(19]). Let y > max (0. EPX) and take .V = [-‘yi} + 1 where {a] is the greatest integer

-

< a.
Then
. S,
P{Tw < U} 2p" P{Sy 2 M} 2p" - P(57 2 1)
and so
— 1> — _‘.'. =
‘[ og P{Tyy < U} wlogp-i- w log P{ v >y}
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Bv Cramér's theorem (see Bucklew {7]. pp. 9-10) we have

liminf—l— P{Ty<(} >

1
. -_— - 9
M—mo M log p y <ty (2.6)

1
y
Set y = c'(w1. Then supy 8y — c(8) is achieved at = w so that

1
cly)=wy —clw) = wy — log - = wy + log p.
p

Recall ¢'(w) > ¢'(0) = EFX. By assumption ¢'{w) > 0 so we can plug y = d(w)
into 12.6) to get

1 } l
limint Tl-t'ogP{T,w <(}>-~

1. :
logp— - - iwy +logp = —w
Me—=x Y y : .

wnich together with (2.5) establishes the theorem. §

The result of Theorem 2.1 is rather weak. It provides oniy the exponential rate
at which P{Ty < U’} tends to zero as M — oo. Indeed. Theorem 2.3 given later in
this section is a stronger result. Nevertheless. Theorem 2.1 is good enough to show
that £, has the best asymptotic variance over the class G. The main result of this

chapter is given in the next theorem.

Theorem 2.2 forall cdf's G € G, li»r,n_inf% logn(M.G) > =2uw uith equality iff

G = F,. Furthermore. v}l_!_nw %, logn(M.F,) = -2uw.

Proof: Since VartYy ) > 0 we have n(M.G) > [P{Ty < ['}}* and hence by
Theorem 2.1:

..l
1.1‘r!n_x£f.—\7 logn(M.G) > =2uw.

Note that when G = F... G® = Q so that n(M.F,) = EQe 25Ty < ¢=2wM Thys

. l .
.\111-12:; i logn(M.F,) = =2uw.
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L7
To show uniqueness. suppose we have G € G with

“J,“_‘gf \_I logn' M.G) =

2w,
Let A" be a measure on the real line defined bv

. dF : v
A (z) = p - Setz) dF(z) = (p.gam) dG(z)
and note that
T\l 4
ntM.G)=F

. 2

GMH(\,,.% X)) = [ dK(z)-dEiz)
=1

Let

) 'd[\(l'r“)
Ta<x
def

«10) = log / ”d[\'(.r)
and c;(y) = sup, 0y — cx(f) be its convex dual. (If ck(-) is identically +20. take c}()
to be identically —x.)

Let B > 0 and define L by

Since ¢y is not necesarily finite anywhere construct a truncated measure as follows
dL

—(r) = l4(z) where 4=
dR |
Then we have c, 19

o
e

cir| < B and

dF
< '

(1.G‘Il - B}
log f4€*dR (1) < c..18). Note that ¢, |- is finite evervwhere
Take c;(y) = supz 0y — c.(0) and let ¢ he the minimal closed interval such that

P{‘Yl € C} =15
f'o_ 1

1. Since F is not a unit mass ¢ is not a singleton set and so its interior
is not empty. Let > 0 and take

e M.G) &

dR (zy)

«+dK(zr,,)
Ty Mz}

Note that n-(.M.G) < n(.M.G). Lehtonen and Nyrhinen [11] prove the following two
results (Lemmas 3 & 4. Section 3)

‘ o] 1
If ye "f'\[; x) then l;r,rxxnf V(ogn,(

M.G) 2"5":1“”
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and
lim <2(6) = c%.(§).
B—~ -
Now for any y > 0 we can find an r > 0 large enough so that y € i+.>c). Thus. the

two results can be combined to give:

l
If y=.""10.x) then hmmf——logﬂ( MG 2 == ci(y). (:

) =
M iy 2.7)
By Jensen's inequality
0, dF ‘
120V =dog [ {0e” o y Gl > log | /pe ——-‘J.')dCrl.L‘l) =2c(8) +2ogp

(2.8)

and hence for all v:

ci(y) = sup 20y — c.120) < sup 28y — 2¢(8) — 2logp = 2c*(y) — 2log p. (2.9)
3 9

By assumption ¢/(w) > 0. Now c'(w) = [rdF,(z) = [zpe™**dF(z) € (° So we
can plug y = ¢/(w) into (2.7) which together with (2.9) gives:
.. 1 , L, .
liminf —logn(M.G) 2> == ci(y) > —= 12 (y) = 2ogp) = -
M= ] y 0 y

irecall that y = ¢'(w) implies ¢*(y) = wy + log p).

By supposition li\r’ninf -\‘7 logn(M.G) = =2w so (2.9) must be an equality when
y = c'(w). For y = c'lw). we know that sup, 8y — c(8) is achieved at § = w, and
hence (2.8) must be an equality when 8 = w. But in order for Jensen's inequality in

12.8) to be an equality for § = w. we must have

dF

€T dG(u = constant (Sa.e. and hence Fa.e. (G > F).
That is. we must have %%(z) = pe™“? Fa.e. so that G = F,. This establishes

uniqueness which completes the proof. 1§
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This result clearly establishes F, as the optimal measure to use in importance
sampling for “large” values of M. If G is any other eligible probability measure on

the real line then

L1 Varg=(Yys) . . .1 niM.Gi
— log ——iG= 1Ma) o - log A2t
ot N7 lo8 T ¥, = pinf 57 lg T >

The penalty for using anything other than F.. in importance sampling grows expo-
nentially in .M.

With a more careful analvsis we can describe the relative error when using F,. If
we add the conaition that £ is non-arithmetic we get a resuit wnirh is stronger than

Theorem 2.1.

Theorem 2.3 Suppose F is a non-arithmetic distribution. Then there erist finite
positive constants Cy and C, such that P{T\y < U} ~ Cy - e~ *M and n(M.F,) ~

Cp e~ M,
Proof: From (2.4) we see that

P{Ty< U} = e=wM | EQo=wiSTy = M)
and an analogous calculation shows

n(M.F,) =e WM. EQe-2w(Sry -3

Fix y > 0 and let 7, = inf{n > 0: S, > 0} denote the time of the first ascending
ladder. Recall that E9.X) = ¢/(w) > 0 so that Q{r, < 0} = | and E®S,, < . By

Corollary 8.33 of Siegrmund [22

[ Q{S:. >m}dm
£Q3S |

Ty

Jim Q{Sry - M >y} =

Note that ‘}im Q{Sry, — M >y} is a proper survival function in y. That is. under
. R i ol
Q the
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random variables S7,, — M converge in distribution as M — x. By the bounded
convergence theorem there exist positive constants (less than onei ") and C; such

that

im E9e 7y =*) = | and  lim EQe 2w!dry=\ Ca.
M= M=x

The theorem follows. &

if we take tne relative error of our estimator to be the ratio of the standard

deviation to the probabilitv being estimated then Theorem 2.3 shows us that

- . L . e a1k
- L‘ (lT'g()uF.‘ ),'2 _C;»—-Cﬂ’
lim = .

M=~ P{Ty<U} —  (

By Theorem ..2 the relative error grows exponentially in .M for anv other measure

G. Thus. F, is the only choice where the standard deviation of our estimator tends
to zero as quickiy as P{Ty < [’} does when M — 0. No other cdf G € G can
give reasonable estimators for “large” values of M. Similar results follow when F is
arithmetic.

Note we can interpret £, as the asvmptotic distribution of the step sizes X
conditional on (Ty < ["}. Fix values r,..... ro. Then for "large” vaiues of M we

have the following heuristic:
P{Xyedry.---. Naedra and Ty< ('} =

P{X,€dzy, - Xy €dzn. U 2n}-P{Ty < UlX, €dzy.-+-. X, €dza, U 20} =~

[Ip P{X cdzi} - e tM-T20),
1=1

Dividing both sides by P{Ty; < U’} = ) - «=*¥ gjves:

P{.\H e dl‘\.--'..\'n S dr., Ty < (} =

[T pe™= P{X, €dz.} = Q{Xi € dzy.-. Xo & dza).

t=1
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Conditional on {Ty < ['}. the path of {.X,} looks like an iid random walk under
). We are essentially generating the sampie paths under their distribution conditional

on the event we wish to estimate.

2.3 An Example

Consider tne following two dimensional model of neutron scatter. Figure 2.1
snows a semi-innnite soiid occupying the region {ir.y): y < M} in the z-y plane.
A zeutron collices with a moiecule at the origin. ['pon collision it is absorbed with
propability 1. I the particle is not absorbed. it scatters in a random uniform (0. 2x)
direction and travels a random exponential (1) distance until the next collision. This
continues until the neutron is either absorbed or passes through the solid.

We want to use simulation to estimate the probability of a sucessful penetration.
That is. the probability the neutron crosses the line y = M before it is absorbed.
This is similar to the model problem discussed by Murthy and Indira [15). In their
problem there are only two possible scattering directions. “forward™ and “backward".
Here the scattering is taken uniformly over all possible directions in the -y plane.

Note that the distance travelled in the y direction between collisions is given by
the random variable

X =D sino

where D is an exponential (1) random distance between collisions. and o is a uniform (0. 2x)
angle independent of D.

Thus. the total penetration in the y direction is itself a one dimensional random
waik with iid increments. \We want to know the probability that the random walk

will cross the level .M before killing (absorption) occurs.
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Ay
Edge of solid : | Line y=M

Figure 2.1: A two dimensional random walk model of neutron scatter. The distance.
D. between collisions is exponential (1). and the scattering angie. o. is uniform (0. 27).
Upon collision. tne particle is absorbed with probability 0.5. The distance traveled
in the y direction pbetween collisions is given by D - sin o.
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Now for z > 0

-/2
P{X\ >zr}= -——/ exp ——r——}do— é./o/ e‘(p{——f—-—}do.

sin o N o

Since the probability law of .X' is symmetric about 0. we see that .\' has density

L 2 1 Iz
-/ —— - ex - do for r<R. (2.10)
TJo sino sino
Taking p = :. equation 12.2) hecomes
| x rmr2
'-_>q\~/ o — . X dodrl gl
T J-~ J0 :ino p{ amo}

Exponentiating notn sides. switching the order of integration. and evaluating the

integral with respect to z gives the equation

1 f=/2 1 1
-/ : - . dp =2
T Jo l+wsine | -uwsino

which may be solved numerically to give w = 0.86602540378.
By (2.3) X has the twisted density

i AL rl

- CeXpl— =
20 Jo 51N @ p{ iino

} do for

~31
(h
b
o
—
—

under the ¢ measure.
To perform the importance sampling. we generate X, .X5.... iid with the twisted
density (2.11) until S, = X, + Xy +--- = X, > M for some n. Taking Ty to be this

value n. we estimate our probability of complete penetration. P{Ty < ('}, by

- — p=wST
)M,Fw =€ M,

Note that EQX, = ¢'(w) > 0 for this choice of w and so with probability one there
will eventually be an n such that S, > .
Random variates with the density given in (2.11) were obtained using the acceptance-

rejection method (see Algorithm 3.4 of Riplev [18]) with a mixture of the true density



CHAPTER 2. A RANDOM WALK MODEL 24

' estimate for ' relative error
M P{Ty < ("} error reduction
20 572 E-09 0.045 . Y28 E~u3
10 1.38 E-16 0.046 5.44 E-07
60 1.99 E-24 0.046  3.06 E-11
<0 1.67 E-31 0.043 1.32 E~i3

Table 2.1: simulation resuits. 1000 runs using importance sampling with F..

2..0) and an exponential with mean (.13i7!. One thousana runs were made at var-
'ous levels ot \/: ‘he results are given in Table 2.1. Relative error is the ratio of
‘he standard error of the estimate to the estimate. The finaj coiumn compares the
standard errors of ordinary simulation ( binomial) and our importance sampling. Note
that as Theorem 2.2 would predict. the error reduction appears to he growing expo-
nentially in M. As Theorem 2.3 would predict. the relative error does not seem to
vary with M.

[t should be pointed out that the acceptance-rejection algorithm needs to evaluate
the integral (2.11) to produce the random variates. Simpson's ruie was used with 10°
intervals. So generating a random variate with densitv (2.11) is on the order of 103
times as much work as generating a random variate with the true density (2.10).
From Table 1 we can see that for M > 20 the error reductiop more than makes up

for the extra work.

2.4 Adding Energy to the Model

While the random walk model of this chapter is admittedly simplistic. we can
add some realism by considering the particle’s energy level. That is. instead of merely
calculating the probability of penetration. we can calculate the expected energy of

a particle after having penetrated the shield. The energy of a particle that gets
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absorbed (killed) is counted as zero.

We now interpret the quantity p as the expected percentage of the particle’s
energy it retains after a collision. Thus. p is a measure of elasticity for the collisions
between the neutron and the shielding medium. Here. instead of being a Bernoulli
random variable. Z, is the percentage of energy retained in the n*? collision. Note that
{Za = 0} still represents absorption after the n** collision. So instead of P{Ty < '},

we are now interested in

P[] z
=1
wnich represents tne energy of a particle after having penetrated the shield. If we
stiill assume that (Z,}, is independent of {.\,}}%, then equation '2.1) holds with
P{Ty < U’} repiaced by E* I'I,T__‘_“l Z,. The same optimality resuits go through when
we choose w by (2.2).

The choice of the stretching parameter. w. can now be interpreted as a trade-
off between the high energy low probability paths with few collisions. and the lower
energy higher probability paths with many collisions. For the case considered in this
chapter. iid inter-collision distances. and iid energy losses. the optimal importance
scheme may be calculated exactly. This does not achieve the theoretical ideal of
i 1.2). but is the best that can be done if we restrict {.X,}72, to be iid under Q. More

general models are considered in the next chapter.



Chapter 3

Markov Chain Models

In realistic transport problems. there are many different tvpes of solid barriers,
the probability of absorption and the distribution for the scattering angle depend on
the position and energy of the particle. and we need to keep track of more than just the
particle’s position in one dimension. The path of the particle. recorded at its collision
sites. is modelled as a discrete time Markov chain. As mentioned in Chapter 1. the
state space must contain sufficient information on the position. velocity. and energy of
the particle. We perform importance sampling on this problem by generating sample
paths according to a new set of transition probabilities and muitiplying the resuit by
the likelihood ratio between the true and simulated probabilities.

If we choose a good set of new transition probabilities. or importance scheme. we
can get a substantial reduction in variance. In fact. it is well known that zero variance
importance schemes exist for linear Monte Carlo transport problems (see Booth [6]).
Unfortunately, the zero variance scheme depends on the expected score from each
state. which if known would make Monte Carlo simulation unnecessaryv.

We can take a "guess” at the expected scores to compute the importance scheme.
[f our guess is close to the true expectation we hope that our importance scheme has

close to zero variance. Simulation output can be used to update our “guess” at the

26
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-3

expected scores and hopefully produce a better importance scneme. This suggests
a learning technique where the importance scheme is continuailv being updated by
*he results of the simulation. Such learning techniques have been studied in the past
'see Booth (2]. '4]. & {3]. and Troubetzkov {23]). Because the importance scheme is
continually being updated. (hopefully improved) we may expect to obtain better than
the n=¥ rate of convergence given by iid simulation.

The behavior of such an adaptive learning algorithm on a finite state problem
's analvzed in his chapter. Booth {2! gives empirical resulits for a simple two state
sroblem which suggest that the convergence is exponential. Here a proof is given that
*ne convergence is indeed exponential for a finite state problem.

Halton [10i describes two similar aigorithms. In one algorithm. the importance
scbeme is chosen by the user and remains constant throughout the algorithm. He
proves that this algorithm coverges exponentially fast. but the particular rate of
exponential convergence depends on the importance scheme selected. The second
aigorithm can be made to converge as fast as an arbitrary polvnomial in the number
of iterations. but the amount of work per iteration is growing as a polvnomial. For
the algorithm considered here. the user supplies an initial “guess™ at the expected
scores from which the first importance scheme is computed. The amount of work
required per iteration is constant.

In Section 3.2 a general finite state problem is described. Section 3.3 describes
importance sampling for these problems and derives the variance associated with
using an importance scheme. The algorithm is presented in Section 3.4 and a proof

of its exponential rate of convergence is given in Section 3.3.
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3.1 The Model

Consider a particie on a Hnite state Markov chain {.\'1};%, wvith transition matrix
P. At each state the particle may be subject to absorption. Ve assume that eventual
absorption is certain (i.e. lim P™ = 0). \Vhen the particle cnanges state from i to
) a nonnegative score s, is incurred. Typically these scores are zero unless state j
corresponds to our target location. [n this case. s,, is intended to denote the energy
delivered to that location by the particle. We allow an arbitrary nonnegative scoring
ruie for generaiitv. Let A denote the “cemetary”. or absorption state. \When the

particle is absorned {rom state : a nonnegative score s,, is incurred. If we take 7 to

he the time ol absorption then a particle’s total score is given by

V' = Z 3 Xy K

n=|
So for example. if a particle’s pathis: | —2 — 1 — A the total score would be
312 + 321 + Sia.
We are interested in estimating g, £ E Y| Xo = i]. that is. the expected total
score for a particle starting in state ». Let d be the number of states and take
pia = 1 — :{ p., to be the probability of absorption directiv out of state :. [f we

=1
condition on .\;. the first transition. we see that

1
My = PnA‘SxA’T'ZPij'(le+“))' (3.1)

;=1
. . . d
In matrix form. this can be written as u = a+ Py where a, = p.a-s.a = L pij - 84j.
=1
Since lim P* = 0. I — P is invertible and the system of d equations in d

ne=—=ng

unknowns may be solved exactly. Alternatively. the deterministic recursion

u"m-o-ll (m)

=a-1-Pp

will converge to the true value u exponentiallv fast for anv starting point u'®. This
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suggests the existence of an analogous Monte Carlo procedure which also converges

exponentiallv fast.

3.2 Importance Sampling on Markov Chains

Suppose that instead of simulating the particle under the true probabilites {p,,}

}

t
we choose new probabilities {¢,,}. Each score is weighted by the likelihood ratio

between P and Q. On the event {r > n} set

Ln = H px"i”\'. .

.=l qx:-l“\'.'

\We must choose Q > P (ie ¢;; > 0 whenever p;; > 0. and ¢, > 0 whenever p;, > 0)

so that L, is well defined. Then our estimator becomes

Yo =3 (Sxacrtn Lal.
n=1
[t is easily shown that Y has expectation y,, where 1 = X is the starting point of
the simulation.
Let v; = Var'15{.\o = 1. \We can derive r, by conditioning on .\'|. the first
transistion. Note that on the event { X} = j}. we have }g = —-’- -3, = 13), where ¥

is the total weighted score of a particle starting in state j. By the Markov property

. . 2
E(Yg|Xy=j,Xo=i) =2 (s;+n,) and Var(Yo|¥i=jXo=1)= (;ﬁ) v,
U]

Y

The variance decomposition V'ar(Yq|Xo) = Var{E(Yg|X,. Xo)] + E{Var(Yy|X,, X))

gives us:

q:.\

2 2 2
Dia 3, , f Di , ‘ Pij
' = Gia ( > °> ‘"Z_ [(L;'(q—’) sy )] = b - §. ,_q.,-(——’) yy) =
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2 2 2 2
p_'zﬁ"sf-i , Py Sy = ps )% : L P,
“ E ! .
ha . ' KU ’ ; 4,

Here we take 0/0 = 0.

Let

fo= Bl 5By e TR

b=}
Ta g L qi; . !
take 0/0=0). Derine R to be the matrix whose 1., element is given by

-

Ju if ¢, >0:

l 0 it g, =10
Then in matrix form our equation becomes:
v=f <+ Rv. (3.2)

We now show that v is the minimal solution to (3.2):

Theorem 3.1 v = 5 R"f.

n=y

Proof: Note that anv v satisfving (3.2) aiso satisfies

1-=1
v = Z R’f -+ R"v
J=u

X
so that v= Y R"f is the minimal solution to (3.2).
n=0
Take
-An r .
}q(;n) = ZSx‘._,.x, L, = thxa L. 1{r >n}.
)=l ’

Note that Yc(,"’ has expectation g, under Q. but is unusable in practice since it depends
on the unknown vector u. Let v™ = L"ar(Yc‘?"’ ! Xo = 1). Then using an analogous

argument as before we see that

vitt = £ + Ry(*-1) n=1.2....



CHAPTER 3. MARKOV CHAIN MODELS 31

Bv induction

n=-1

vt = Z R’f.
o=u

. t . - % .
Now Yo = lim 3" so by Fatou's Lemma v < & R". Sincev = © R'f s

=)
[}
=)
3
I
c

the minimal solution to (3.2). the proof is complete. §

Note that when we choose

Ty = 'D”.‘_.I'.,SU — and ¢, = P:«.'::_\ (3.3)
Piatsis T st BTN AL Piaoia = Lo P s T )
we get
— :.‘.\"".‘.‘_x ZX px:y TSy = F‘J,‘z\ [ 1 , . s
f‘ - (plA'Om -‘y=1 Diy " Sy - H;y) ) ' \P'A""A ?EP‘I S _‘ul)) —H =

1 1
(Pm'sm + Z.D., (8 T ﬂ;}) ' (Pia'sia - ZP“ Sy + m)) —u =0 by(3.1).

;=1 i=1
This choice of Q gives f = 0 and by Theorem 3.1 v = 0. We have a zero variance

importance scheme. However. this choice of Q depends on the unknown vector u.

3.3 A Learning Algorithm

For a vector j in R? we parallel (3.3) by taking

.\ def pij - (8i5 + i) .\ def a8
gii(p) = Lo L and qia(p) E p: 2 ‘
Pia*Sia T ,Zl pit - (sa + ) Dia-Sia T & Dt (sq + )
= =1

Take Q(j) to be the matrix whose (i. j)'* element is g;;(j1).

The idea of the algorithm is to simulate under Q(4) where i represents our best
“guess” at u. We will take 4 to be the estimate obtained from previous simulations.
but we must be careful to ensure that Q >> P. If 5,, = 0 and we have 4, = 0 then

q,,() = 0 even though p;; may be positive.
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Note that if there exists a 6 > 0 such that s, > § for all i then g, > ¢ for all i. The
particle is assured of scoring at least é since it will eventuailv be absorbed. Since we
know that u, > ¢ we can take the maximum of § and our estimate without increasing
the error. This ensures that 2, > ¢ and hence Q(u) > P throughout the algorithm.

If no such ¢ exists we can easily alter the problem bv adding a ¢ > 0 to each
s,. Since everv particle gets absorbed exactly once. this just adds ¢ to each u,. We
can subtract ¢ from each g, to shift hack to the original probiem. \Without loss of

generality then. 'zere exists a known ¢ > 0 such that u, > # for all ;.

Algorithm 3.1

Choose an integer & and start with an initial guess 4'® > ¢1. The algorithm is
defined inductivery:

1. Suppose after m iterations the algorithm has produced an estimate 4'™'.

2. For each state : = 1.2.....d. run k independent simulations starting the particle

in state 7. using Q(4!™') as the transistion matrix.

3. Let Tm: be the absorption time for the z** simulation (= = i..... A1 starting from

state 1. Take

-

il

You = Z Sxoa_|.Xn " L,
n=|

where the {.X,} and {L,.} are obtained from the =** simulation starting from state i
g

(this dependence on = is suppressed to keep the notation managable). Let

_’mlu = _}; ' Z szz'

Here. the notation is chosen to emphasize that the sample mean is based on & simu-

lation runs.
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1. Define a!™*" by:

~imel) ;

Q, = maz:()"m,“ . C) r=1.2..... d. |

Remarks: 1. Since the probability law of 4'™*!) depends oniv on 4'™. the se-
quence {a!™}%_, is itself a Markov process on R?. It cleariv has the state u as
an absorbing state. Thus. a unit mass at 0 is an invariant measure for this Markov
chain. Transition probabilities typically converge exponentialiv fast o the invariant

e
i

measure in Markov chains. [f it can be snown this is the uniaue invariant measure

M

ve may. therefore. expect {u' ™'} to converge exponentially fast to u. A proof of this

is given in the next section.
2. By construction. '™ > $1 and hence Q(4'™) > P for all m.

3. By taking the maximum of our estimate and é§ we introduce a bias. However. since

we have set up our problem to ensure y, > é we know with probability one that

™Y — ] € Vo = sl

4. This algorithm wastes information by not using paths starting from state : to help
estimate u; for other states j. For example. suppose starting from state | we get the
path 1 — 2 — A, Then in addition to providing information about g, we can use
the path from the point it hit state 2 (i.e. 2 — A) to help estimate y,. The strong
Markov property says this has the same probability distribution as a particle started
in state 2. The proof given in the next section would also cover this improved version
which uses such information. The critical point is that at least k independent paths

, : . . - (ma+1)
starting from state ¢ are used in the estimator 4,"*
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3.4 Exponential Convergence

We have made two assumptions about the problem:
Assumption 3.1. JLrglo P =0.

Assumption 3.2 There exists a § > 0 such that s, > ¢ for everv : 1see discussion in
Section 3.3).

The main resuit of this chapter is stated in the next theorem:

Theorem 3.2 [ 'ader the assumptions stated above there erists deterministic con-
stants 6 > 0 and I\ such that if Algorithm 3.1 is run with k > ' then with probability

one €™ g™ —pu| =0 as m— x.

Before giving the proof we need to derive some preliminary resuits. The critical
point when studying this algorithm is how quickly the variance tends to zero as we
approach the perfect importance scheme. Lemma 3.1 shows that the variance is

locally bounded by a quadratic in the distance from the true mean u.

Notation: [n Section 3.2 we defined the quantities R. f. and v depending on our
choice of Q. Now that our Q is a function of 4. we can define these quantities as

functions of 4. Take R(4) to be the matrix whose (. )** element is given by

»?, . oy
PTTT if q,(B) > 0.

ri](i‘) =
0 if gi;(n)=0.
and f(4) to be the vector whose i** element is

.. R h
fl(“’ = p.-\ ‘.A - l. -
Talp) 5 (@) :

2 2
Py (S0 + 1)y 0
1
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(take 0/0 = 0).Let v,(4s) be the variance of Yy starting in state : when simulating

A

under Q(4). Take v(4) to be the vector whose 1** element is t,t4i. Then bv Theorem
3.1 of Section 3.2

via) =Y RMaif(a).

n=0

Lemma 3.1 There erists a matriz A and an ¢ > () such that

1Tvii) < (- wTA (i — ) whenever i — pll < e.

Proof: By Assumption 3.2 we know u > ¢1 and so Q(u) > P. If p;, > 0 then
d,;t) > 0 and thus

o o4
piy * \PiaSia T E.l P (Su + p)] py

rij(u) = O R . = - < By A
Tiy\ 1) Dij * \Si; — Hy) S Uy Ky

twhen p;; = 0 the inequality between the first and last terms still holds since they are

( o\,
i u) € 2—
K Hy
where r:‘;)(u) and pf;’ are the (i.j)** elements of R*(u) and P" respectively. From

Assumption 3.1 we know

n=0

Y P" < oo and hence Z R"(u) < .
=0

Thus
(I-R(u)™" = 3 R(n).

n=0

Now on the open region in which (I — R)~! is defined. each of its elements is a
convergent power series in each r;, . Bv Theorem 8.1 of Rudin {20] the elements of

(I — R)™! are infinitely differentiable functions of r., for each fixed pair (i.;). When
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all the elements of 4 are positive Q(4) > P and so both ri;(4) and f,(4) are infinitely

differentiable in 4. By Theorem 3.1

vid) =Y RMA) (A = (I-R(&))™ fla)
n=u
for i sufficiently close to u so that I — R(4) is invertible. Thus. v(-} is infinitely
differentiable at u. In Section 3.2 we showed that f(u) = 0 and hence v{u) = 0.

Thus. u is a ¢global minimum for vi:). and so

e, . ‘
— i =10 corall:and /.
oy
50. 17vi4) is a function from R* — TR that is infinitely differentiable at u with

1°vip) = 0. and V[17v](g) = 0. The lemma follows by Tavlor's theorem. §

This bound on the variance is good enough to show that exponential convergence
is at least possible provided we start the algorithm close enough to the true mean.
Recall the initial guess. 4!?. is supplied by the user and is considered deterministic

in our analvsis.

Lemma 3.2 There erists a constant ¢ € i().1), an integer K. ane > ). and a 3 > 0
such that if Algorithm 3.1 s run with ||i*® = pj| < € and k > K, then

Prilla™ — wj < c™ - 14 = ui| for all m} > 3.

Proof: By Assumption 3.2 we know u; > é for all ;. Using step 4 of the algorithm

we have with probability one

A{m+1) 1 1y, 2
flﬂl = K| S :|}mm - #iu .

[t follows that

(“{'n"

A p
k

"

1ol 1 - Ny i '
EGE™Y = il 1a"™) € E iV = gy (™12 =
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Let € and A be as in Lemma 3.1. Then on the event {||4!™ — 4 < ¢} we have

PR v ay - - +~1) 2 .
EGa ™! —ui? ™ = 3 B = 4™ <
.=l

int™ )T Alp™ =)
k .

Let
=, sup [|Aoll.
k =1

—_—
o
-

h

Choose an integer A’y large enough so rhat & > A’ implies » < {. Then on the event

farm

™=y < o

E(at™ " = it a™) < b 2at™ =y, (3.4)

We would like 13.4) to hold with probability one. not just on the event
{i1a'™ = 4|l < €}. Construct a coupled process as follows: Let
T =inf{m: ||a'™ — u|| > €} and take
AU dz_e_f{;l“"’ -u if m<T.

0 if m>T.

By forcing the process {A!™'} to be zero after {4'™'} leaves the e-neighborhood of
p. we impose the analog of (3.4) to hold with probability one for the process {A™}.
Bv construction

(A =0} 2 A™ =0} U {JlA™] 2 ¢
and
{0< ||A‘"‘)[| <} C{T>m+1}C{A™= alm - p} AT = amr u}.

Thus.

AT e {0 < AU < e
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Together with (3.4) these give:

E\’”l\‘"““'fzia\(m” = E(:“‘am—lr _ “”.’ . 11.0 < H'\(m'?: < e} A =

EQEMB™ = uii® ™ ) 1A™) {0 <A™ < ) =

ECEA™Y = uil? &™) [A™) - 1{0 < A™1 < €} <

Elhe ™ =m0 < ™ < e} ral™) < bl Aimin

o

By induction we nave
L,":E’\cm'lll S/)"‘l("\l(ﬂn)‘ 136)

‘note that A"V = 4" — 4 is deterministic.)

(‘hoose ¢ so inat b < ¢- < |. and note that ¢ < |. Define events
Fa= (IA™] ™ DO} m=12....

We want to show that the values Pr{Fy | Fn_,} are small enough so that the event

Noe=i Fm has positive probability.

By (3.6) and Markov's inequality

hm . 1iAl0)2 A\ " .
Pr{F’n}Zl—CJm,H’\\OD!!Z =1- (;) : (3.7)
By Markov's inequality. 13.6). and (3.7) for m > |
E (|Iatmh2 {m)n2
Pr{F-i;Fm—l}S (”. | IUF".‘-” - E(”z\ ! LFa_y)
e WO T am AP P { Fpy)
E jatmhi2 H\™ b m-i,_}
, <(=] - J1-(2 _ 3.
XN Pr{F L} <c2> : () | (38)
Take
L (0)

\We can choose .M/ large enough so that for m > M/

b m=1
l - (-C—"T) >

o) —
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and
i “m < L.
=M+
By (3.8)
P{Fi | Fmna} S ~m for m> M. (3.9)

By (3.5) and the conditional Markov inequality

. h. :AlmmZ h
P{F; Fn_i} < T for all m. (3.10)

Take

—
L
-

?

1]

M =
(C'—:) . H (1 ==~m).

m=\M4+1
Note 3 does not depend on our choice of 4'®. By the relation [J(1 —~m) > 1 =% v,
and our choices of ¢ and .M. we have J > 0.
The sequence {A!™}>_, is a stopped Markov process and is therefore Markov.
Bv (3.9) and (3.10) and the Markov property
0 0 m=1 20
Pr{() Fa}= H Pr{F.| [ F.} = H Pr{Fn  Fnoi} 2 3.

m=] m=1 n=|] m=1

If {4 = ujl < € then {iAT)] > ¢} € {T < x}. and hence

[N Fa}2{T =5} {(A™ =™ ~p for ail m}.

m=|1

That is. these processes never de-couple on this event. So

Pr{lla™ — ull <c™-||a® - ulifor all m} > Pr{ () Fn} 2> 3.

ms=l

We must start our initial guess. 4!°. close enough to the true u for the probability

bound of Lemma 3.2 to hold. However. even if we start with i|4'®) — 4| > € we can

n(m')

wait to see if ||5'™ ' — || < € for some m*. If this happens the strong Markov property

tells us there is probability at least J that

m-m*® 'l a{m?*)

™ —pl<c m —ujl forall m>m".
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That is. every time the process {4'™}%,, enters the e-neighborhood of u. there is

probability at least J for exponential convergence. If we can show this must happen
infinitely often then exponential convergence would be certain. \We are now ready to

complete the proof.

Proof of Theorem 3.2: Choose a real number H large enougn so that

max, i, — A < !
H 2d
By step 4 of the a.gorithm
0< g™ < ¥ow -6
Recall that Y., is an unbiased estimator of y, conditional on 4'™ so that
E@™" 4™ < py+ 6.
By Markov's inequality
L (m+1) . l
Prip,™" > Hlpt™ < ot
A union bound gives us
. () 1
Pr{a™ < H1 latm™y > 5 (3.11)

Let U denote the set of vectors in R? having all positive components. For a vector
pin U let £,(-|n) denote the probability law of }.,., when simulating under Q(i).

That is. for measurable A C R

L(A]f) = Pr{Yn, € A

™ = ).

Note that the rignt hand side does not depend on m or :. Recail that the transition

probabilities g;,( 41 are continuous functions of 4. For & € U. Q(4) > P so that the
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likelihood ratios {L.} and estimators {Ym,,} are well defined continuous functions of
5. It follows that the probability measures £,( ' 4) are continuous in the sense that
{or any convergent sequence of vectors in U the corresponding probability measures

converge in distribution:
If - * h C t . . v C a .
Hn — @, then ?('“‘n)= v('ll“'

Let a > 0 and take £A(. . to denote expectation under L, - 41 Suppose we
»ave a sequence ol vectors in U with u, — pu. Then the the prooability measures for
‘ae random variadie Yms - l{}ma < @} under Q(u, ) converge in distribution to the
oropbability measure of Yo, - [{}.; < a} under Q(4). By the bounded convergence
*neorem

EBa(Yms - YYma € a}) = EB(Yos - 1{Yma < a}).

That is.
E¥(Yns - 1{Ymz < a}) is a continuous function of i for each fixed a.

Forueld

-

E“(szsl = Wy (3.12)

which is a constant and hence continuous function of 4. So. on U

- -~

EM(Yma - 1{Yma > a}) = EP(Y o, ) - EB(Yp, - 1{Ymzs < a}) is continuous in .

Since Y., has finite mean
lim EB(Ypy, - 1{Yns > a}) = 0.

If we restrict gto {s: 61 < 4 < H1} then we can think of Eﬁ()"m, HYmn > a}) as
a family of continuous functions of 4 on a compact set indexed by a. These functions

tend monotonically to zero pointwise as a — oc. so by Theorem 7.13 of Rudin [20)
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the convergence is uniform. That is.
lim  sup EP(Yi {V. >a}) =0 (3.13)
S1<fgH

so that the famiiv of probability measures
(L @) :61< < H)

is uniformly integrable. By 110.2) of Parzen (17] this implies that the weak law of
.arge numbers hoids uniformly over {4:¢1 < u < H1}. Let € ne as in Lemma 3.2.

Then

imoosup Pr{i¥ime = g > —= Pat™ =4} =0 (3.14)
T I<hCH vd

Note this is wnere the assumption g, > ¢ for all ¢ is critical. Equation (3.12) does
not necessarily hold unless all components of i are positive. We must have a compact
set in order for (3.13) to hold and so we must bound 4 away from 0.

By (3.14) we can choose K’; large enough so that k& > K, implies

-, € . . l
sup  Pr{|Yoma -l > —= | 4™ = 4) < .
1<p<H1 vd 2d

[f the algorithm is run with £ > R’; then a union bound gives us

Pr{lla™" - ull < e1a™} > ;

to | —
'5.;
—
Ot
S

on the event {§1 < 4!™ < H1}.
Let Ky, c. and J be as in Lemma 3.2. Let A’ = maz(A;.h;). Suppose the

algorithm is run with k > K. Now {4!™}>_  is Markov so (3.11) and (3.13) imply

Prilla™ - uil < e1™} >

-} —

Hence by the conaitional Borel-Cantelli lemma (see Section 12.13 of Williams [25])

Pr{l|a'™ —uil < e io0}=1. (3.16)
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Now define two sequences of stopping times {U,} and {W,} inductively as follows

Wo=0. [ =ini{m>W,: '™ —uj<ep. and

|

W, =inf{m > o 14" = | > ™0 att™

i “ - u‘i}‘
{1} just marks times at which exponential convergence fails and {{",} marks the

(m)y

next time after failure that {4'™'} enters the e-neighborhood of u. By Lemma 3.2

and the strong Markov propertyv

Priv.=xi1l’y < x} > 3. {3.17)
By 13.16)
Pril, < xiW,,, <x} =1 (3.18)
Let
Gn = {Wisi < 0 and WV, = x}.
Note that

ne=1|

n=~1
NG = N{Wi < =<}
i=1

=1

and so by the Markov propertv. (3.17). and (3.138)
n=|
Pr{Gal () G5} = Pr{Gn|Waoy < 2} >
i=1

Pr{ilha < xx|Why <0} - PriW, =0 |l < 2o}=1-3=J

It follows that

Pr{) G} = 1.

n=|

Now

Gan={Wisi<x and [, =x}U{lh<x and U, =x}.

By (3.18) the event on the left has probability zero and so
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P”{U {s<x and W,=x}}=1 (3.19)

n=l|

Recall from Lemma 3.2 that ¢ < | and hence —log.(c) > 0. Choose 0 < § <

—{og.(c) and note
{e™ g™ —pi| —0} 2 {{n<>x and W, =} foralln.

Thus by (3.19)
Prie W™ —pi =0} 2 Pr{lJ{l < and 11 =xj} =1

-=l

wnich 1s the statement of the theorem. 1§

3.5 Using Previous Information

The algorithm described in Section 3.3 uses information from previous iterations
only to compute the matrix Q(5'™'). Once this matrix is used to run the simulations.
4'™ is no longer considered in our estimation. The estimator 4'™*"' is based solely
on the results of the most recent simulation runs. It seems more efficient to base our
estimator on all available information and take 4'™*! to be some weighted average of
*he most recent simulation runs and 4'™'. That is. suppose we choose some 0 < a < 1

and replace step 4 of the algorithm by

1*. Define 4'™*! by

- l £ e y :
#Emﬂ)=a-maX(E'Z}mz.~‘S)"‘1“’-”'#5"” t=12... d.
=1

~{m)

Note that the sequence {4'™'} is still Markov. In fact. if we look closely at the
arguments given for the original algorithm. we see that they all applv to this version
~of the algorithm except the ones establishing equations (3.4) and (3.16). To derive

13.4). just note that on the event {}|3™ - uij < ¢} we have

1 : . 2 - LRI
Y Yoo =) 1u‘"")+<1—a;'-np‘""—ulI2S
s=1

Ela™ ! —m® 1™ < a®- 3 E((1
=1 s
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(a6 + (1= a)) - I1at™ - ull?.
Thus. the anaiog of (3.4) holds for the new algorithm if we replace o by
b" = a’b+ (1l —al’.

Note that b < | and 0 < a < | implies that 6" < 1.

To establish 13.16) we note that {3.14) implies that we may choose k large enough

s0 that
- € i
sup Pri{iYoe — i > —= . atm = n < —.
12f<H1 K 2vd } 2d
Now since a > {) we can choose an integer .\ large enough so that 11 —a)¥ < 3%
Let
- € .
Em = {(|Yki — ] > W forall i=1.2..... d}.
On the even’, {4'™ < H1} a union bound gives us
. 1
Pr{Emu |4™} 2 5. (3.20)

Note that by step 4" of the modified algorithm

N

. N A . Z -n {*

/“m+ =(l-al *u.-m"—a' (.1-0)'\ n'}m-o-n.k.x-
n=1

By choice of V. if '™ < H1 then (1 — a)V - 4; < £ for all i. If. in addition.

[0

}';n*".k.i - ugl < -.7—\'/; n = 1 ...... \” then

It follows that

' N
(™ — i) < e} O ('™ < H1}N ) Enen.

n=1

Bv the Markov property. (3.11). and (3.20)

V41
A{me ;oa{m 1
Pri|a™¥* —ui < eia™} > (;) -
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Equation (3.16) now follows by conditional Borei-Cantelli (Section 12.15 Williams
2500,

Ideally. we would like to choose a to minimize the variance of the resulting esti-
mator. Recall that in the proof of Theorem 3.2 there exists a deterministic constant.

b < 1. such that with probability one
i
Var (3 Vo ™) < ho ™ — .
=1
This suggests the neuristic:
Viar }"..,,g,, ~bh- \'aru};m\..

[f this were the case. then to give eacn estimator a weight inverseiv proportional to

its variance we snould take
l
l+6

However. b is the norm of a d x d matrix. and would be too much work to compute

(o

for large d. Even if b were known. it is only a theoretical bound. As we shall see in
the next section. empirical evidence suggests this variance bound is not tight. Nev-

ertheless. when we perform the algorithm. we may estimate the conditional variance.

{miy

VartYome i 4'™". from our & data points at each iteration. If this quantityv appears to

he decreasing exponentially at a constant rate. as in our heuristic. we may empirically

estimate the ratio. b. of variances on sucessive iterations and choose
1

Q = ~———

T 1+b
Of course no proof has been given that the rate is constant. but for the problems

condsidered in the next section that does appear to be the case.

3.6 Sample Problems

Now that the theory for the algorithm has been presented. two examples are

given here. Empirical results are given to confirm the predicted exponential rate of
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convergence.

One consideration when running Algorithm 3.1 are the choices of k and a. As in
the previous section we can get some heuristic ideas for how we should select these
quantities. but they require knowledge of the exponential rate at which our estimators
are converging.

Suppose we run some trial iterations using the suggestion in Remark 4 of Section
3.3. but without using information trom previous iterations as discussed in Section
3.3. For these initial runs we choose k, arbitrarilv adjusting up if necessarv until
rthe process appears to be converging. Based on our empiricai standard deviations at
each iteration. we can estimate the ratio. b. of conditional variances on consecutive
iterations. Now 4 = ky-b represents what would be the ratio of variances on succesive
iterations if we had chosen £ = 1. Note that w is not necessariiy less than one since
k = 1 may not be large enough to force convergence.

If we choose k simulations per iteration we estimate that we would see the condi-
tional variances decrease by a factor f at each iteration. Once we make that choice

of k. we would employ the heuristic of the previous section and take

oLk
L= (g kv

(3.21)

This should reduce the ratio of consecutive variances to

o\ o i \° 0
(k+u>) 'E’(Hw) T k4w (3.22)

Suppose we budget T units of computer time for our simulations. Let r denote

the ratio of time spent updating the matrix Q(4'™) to the time required to run
one simulation starting from each state. (This can be estimated empirically and will
tend to a constant as 4!™ tends to u). Now (3.22) is clearly minimized by taking k
arbitrarily large. but the price vou pay for large & is that vou oniv have time to run

T

r+k
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number of iterations. Thus. we should choose k£ to minimize

. N - . :: T
w _ w
(kw) - ?_(kﬂi-) } |

Note the minimizing value does not depend on I'. \We choose & to minimize
Ly
"w rek
( - (3.23)
k=

Of course trere is no guarantee that the resuiting value of ~ will actually be large

«which can be done numerically.

=nough to force "ne algorithm to converge. Recall that there has heen no proof that
the rate of convergence is constant. Even if this were always true. our trial iterations
may have given us a poor estimate of the rate. This is mereiv a simple heuristic
attempt to make reasonable choices of £ and a.

In the second example. a continuous space transport problem is approximated by

a finite state proolem.

3.6.1 A four state problem

Let us start off by looking at a simple four state probiem whose solution is

apparent. Take the transistion matrix to be

093 0.02 0.02 0.02
0.02 0.93 0.02 0.02

P=
0.02 0.02 0.93 0.02
0.02 0.02 0.02 0.93
and the score matrix
1 1 1 1 1000
1 1 1 1 1000
S =

1 1 1 1 1000
1 1 1 1 1000



CHAPTER 3. MARKOV CHAIN MODELS 19

where the final column coresponds to the absorption score s,,.

Note that the problem is svmmetric in the four states. The rows of S are identical
:0 that the transition score does not depend on the state of the particle. There
s probability 0.01 of absorption from any of the four states. Thus. the particle
will remain in the system for a geometric (.99) number of transitions and then get
absorbed. The particle gets a score of | for each transition within the svstem and
a score of 1000 wnen it is absorbed. \Ve expect the particle to make 99 transitions
efore being absoroed and so the particle has a total expected score of 1099. That

‘s, DV inspection we see this pronlem has soiution
p =11099.1099.1099.1099)".

The simplest version of this algorithm. without using the suggestion in Remark
+ of Section 3.3 or the modification in Section 3.3. was run on this problem with an
‘nitial guess.

29 =(1.1.1.1)".

Ignoring for the moment optimal choice of sample sizes. & = |3 simuiations were run
oer iteration. The results given in Table 3.1.

Estimates are given for all four states by iteration. The vaiue in the standard
zeviation column is the empirical standard deviation of the 13 estimates for u,. This
vaiue divided by the square root of 13. therefore. gives the estimated standard error

) conditional on the previous estimate.

‘or )™

Since these k data points are iid conditional on the previous estimpate. we may use
rhe central limit theorem to obtain confidence intervals on y,. Note that we can not
"rust our estimate of the error in the first three iterations of the algorithm. The true
mean is more than 30 standard errors awayv from our estimate on the first iteration.

(0)

Here our initial guess &' gives us a very poor choice Q(4'”) for use in importance

sampling. As a result. our estimator has a very skewed distribution and k£ = 15 runs
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1teration expected score standard deviation

55.782953 1.182E+02
20.749360
29.518720
29.518720

[y

t)
N
~
W

.641157 2.365E+02
174.246171
16.641568
144 .616742

)

3 748.456441 9.280E+02
862.519766
452.722070
410.659111

§0 1098.999991 1.861E-04
1099.000092
1099.000044
1098.999968

80 1099.000000 6.895E-08
1099.000000
1099.000000
1095.000000

Table 3.1: Empirical resuits from a simple four state problem
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is not good enough for the central limit theorem to take effect. As our estimate. 4!™).
gets closer to the true u. the conditionai distribution of the subsequent estimator
becomes less skewed and the resulting confidence intervals become more reliable. By
iteration number 30. our standard error gives a reasonable estimate for the actual
sampling error.

Theorem 3.2 asserts that the error should be decreasing exponentiallv by iteration.
If we plot the logarithm of the absolute vaiue of the actual error against iteration

number we wouid expect it to decrease iinearly. Figure 3.1 shows log,q(|a{™

= )
as a function ot m. As expected. the relationship appears linear. Note that Theorem
3.2 gives oniyv an upper bound. there is no guarantee that the rate of decrease will be
constant although that appears to be the case here. The dashed line represents the
upper 95% confidence limit based on the empirical standard errors and the central
limit Theorem. As mentioned before. these limits can not be trusted for the first few
iterations. but between the fifth and eightieth iteration the predicted upper limit fails
to bound the actual error only twice.

Algorithm 3.1 was replicated 1000 times to check the actual coverage rates of the
confidence intervals. The results by iteration are shown in Figure 3.2. Taking our
estimate plus or minus twice the estimated standard error should cover the true mean
roughly 95% of the time. We see that after the 23'* iteration the coverage rates are
reasonably close to the desired level.

From the plot. we can estimate the slope of the line by a least squares regression.
If we ignore the first few iterations the slope is approximately —0.13. This translates

into an estimate of b by

b =10 "%13) x .55,

We can compare this to the theoretical value of b as defined in the proof of Theorem

3.2. Recall that Lemma 3.1 stated the existence of a matrix A such that

1v(a) < (b= u)TA (i — p)




CHAPTER 3. MARKOV CHAIN MODELS

Ut
o

k=15 runs per iteration

24
~
Lo
|
o+ , /\ v
S : ) :\4!\
5 -
g -2 -‘ - A i
‘A
' / ~
8-
b\. ,
- AN
-— log(lactual errori) ‘ \/y;
95% upper limit " ‘A ~
-8 + oY

0 10 20 30 40 S0 60 70 80
iteration

Figure 3.1: Log error decreases linearly with iteration number

for i sufficiently close to u. The matrix A can be taken as anv matrix whose elements
are strictly less than the elements of the second derivative matrix of 17v(4) evaluated
at g = .

For this simple problem that matrix can be estimated by entering various values of
u close to u and observing empirical values of v(ji). This was done using & = 10,000
at enough different values 4 with I|4 — ujj < 107* to determine A. For this problem

we have
11.038 -=3.444 -3.444 -=-3.444

=3.444  11.038 3444 3444
=-3444 -3.444 11038 -3.444
=3 444 3444 -3.444  11.038

Note this could also have been done analvtically by differentiating equation (3.2)

wice.
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We can compute the norm

sup ||Adi| = 14.432
1ll=1

and hence from the prooi of Theorem 3.2

b= L sup ||Ao| = 1—4—'2-8-?- ~ 0.97.
k Iolj=1 13

Compared to the empirical value b~ 0.35. we see that the aigorithm appears to be
converging much faster than our theoretical bound. Recall this bound was obtained
‘rom Markov's inequalitv and is not necessarily tight.

Algorithm 3.1 was replicated 1000 times and the above procedure used to estimate
‘he slope of the iine in Figure 3.1. \Ve can interpret the negative of this slope as the
exponential rate at which the conditional variances are converging to zero. These
rates are given in Figure 3.3. Over 90% of the values are in the range (0.1.0.2]. The
rate seems fairly consistent. the variation may be entirely due to error in the sample
variance.

Suppose we wish to incorporate the modification in Section 3.3 and use information
rom previous iterations in our estimate. \Ve need to choose the weight. a. to give
*he most recent simulation runs. Since we should weight in inverse proportion to the

variance. we should choose

l
a= —

L+b
Now of course in practice we would not have access to the solid line in Figure 3.1

since it depends on the unknown solution u. But we can use the dashed line which
depends only on the empirical standard deviations. Based on this. we would still
estimate b = 0.55 and choose

1
a = — = 0.63.
1.33

Figure 3.4 shows the improvement obtained by using previous information. Here,

[&1]

logo(|@\™ = 1) is plotted against m for both versions of the algorithm. The solid
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Coverage Rates
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Figure 3.2: Actual coverage rates by iteration for 1000 replications of Algorithm 3.1.
Dotted line is target rate of 95%.
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Figure 3.3: Estimated rates of decrease for the conditional variance from 1000 repli-
cations of Algorithm 3.1.
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k=15 runs per iteration

AN
2 VAN
-q = N
hY
g _. .
-8 - siphas0.88 ‘ ‘
' alpha=1.00 i /\\..
:f ' e
-10 4 -
0 10 20 30 40 S50
iteration

Figure 3.4: Using previous information improves the rate of convergence.

line is decreasing at a faster rate than the dashed line which represents using only the
most recent simulations (a = 1.00). Note that the improvement does not seem to take
effect until the estimates are fairly close to the actual expectation. This indicates that
the exponential rates of convergence are only local properties of the process. Recall
that the bounds of Lemma 3.1 only hold locallv. Our estimate needs to be “close™ to
the true expectation before they take effect.

Now let us consider Remark 4 of Section 3.3. If we generate a path that involves
several states then we not only have information on the expected score from the initial
state, we really have information for every state hit by the path. For example, suppose
a simulation run generates the path | — 4 — 2 — | — A, Once the particle makes
its initial transition to state 4 we know by the Markov property that the remaining
path has the same probability distribution as a particle starting in state 4. Thus.

we can use the path from the point it hit state 4. that is. 4 — 2 — 1 — A to help
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estimate pu4. Simiiarly we can use the part of the path 2 — 1| — A to help estimate
uj.

Here we use the same path to help estimate three different states. By the strong
Markov property the scores computed from these partial paths give unbiased estima-
tors. We might be tempted to use the partial path 1 — A to give a second estimate
of u; from this path. However. using the same path to give two different estimates
for the same y, wiil produce a bias.

In general. sunpose we wish to estimate a paramter. u. and we have one unbiased
estimator .\ ana oossibly a second unbiased estimator Y. In otner words. on some
random event £ 'we get a second estimator ¥  which conditional on £ has mean u.
The event E here denotes a path hitting an appropriate state so that }" will be the

scores computed on the partial path from that point. We use the estimator

Xlge + (‘\ j}')-lg. (3.24)

\We use X alone if that is all we get. and we use both .X' and Y if we get access to
both.

["nder what conditions is this unbiased? \We need .\' to be unbiased for u condi-
tional on E. If \' represents an estimate for u hased on one path and }  represents
an estimate for u from a different path then we are ok. Here E represents the second
path hitting the appropriate state which is independent of what happened on the
first path. and hence independent of .X. However. if X and ! represent estimates
based on the same path. then the event E is not independent of X and (3.24) will
not necessarily be unbiased.

So we can furtiier modify this algorithm by using each path to contruct an estimate
for each state hit by the path. As long as only one estimate is computed per state for
each path. our estimator will remain unbiased. Note that our estimators for different

states are now correlated since some of them may be based on the same paths.



CHAPTER 3. MARKOV CHAIN MODELS

(@1}

km15 runs per iteration

..ﬁ\\
24 \
| °
o~ ' A
( AN
E -2 4 .
| AN
; ~.
-4 - \\\
\’«
g°-
“\
-8 — AN
. == al states hit
-10 ~ ' nNitial state only N
\\-—\
-12 ~
10 20

iteration

Figure 3.5: Using path information for every state that gets hit increases the effective
sample size.

This does not effect the proof of Theorem 3.2. Nowhere was independence between
estimators for different states used in the argument. The proof used a variance bound
for each state individually. This was based on the fact that & independent unbiased
estimators were used to compute &'™'. Now a random number of estimators go into
computing i;f-"". but we are guaranteed at least & since we will run that many starting
from each state during the iteration. By the strong Markov property conditional on
the random number of estimates that go into computing ii\™. they are independent
and have mean y;. Thus. the argument given for the original algorithm hold with
this modification.

Figure 3.5 compares empirical resuits between this modification and the original
version of the algorithm. Since 4™ will be based on more than just the & runs we

make starting from state :. we are effectively increasing the sample size. Clearly this

modification performs much better than the original algorithm. Empirically, the slope
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seems to be about —0.70 which translates to b~ 0.04.

Admittedly. this modification increases the amount of work we must do per it-
eration. For each path generated we must keep track of likelihood ratios and scores
separately for each state that gets hit. Tvpically. in transport simulations this work
is negligible compared to what is involved in generating the sample path. Here, se-
lecting the next state according to Q( 4™} usually requires work proportional to the
number of states in the Markov chain. Keeping track of an extra likelihood ratio and
score adds very little extra computation. For each additional state considered. we get
rhe equivalent amount of information as if we had generated an entire new path. So
for a relativelv small amount of additional computation we get the equivalent of an
increased sample size.

Before leaving this example we should consider the choice of k. So far & = 15 has
been completely arbitrary. For this problem the time spent updating Q(4!™) was
negligible compared to the time spent generating sample paths. so we take r = 0.
Note that when r = 0. (3.23) is minimized by & = 1 for any positive value w. This
suggests tryving to choose k as the smallest number that will force the algorithm to
converge. For this problem. when Remark 4 of Section 3.3 was used with k =1 the

resulting estimators appeared stable suggesting that the algorithm was converging.

3.7 Approximating a continuous space transport

problem

Consider the following one dimensional transport problem. A particle within
a shield enters a collision at the origin and is absorbed with probability 0.4. If
it survives. it travels a random exponential (1) distance. This continues until the
-particle is absorbed or crosses the level M = 350 corresponding to the edge of the

shiei 3. We wish to estimate the probability that the particle will penetrate the shield
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(cross the level M = 50) before it is absorbed.

Again. this problem was chosen because its solution is apparent. Conditional on
surviving the initial collision. the particle’s total penetration is a geometric sum of
exponentials and is hence exponential. [ts mean is given by i0.4)~! = 2.5. The

probability of crossing the point M = 30 is therefore given by
0.6-¢(=0430 x 124.107°.

\We can approximate this problem by one of the tvpe described in Section 3.1.
Divide up the intervai i0.30] into d intervais as shown in Figure 3.6. Let the d**

interval denote crossing the level M = 30 so we give a score of one for that state.

{ 1. if j=d:
Sy =
0. otherwise.

That is. take

Once the d** state is reached the problem is over so we set

1; ifj:A
de={

0. otherwise.

Now from a point z. we know there is probability 0.6-¢~(30=) of surviving the collision
and crossing the level M = 50 on the next step. Since we have partitioned the interval

10.30] into d cells. each one has length 50 - d~!. Thus we take
pia = 0.6 -exp{=30-d7'- (d=i)} i= 1....'d- L.
Since we have an absorption probability of 0.4 from every state we take
Pia =04 :1=1....d

If 0 £ z <y < 30 then the transition density for the continuous problem is given
by
p(z.y) = 0.6 -exp{—(y — z)}.
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particle boundary
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Figure 3.6: Approximate the continuous space with a finite number of cells.
\We parallel this by taking
pi; x exp{—30-d7' - (j =)} ij<d-1l
That is, we take
pi; =Ci-exp{=30-d~' - (j —=i)} ij<d-1

with
30 (d —1)

d=1
Ci =06 (1 —exp{————}) [T exp{~30-d7" - (1 = )}]”"
. {=1

so that
d+1

2 pi=1

=1
Fifteen trial iterations were run with k, = 3. a plot of the log of sample standard

deviation against iteration is given in Figure 3.7. The process appears to make a rela-
tively steady descent starting with the seventh iteration. A least squares fit estimates

the slope at —0.67 which translates into
b= 10{-2067) x 0,05.

Ve take w = k, - b = 0.25. From these runs the ratio of time spent updating Q(a!™)
to the time running one sample path from each state was estimated at r = 0.17.

These values are used in (3.24) to obtain the minimizing value of £ = 1.
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k=5 runs per iteration
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Figure 3.7: Trial iterations to estimate rate of convergence.

Here w and r are so small that we would rather get in as many iterations as

possible rather than running several simulations per iteration. From (3.22) we take

Six more iterations were run with this value of a and k£ = 1. Of course with only
one simulation per iteration. there is no way to estimate the variace for the estimator
u1- Note the particle can not go “backwards™ in this model so that there is no hope
of getting estimates based on paths initiated from other states. For the last iteration
¢ = 30 runs were made so that a standard deviation and a confidence interval based
on the central limit theorem could be calculated.

The final result was an approximate 95% confidence interval of
9.3404459618 - 107'° + 5.479 - 10~7

for 1,. One more iteration was run with k = 300 to verify that this interval does
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actually cover the true value y,. Note from Figure 3.7 that the standard deviation
has decreased over the final six iterations from the value of roughly 10~'* after the
first fifteen trial iterations. This is an indication that & = 1 was large enough to
induce convergence.

Compare the solution of the finite state problem. 9.34 - 107'°, to the theoretical
value 1.24 - 1079. Even with d = 1000 states we have almost a 25% error by approx-
imating a continuous problem with a finite one. Better methods for extending this

algorithm to a continuous state space are considered in the next chapter.



Chapter 4

Algorithms for Continuous State

Spaces

An algorithm for solving problems with finite state Markov chains was presented
and studied in the previous chapter. Recall that in transport problems the state
space contains information on the particle's position. velocity. and energy level. The
possible values for these quantities form a continuum. not a finite set of points. Let
us take the state space to be a compact subset of some high dimensional Euclidean
space.

In this chapter. methods for extending the algorithm to the continuous space
are given and their behavior analyzed. The essential idea of the algorithm is to use
previous information on the expected score from each state to compute a low variance
importance scheme. Clearly we can not store information on infinitely many states.

so we must try to characterize the score function with a finite amount of data.

63
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4.1 Traﬁsport Problems as Markov Chains

Suppose we have a transport problem with state space S. a compact subset of
a Euclidean space. The position of the particle at its collision sites forms a Markov
chain {X.}7%,. If we have a particle entering a collision at a point x € S. the
distribution for the next collision site is given by the density. p(x.-). with respect to

Lebesgue measure on S. That is. for measurable 4 C S
P{Xns1 € Al Xn =x} = / p(x.y)dy.
A

Take
X.A)=1~- X. d
p( ) / P( y)dy

to be the absorption probability out of state x. As in the the previous chapter, we
assume

limLp("’(x,y)dy=0' forall xeS

n=—-00

" where p{")(x,y) is given by

That is, eventual absorption is certain.

For each pair (x,y) € S? there is the nonnegative score, s(x.y), incurred by a
particle making a transition from x to y. Again, this score will typically be zero
unless state y corresponds to our target. in which case s(x,y) denotes the energy
being transported there. If

r=inf{n: X, = A}

denotes the absorption time then we are interested in

r

u(x) = E(Y s(Xno1, X5) | Xo = x).

nz=1
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The system of linear equations (3.1) here becomes a system of integral equations

u(x)=ptx.a)-s(x.-\)+/5p(X-y)-(s(X-yHﬂ(y))dy X€ES. (4.1)

We would like to be able to partition the state space S into cells. and approximate
this system with a finite state problem. If we can approximate this system arbitarily
well with finite state problems then we can parallel the theory developed in the
previous chapter. Let us impose the following regularity conditions.

Assume there exists a closed set W C S having Lebesgue measure zero such that:

Assumption 4.1 There exists a A < | such that

limsup A™"- sup /p(")(x.y)dy < oo.
n—00 XeS JS

Assumption 4.2 For each x ¢ W. the functions p{™ and s are differentiable in

X. except possibly on set y having Lebesgue measure zero (the exceptional set may

depend on x). Where defined. each derivative is continuous in (x,y). and

(n) (n) Y () (x
dp pM(x+he.y)-p i _
h-O/s! dz. ( h ) dy =0
. 0s $(X+ h-e.y)—s(x.y) _
Lﬂ/.s‘axg(x'Y)—( h ldy 0.

Here. e; denotes a vector whose it*

all 0.

component is 1 and whose other components are

Assumption 4.3 The sum

0

ap'™
61:.-

(x.y)ldy

converges uniformly on x € § — W. Furthermore,

Z/I@p(’" (x,y) ldy<oo

xes P =
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Assumption 4.4 The score function s and its derivative are uniformly bounded,

sup |s(x y)|+|-;0—8—(x y)‘ <
(x.y) €S? ' oz '

Note that a sufficient condition for Assupmtion 4.1 to hold is that

’xtrex’t;_ p(x.a) > 0.

We allow for an exceptional set, W. to handle boundaries where the transition prob-
abilities may change abruptly. the edge of a lead shield or a cement wall. etc. As we
impose finer and finer partitions on S. the percentage of cells containing points in W
will tend to zero.

Take
a(x) = p(x.a)-s(x.a) +/s p(x.y)-s(x.y) dy.

Iterating equation (4.1) n times gives
p(x) = alx) +jz;::/s P (x.y)-aly)dy + /S P (x.y) - uly)dy.
By Assumptions 4.1 - 4.4. the final term tends to zero as n — > so that
pix) = ax) + 3 [ p™(x.y)aly) dy (42
with y(-) being differentiable for x ¢ W. By Assumptions 4.3 and 4.4
sup |V u(x)]| < 2.

To avoid technical problems. let us again assume there exists a known § > 0 such
that

;(relgu(X) > 6.

See the discussuion in Section 3.3. We shall require i(x) > 6, x € S for our estimates,

a(-), of p(:).
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4.2 Importance Sampling on Continuous Spaces

Just as in the finite state case. we need to choose a transition kernel g(x.y) to

use in our simulations instead of the true p(x.y). Our choice must satisfv

q(x.y) >0 whenever p(x,y)>0 and g¢(x.a) >0 whenever p(x.a)> 0.

We must also make sure our choice satisfies
lim ¢™(x.a)=1 x€&.
N O

Note that this would always hold in the finite state case. but not necessarily in a
continuous space.

Let
Q(xy-l\xj)
L ,.__Hl p(X,;-1,X;)

and take
Z (Xn-1.Xp)  Ly.

The Radon-Nikodym theorem tells us that on the event {Xo = x}. ¥, has expectation
u(x).
Just as in the finite state problem. there exists a zero variance importance scheme.
We just parallel (3.3) taking |
P(x.y) - [s(x.y) + u(y)]
#(x)

The problem here is that even if we knew the function u(-) exactly, we would

(x.y)=

need an infinite amount of computer memory to store it. In practice. of course, we
must approximate u(-) with a finite amount of data. We may partition S into a finite
number of disjoint cells {C;}?_, and obtain an estimate ji(:) which is constant on

each C,. This approximation will add some variance to our estimator.



CHAPTER 4. ALGORITHMS FOR CONTINUOUS STATE SPACES 63

Note that even with a crude partition of S we have eliminated the problem of
bias encountered in the example in Section 3.6.2. Since we are doing the simulations
directly in the continuous space. we obtain unbiased estimators for the solution to
(4.1). In the finite state example. we obtained unbiased estimators for the solution
to the approximating system of d equations in d unknowns.

Clearly the better our approximation, the better our choice of ¢( - . - ) will resem-
ble the zero variance scheme. and the smaller our variance. However. a very close
approximation. will require a fine partition of the state space which will require a very
large number of cells. We must consider the tradeoff between low variance estimators
requiring very fine approximations and the work needed to obtain them. To do this.
we must calculate how the variance grows as a function of our approximation error
o= p

Suppose we have an estimate, j(-), for the function u(-). We use our best guess
at the zero variance importance scheme

p(x.y) - [s(x.y) + A(y)]
p(x.8):s(X.a) + [s p(x.2)-[s(x,2) + A(2) ] dz’
Following the notation of the previous chapter take

X,y p) =

_ [p(x.a)-s(x.a)]? +/ (p(X-y)°[s(X-y)+ﬁ(y)l)2
- Js

f(x. ) o B ORI dy - {u(x)}?
and let oy
rix.y,p) = m
Here we interpret 0/0 to be 0. Take v(x.j) to be the variance of our estimator
Y, when simulating under g(-.-./) and starting Xo = x. Then (3.2) in this case
becomes

v(x,p) = f(")+/s r(x.y, i) v(y,p)dy.

The argument given in Theorem 3.1 applies here so that we have the solution

i) = fxi)+ [ iy i) Sy, ) dy. (4.3)
n=1
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An analogous argument to that given in Section 3.2 shows that f(x.u) = 0 and hence
v(x.u)=0forallxeS.

Now for fixed x € S, the functional f(x, -) is differentiable with respect to the
function 4 in the sense of Definition A.1 in Appendix A. That is. there exists a

function V f(x. i,y) such that for a function h: § = R

fix.i+ h) = f(x ) + [ V(% ¥)-h(y)dy + o] (44)

where

(hl| = ess suph = inf{M : L{y : h(y) 2 M} > 0}.

Here. L denotes Lebesgue measure on S. The functional o(-) is taken to have the

property that for any sequence of functionals, {h,} with ||h,]| — 0

lim o(hn)

n=oo || Ayl -

0.

Note that for fixed (x,y) € S? the functional ¢(x,y, i) is not differentiable in
the sense of (4.4) because it depends too heavily on the value i(y). Any functional
satisfving (4.4) would not change simply by altering the value of i at a single point.
The functional f(x,z) becomes differentiable because it is the integral over S of
functions involving q and . See the calculation following Theorem A.3 in Appendix
A for details.

For the remainder of this chapter we deal with the class of estimates,

L= {f; : ,1‘1615; pa(x) > 5} with topology induced by the norm ||%|| = ess sup j.

Theorem 4.1 There ezists an open collection, M, of functions, i : S — R, such

that u € M, and for each fized x € S, v(x, -) is differentiable on M. Furthermore,

Vo(x.u,y)=0 forall (x,y)e€ S2
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Proof: Let
1) = nNNx,y, i) , =1.2...
gnlX. 1) /Sr (x.y 4) fly,i)dy n=1
and
Go(X. 42) = f(x.f1).

Note
n
v(X.p) = Z gn(X. ).
n=0

When we take 4 = u. we can parallel the argument given in the proof of
Lemma 3.1
p(x) plx.y) _ u(x) p(x.y)
s(x.y)+uly) ™ nly)

rX.y,u)=

For 4 € £ with || — y|| sufficiently small

r(x,y, &) < =

and by induction
2p(x) - pM(x.y)
u(y)

riV(x.y, i) <

Let
M={ael:|i-ul<n)

where 7 is chosen small enough so that the above inequality holds.

By Assumption 4.2 this implies

lim A™ . sup / r"(x,y, i) dy < .
n=oo GEM.XES /S

For 4 € M, f(x.f) is uniformly bounded on x € S, and thus by (4.5)

lim A7+ sup ga(X.4)dy < .
n—e LEMXES

(4.6)

(4.7)
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Let
cixX.p)= p(x.A)-s(x.A)+/sp(x.z)o[s(x.z)+ i(z)) dz
be the denominator term in ¢(x.y, ). For fixed x. the functional c(x. ) is clearly
differentiable in g with
Ve(x.f.y) = p(x.y).
Now

P(X.Y) gnlX. 12) d
s s(x.y)—ily)

Note that for fixed x € S. go(X. - ) = f(x. -) is differentiable in ;i (see Theorem A.3).

Gnpr(X ) = | T(X.Y B)galy, BV dy = c(X. i) (4.9)

Using the differentiation rule given in Theorem A.3. and an induction argument. we

see that for fixed x € S. gn(X. - ) is differentiable in /i and

pP(X.y) gn(X. 1)

Vne1(X p.y) = —c(x, ) - - + (4.10
Grt D5 R OB Sy + AP (+10)
p(X.2) gn(Z. ft) . . .
. * N ¢ I /2 ¢ n o« fo d .
px.y) [[EEEEE e + e ) [ r(x.2.) Vaa(z. .y) da
Sucessively iterating this equation gives
. . p(x. y gn(x m P(X.2Z) gn(Z. 1)
Von(X, 02,y) = —c(x. y) - d
(X 1Y) = —c(x.p) - Is(%.y I + p(x.y) s Sx.2) = A(Z) z +
=~ [ )(x g &) p(2.¥) gn-, (2. # pz W)gny (W) o ]
Z/.;'r (x.z.p)[c( A) [s(z.y)+ aly s(z.w) +pw) W et
/5r<n+”(x.z.m-w(z.,1.y)dz.
If we choose A > A then by (4.7). and (4.8) we have
lim A" sup / Vga(x, py) dy < . (4.11)
n— LEMXES /S

Choosing A < \ < 1 we see that the sum

b [ Toalx.iy)
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converges uniformly over X € S. and g € M.
From Theorem A.4. and (4.6). for each fixed x € S. the function v(x. ) is differ-

entiable on .M and

Vo(x.fy) =Y Vgn(x.f2.y).

n=0

Since v( -, u) is identically zero. it has a local minimum at u for each x € S. and so
Vexopy)=0 forall (x,y)e &% &

We now need to develop a notion of a second derivative. Unfortunately, we can
not simply define it as the derivative of the derivative since this would rule out too
many functionals. For example. in (4.10) the first term of Vgn41(X. i.y) depends on
i only through the value f(y). For fixed (x.y) € §?. therefore. Vg,,1(x. -,y) can
not satisfy (4.4). To include such functionals. g, a V,2 g term is added to handle the
dependence of Vg(ji,y) on the value i(y). See the discussion preceeding Definition
A.2 in Appendix A.

We consider a fuactional g to be twice differentiable if in addition to being dif-
ferentiable in the sense of (4.4), there exist mappings V?¢ : .M x §* — R, and

V2g: M xS — R such that
9l +h) = g(i) + [ Vo(iy)-hly)dy + (4.12)
5+ [ by) 9200y, 2) hia) dy da+ [, gl y) () dy] + ol AP

Theorem 4.2 Let M be as in Theorem 4{.1. For each fized x € S. the function

v(X. - ) is twice differentiable in the sense of (4.12).

Proof: The argument is analogous to the proof of Theorem 4.1. Recall

dy — [u(x)]* =

f(x.f) = [p(x.a)-8(x.a)]? +/s (p(x.y)~[s(x.y)-4-!1(!/')])2

q(X.a. 1) q(x,y, it)
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) [s(x.y) + u(y)]?
s(x.y) + aly)
Fixing x € S. we consider f(x. -) a functional on .M. Now

c(x.i)- | p(x.a) s(x.a) +/ px.y dy — [u(x)]?|.

ciX. 1) = p(x.A)-s(x.A)+[sp(x.z)-{s(x.z) + f(z)) dz
is linear in £ and so for x fixed
Vic(x.i.y,z)=Vic(x. b.y)=0

for all (y.z) € S*. Now apply Theorem A.7 with ¢g(y. ) = c(x.4) and

pix.y)[s(x.y)+ puly)]
s(X.y)+t

O(y,t) = together with v(y) = p(x.y)+1

to conclude that f(x. -) is twice differentiable with

Vif(x.i,y.2) = p(x.2) p(x.y)- (3(’9}’) + ;f(y))z
s(x.y) + aly)

and
[s(x.y) + puly))?

[s(x.y)+ aly)]>
Note here that g(y. ) = c(x. i) does not depend on y.

Vuzf(x,ﬁ,y)=2c(x._ )-p(x.y)-

To obtain the second derivative analogs of (4.10). we use an induction argu-
ment applying Theorem A.5 and Theorem A.7 to the equation (4.9) to conclude

that g.(x, -) is twice differentiable with

vzgﬂ'ﬂ(x’ﬁvyvz) =

-2p(x.y) -Vgaly / p(x.w) - Vzgn(w f.Z.Y)
[s(x.y)+ aly iy)

c(x. ) - [ dwl+  (4.13)

2p(x.y) -Vgn(x. i1, 2).

and
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V2 gner(X. 2, y) =

(X ft)-

f)
2p(x.y) gny;z /pxz) Vogn(zuwdz (4.14)

[s(x.y)+ aly s(x.2) + i(z)
We now use the same argument that was applied to equation (4.10) in the proof

of Theorem 4.1. Successively iterating equations (4.13) and (4.14). and using (4.7),

(4.8). and (4.11) we see that

lim A™" - sup /5 V2gn(x.0,y,2)dydz < x

1= [461\4.)!65
and

lim A™"-  sup / 2n(X. 1, y)dy <
e LEM.XES

where A is as in (4.11).

Now apply Theorem A.8 to equation (4.6). @&

We can combine Theorems 4.1 and 4.2 to obtain the following analog to Lemma 3.1

1
o) =5 [//S ¥)-V2u(x. p.y.2) (i(2) - plz))dydz +  (4.13)

/5 Viv(x.p.y) [(Aly) = w(y)Pdy | +o(fla — pi*)

4.3 Partitioning the State Space

As mentioned in the previous section. we might partition the space S into a finite
collection of disjoint cells {C,}%_, with

«=sup sup |[[x-yl.
) (xy)eC?

Suppose we can impose such a partition so that each point x € W lies on the boundary
of some cell C,. For example. if W is the edge of a cement wall we can allow that edge

to define cell boundaries. No one cell would contain points corresponding to both air
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and cement. Suppose for each cell C;, we select a point y; in the interior of C, and

approximate the function u by

d
ay) =3 uly;) Hy e G} (4.16)

=1
By the mean value theorem. for each y in the interior of C,, there existsan y* € C,

so that
p(y) = puly;) =Vuly) - (y - y,)
Taking h(y) = i(y) — ply). we have
/ Vo vl p.y)-[h(y)P dy < sup [Vu(y)ll --c""-/ i v(x.p.y)dy
c, YES ¢,
and thus
/ Vi v(x. . y) [A(y)]*dy < sup IIVu(y)II-/ V2 v(X. p.y)dy -
S YES S

Similarly
S (aty) = w(¥))- 920, .y 2)- (il(2) = w(z)) dy da <

sup [Vu(y)l- [, V2v(x. .y z)dydz o2
yeS s?

By (4.13)

2 |

v(x. ) < [ //52 Vzv(X-#-y-Z)dyalz+‘[s v v(X-#»y)dy';tégllvu(y)ll ‘w4

-

o(w?). (4.17)

Our variance is proportional to the square of the cell diameters in the partition we
choose. Of course in practice we would not know the values u(y;) so that we would

have to replace (4.16) by
d
py) =3 i {y € Cy} (4.18)
Jj=1

where fi; represents an estimate for some notion of the expected score starting from

cell C;.
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\We may be tempted to impose finer and finer partitions on S in an attempt to
converge to the zero variance importance sampling scheme. However. if we do this. we
will encounter the same curse of dimensionality that hinder deterministic methods.
In high dimensional spaces the number of cells is growing verv rapidly as we try to
make the cell diameters. «. small. For example. in Section 1.1 we saw that S may
contain information on the particle’s position. velocity, and time. This would require

seven dimensions so that the number of cells in our partition is growing as
d=0(w™").

The amount of work required to obtain estimates ;; for each cell is growing too
rapidly to make very fine partitions worth our while. We are much better off imposing
a relatively crude partition on our state space with d being a manageable number of
cells. Once the estimates ji; are obtained, we can perform iid importance sampling
to obtain the O(n‘§) rate of convergence given by the central limit theorem.

In high dimensional spaces this rate is often superior to those given by determinis-
tic methods. The initial work to obtain the estimates ; gives us a variance reduction
so that we need not run an excessive amount of simulations before our particle hits the
target. At the same time, we retain the superior rate given by Monte Carlo methods.

To obtain estimates for ji;, we can run simulations starting from each state anal-

ogous to Algorithm 3.1 for finite state problems.

4.4 Computational Issues

We have already noted that the finite approximation (4.16) to the function u can
not be used in practice as it requires knowledge of the solution. Even the approxi-

mation (4.18) will be difficult or impossible to implement in practice. Recall

o p(x.y) - [s(x.y) + ily)]
(x.y.p) = p(x.a) 8(x.a) + [s p(x.2)-[s(x.2) + 4(z)]dz (+.19)
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Now we can generate random variates using the acceptance-rejection method (see

Algorithm 3.4 of Ripley [18]) without computing the integral

/pxz s(x.z) + fi(z)] dz

explicitly. However, when we calculate the likelihood ratio we will need to evaluate
the exact value of ¢(x.y, i). The function 4 is constant on each cell C,. but we will

not typically be able to compute

/C} p(x.z) s(X.2)dz or /c, p(x.z)dz

without error. If we replace it with a numerical approximation we introduce a bias
to our estimator.
Instead. we can take

p(Xi. X;) - [s(Xi.%;) + 3(x;)]
P(Xi a)-8(Xia) + X p(XioXi) - [ 8(Xiv X)) + £(x1)]

§(x,y. i) = (4.20)

where i and j are chosen so that x € (i and y € C;. Note that §(x.y, ) can be

computed explicitly. We might also consider the better approximation

p(x.X;) - [s(x.X;) + f(x;)]
p(x.a)-8(x.a) + 5, p(x.%1) - [s(x. %) + fa(x1)]’

¢(X.y.p) = (4.21)

The importance sampling scheme (4.20) has the advantage that the denominator
terms may be computed and stored in advance of the simulation runs. This will
require d units of storage. The denominator in (4.21) depends on the exact value of
x and will need to be computed at each transition of each simulation run. We might
hope that using (4.20) or (4.21) in'place of (4.19) will still achieve the rate in (4.17),
but as we shall see in the next section this need not always be the case.

In continuous problems we can not store the transition kernel p(x.y) explicitly

as it contains an infinite amount of information. We need to define it implicitly. For
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example, the transistion mechanism for the scatter of the particle may be given by
implicitly defining the probability laws for the particle’s scatter angle, velocity. and
distance until the next collision as a function of the current state x. For a given pair
(x.y) the transition density p(x,y) can be calculated from these quantities rather
than storing a matrix P as was done in the finite state case.

Since we do not store the quantities p(x.y) explicitly. we might hope to also
avoid using O(d?) amount of storage for the kernel g(x.y. ). We can reduce this to
O(d) if we use (4.20) and store only the denominators. The numerator terms can be
computed as they are needed. Note this could have also been done in the finite state
case. but we were already storing the matrix P so this would not have reduced our
overall storage requirements to O(d).

We can speed up the generation of sample paths by using the acceptance-rejection
technique given in Algorithm 3.4 of Ripley [18]. Here we select the next state. y, by
some probability measure, v(x,y), that we can generate implicitly. For example, we
may use the true measure p(x,y), or a uniform measure on S. or perhaps a mixture
of the two. Then we accept the choice. y, with a probability proportional to the ratio
of g(x.,y. 1) to v(x.y). If the choice is rejected. we repeat the process until the value
y is accepted.

Generating y by a probability measure implicitly defined such as p(x.y), or uni-
form on § will typically be much faster than generating y according to q(x,y, it)
directly. To generate y under the true p(x.y), we may only have to generate a
random angle, velocity, and inter-collision distance. To generate y directly under
q(x,y, i) , which will not generally have any such structure, we will have to use a
“brute force” method of generating a uniform (0, 1) variate. U, and searching through

the cells one at a time until

j J
q(x.x, ) | dz>U
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and then choosing y uniformly on C;. This will take O(d) amount of work for each
new state selected.

The expected amount of work required for acceptance-rejection method is equal
to

sup q(x.y~u).

yes v(X.y)
We must try to find a measure. v(x.y). with the above quantity reasonably small,

from which we can easilv generate random variates. As we impose finer and finer
partitions on the state space S. g(x.y, jt) will approach the perfect importance scheme
q(X.y,u). The acceptance-rejection method will require essentially the same amount
of work as if we were generating variates from q(x.y, u) by acceptance-rejection. The
amount of work required to select new states. therefore, should not be sensitive to

the number of states, d.

4.5 Sample Problems

In this section model problems with continuous state spaces are given. In Section
1.5.1 we take another look at the problem introdued in Section 3.6.2. attacking it
directly in the continuous space rather than approximating it with a finite state
problem. This removes the bias, giving us a reliable estimator for the expected score
of the particle in continuous space. In Section 4.5.2 a two dimensional problem with
two different shielding media is introduced. Unlike the previous problem. no analytic
solution is readily apparent so that our algorithm will have to “learn™ which are the

important states much like Algorithm 3.1.

4.5.1 A One Dimensional Problem Revisited

Let us consider the shielding problem in Section 3.6.2. Here. a particle initially

colliding at z = 0 in one dimensional space survives the collision with probability 0.6.
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If it survives. it travels an exponential (1) distance to the next collision. The particle
successfully penetrates the shield if it crosses the level z = 50 before it is absorbed.

Here we have S = [0.50] with

0.6 -exp{—(y—z)} if z<y<30:
p(z.y) = .
0 otherwise.
We consider the particle to have penetrated the shield when y > 30. To keep S
compact we can alias all values greater than 30 into the state 30 itself. Thus. for a

particle at state r. there will be an atom of probability mass
0.6 - exp{—(30 — z)}

at the value y = 50. We then take

1 if y =30
S(x-y)={

0 otherwise.

and

p(50.8) = 0

to terminate the process once the particle has penetrated.

Note that this does not quite conform to the setup in Section 4.1 since we do not
allow for atoms. Since we regired the transition kernel to have a density with respect
to Lebesgue measure, no one point should have a positive probability. We can, of
course, artificially manipulate this problem into that form by aliasing values greater
than 50 into the interval, say {50.51]. That is. once a particle has penetrated the
shield, we artificially place it uniformly on the interval {30.51] and give it a score of
1.

Thus, we can state this problem in accordance with Section 4.1 by

0.6 -exp{—(y—=z)} if r<y<50
p(z.y) =106 -exp{—(50-1r)} if <50 <y<53l;

0 otherwise.
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and
1 if 30 <y <5l
s(r.y) =

0 otherwise.
When we are actually running simulations on this problem we would prefer the

first formulation as it is more natural. This second formulation is merely to show
that the problem falls into the setup of Section 4.1. How the endpoint is treated is
irrelevant since there is no uncertainty about that state's importance.

Recall that an analytic solution to this problem was given as
plr) =0.6-exp{-=0.4-(50 = 1)}
so that
u(0) ~ 1.24 - 107°.

If we choose a value d for the number of cells in the partition we wish to impose on

S = [0.50], then we can take

50-(j—1) 50
d ' d

o-|

as in Figure 3.7.

Note here that we have an analytic form for

/c, p(x.2) dz

so that the importance scheme (4.19) could be used directly in this problem. However,
(4.20) was used to verify that the rate (4.17) is achieved even with this approximation.
Since the solution is known is this problem, simulations were run with 2 = u, no
“learning” process was attempted here. In the problem given in the next section,
the solution is not apparent so that some learning process will be required to obtain
L. The number of cells varied from d = 5000 to 30.000 in increments of 5000. For
each value of d. 10.000 simulations were run using importance sampling with (4.20).

Results are given in Figure 4.1. The sample standard deviation is plotted against
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k=10,000 runs at each value of d
12 4, i
|

|

10 A

— equation: ymconstant/ d

standard dewiation® 1012

t
4 - - |

2- |
5000 10000 15000 20600 25000 30600
dmnumber of cells

Figure 4.1: Standard deviation is inversely proportional to number of cells in the
partition.

number of cells in the partition. A curve inversely proportional to the number of cells
is fit to the data suggesting that the rate (4.17) is indeed achieved.

A slight modification to (4.20) was necessarv to achieve this rate. When the
particle is at state z in the j** interval, C, we must allow for the possibility that the
next state, y, falls in the same interval. Now the particle can not go backwards in this
model, so only the portion of C; to the right of z is eligible for the next transition.
If we use (4.20) directly we see that the density §(z,y, i) is proportional to the area
to the right of z in C;. This inflates the variance since when z is close to the right

endpoint of C;, the likelihood ratio

p(z.y)
§(z,y, i)
is large. The interval C; containing the current state z is over sampled in (4.20). Its

probability should be reduced by the fraction of the interval C; which is to the right

of z. Once this was done the results concurred with (4.17). This. of course would not
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be an issue if (4.19) were used directly.

4.5.2 A Two Dimensional Problem

Consider the transport problem depicted in Figure 4.2. A particle starts at
the source at the point (25.0) in two dimensional space. A target occupving the
line segment from (20.30) to (30.30) is protected by a lead shield. However. an air
duct runs though the shield as indicated. Distances travelled between collisions are
exponential with cross section (hazard rate) A = 5 in the lead. and A\ =1 in the air
duct. A particle is absorbed during a collision with probability 0.9. and scattering
angles are uniform (0.27). We want to estimate the probability that the particle
reaches the target before it is absorbed. No attempt to model the particle’s energy
level was made here.

The arrows in Figure 4.2 denote one path a simulated particle took to reach the
target. Although a real particle would show no propensity to stay in the air duct,
the simulated particle has "learned” that its best chance for hitting the target is to
climb up the air duct getting as close to the target as possible. and then penetrating
the remainder of the lead shield.

To perform importance sampling the space was split into d = 10.000 cells on an
evenly spaced 100 x 100 grid. Suppose the points x and z are both in the air duct. We
can transform to polar coordinates with R = ||z — x| and ® being the angle formed

by the line segment XZ and a horizontal line. We have
Pr{Redr and &€ do}= 0)—_1 -exp{-r}.
Translating back to Cartesian space and multplyving by the Jacobian. r=1, gives
p(x.z) = :-'—-—_—-—-eXp{—-||z-x||}. (4.22)

Because the transition probabilities are given in terms of inter-collision distances

and scattering angles. the problem is more naturally expressed in polar coordinates.
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(0,50) (20,50) (30,50) (45,50)
|

(50,40)

A=5

— -
(0,0) (20,0) source (30,0) (50,0)

(25,0)

Figure 4.2: A two dimensional transport problem. Cross sections are A = 5 in the
lead. and A = 1 in the air. Absorption probability is 0.9, and the scattering angle is
uniform (0, 27).

PN
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There is no analytic form for the transition probability to a Cartesian cell. and so we
can not use (4.19) directly. Similar results follow when one or both of the points are
in the lead shield.

We may tryv to use (4.20) instead as was done in the previous problem. Unfor-
tunately, this would not vield the same nice results here. If we take {C,}%, to be
the Cartesian cells given by our grid. then the importance sampling scheme (4.20) is
constant on these cells. Starting a particle at a point x in C), let us condition on the
next point. z. being in the same cell. Under (4.20) the conditional distribution would

be uniform on this cell. Consider the square of the likelihood ratio

(p(x.z)

2
1
Q(x.z)) * Tz —x|? rexp{-2- ||z - x||}.

Fixing x and taking z uniform on C; we see that this random variable has infinite
expectation. That is. the estimator from this importance sampling scheme has infinite
variance no matter how fine the Cartesian partition {C;}%., may be.

As mentioned before. this problem is more naturally expressed in polar coordi-
nates. We avoid the problem of the Jacobian. r~!. blowing up the variance if we take
q to be constant on polar cells rather than Cartesian cells. For each cell C, with center
x; in our Cartesian partition. let {C}}d=l be a partition of § by polar coordinates
with the reference point, (r = 0), being x;. That is. C} is the set of points in S whose
distance from x lies in a certain range, and whose angle, ¢, from x lies in a certain
range. Note each cell in the Cartesian partition {C,}%, has its own partition of S in
polar coordinates.

Suppose for each cell C, in the Cartesian partition we have an estimate. g;, of the
probability of reaching the target for a particle starting in that cell. Let x; be the

center of C;. We take

, (Xi-X;) * fimij
a(x.y. ) = = ——rb XX i

i (4.23
p(x;. T) + 5 p(XiX1) + i )
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where i is chosen so that x € C,, j so that y € C}, m;; so that X% € Cn,;. and [;; so
that xj € Cyi;;. The quantity p(x;.T) represents the probability of hitting the target
directly from x;.

Similar to (4.20). the denominator terms may be calculated and stored prior to
the simulation runs. This will require d units of storage. Note that the denominator
term itself gives a good estimate of u; when our previous estimates {/i;} are “close”

to the true u(-). If we deterministically perform the iteration

i = plxg T) + 3 pioxa) - (4.24)
we obtain estimates 4™ converging to the solution to a discretized version of this
transport problem. We may prefer to use this method as a means of obtaining esti-
mates 4, for the simulation runs rather than something analogous to Algorithm 3.1.
To parallel Algorithm 3.1 simulation runs would have to be made starting from each
of the 10,000 cells. This would take a relatively large amount of computing time. The
iteration (4.24) would have to be calculated for the denominator terms of ¢(x.y, £t) as
a first step prior to the simulation runs in each iteration. The deterministic recursion
(4.24) alone is much quicker and possibly more stable.

A simple heuristic was used to supply (4.24) with the initial guess. 2'?). Starting
from a point x. the particle may head directly towards the target or may climb
up the air duct to the point, (40.40) and then head towards the target. In a one
dimensional problem with exponential step sizes. we know that total penetration
before absorption is itself an exponential random variable. Its mean is increased by
a factor of the reciprocal of the absorption probability (see Section 3.6.2). Thus, we

might approximate the probability of a particle starting from x hitting the target by
p(x.(25,50))°*

. Similarly, we might approximate the probability of getting to (40. 40) first and then
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s
it }

reaching the target by
pix.(40.40))%° - p((40.40), (25.50))°°.
The initial guess was given by
A% = max(p(x,.(25.50))°°. p(x;. (40. 40))°° - p((40.40). (25.50))°?).

Twenty iterations of (4.24) were run followed by & = 100,000 simulation runs using
(4.23). Using the central limit theorem a 95% confidence interval for the probability

of reaching the target starting at (25.0) was given by

(1.382 £ 0.473) - 10734,



Appendix A

Differentiating Functionals

Take S to be a compact subset of a Euclidean space and let .M be an open
collection of functions. i, mapping§ — R. Let f: .M — R be a functional mapping

functions into real numbers.

Definition A.1 The functional f(-) is considered to be differentiable at [ if there
ezists a mapping Vf : M x S — R such that for a function h

fUi+ k) = J(@) + [ VFAy)-h(y)dy + of[Al). (A1)
Here.
Ih]] = ess sup & = inf{M : L{y : h(y) > M} >0}

where L denotes Lebesgue measure on §. The functional of-) is taken so that for any
sequence of functions {h,} with ||h,|| — 0 we have

lim 20n) _
=% |[ha||

The following result is an immediate consequence of Definition A.l.

0. (A.2)

Theorem A.1 If f and g are differentiable functionals on M then f + g and f-g

are differentiable and

Vif+gl=Vf+Vg and V|f-g]=f-Vg+Vf-g.

S8
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We will need the following analog of the mean value theorem to derive our differen-

tiation rules.

Theorem A.2 Mean Value Theorem.

Suppose f is a differentiable functional on M. If i € M and ||h|| is small enough so
that o + h € M. then there exists a i~ € M so that

b= @) = [ S y)-hly) dy.
Proof: Let b be a function {0.1] — R given by
bla) =[f(p+h) = f(@)]-a—= fli+a-h).
For J € R sufficiently small.
fla+(a+3)h)=f([g+ah]+3-h)=
flia+a-h)+ 3 [ Vf(i+ahy)h(y)dy+o3:h)
Thus. b is differentiable on (0.1) in the regular sense and
b'la) = [f(i+h) = f(@)) = [ Vf(i+oh)-hiy)dy.

Note that

Thus. b must obtain either a local minimum or maximum for some a" € (0, 1) where

we must have b'(e") =0. That is

fla+h) = f(i) = [ VHEy)-hly)dy

where 4" =g +a*-h. 8

The next resuit is used in the proof of Theorem 4.1.
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Theorem A.3 Let 8 be a function S x R — R which is differentiable in the regqular
sense with respect to its second element. Let g(y.pn) be a mapping from S x M = R
such that for each fired y € S. the functional g(y . -) is differentiable in the sense of
(A.1). having derivative Vg(y. i.2). If there exists a a nonnegative density v(y) with

d
/Su(y) y <>
such that the quantities

vy 18(y iy )]+ 107y i)+ ig(y, )] + Voty. i 2]
are uniformly bounded in (y.z) € S? and ji € M . then the functional

£@) = [ 6ly,ily))-gly. i) dy
S

is differentiable and

Vf(iy) = 0'(y aly))-9y,4) + [ 6(z.(2)- Vg(z. ny) da.

Proof: Let h be a functional with ||k|| small enough so that g + A € .M. Since 8 is

differentiable in its second element. we have

Oy, iy) + h(y)) = 0(y, i(y)) + 0'(y, i(y)) - h(y) + 0sly. h(y))

where o, is a function § x R — R such that for each fixed y

t—0 t

Since g is differentiable for each fixed y, we have

gly.ji+h) =g(y,m+/‘s Vg(y, ji.z)-h(z) dz + 0,(y. h)

where for fixed y. o,(y, ') satisfies (A.2).
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Thus. f(i + h) =

ﬂm+3LP%xpwn-MmﬂryL0u¢un~vmmmynn-hwu@+rw»

[t remains to be shown that r satisfies (A.2). Consider the first remainder term

mmm=ng¢»Mxmwwx

Let {h.} be a sequence of functionals with ||h,]| — 0. Then for almost every fixed

y € S. hno(y) — 0 and hence

00()’1 hn(y))
ha(y)

(take 0/0 = 0). By the mean value theorem (Theorem 5.10 of Rudin [20])

0o(y. ha(y))
hn(y)

for some a € R and so the quantities

—0 as n—

=0'(y,a)

0(y. hn(y))
v(y) - haly)

are uniformly bounded except possibly on a set of Lesbesgue measure zero. Now

|hall 2 hna(y) for almost every y € S so by the dominated convergence theorem

lim rl(ﬂ- hn)

n=2 [lhal]

= 0.

Consider the remainder term

/9 )-05(y. h).

Let {hn} be a sequence of functions as specified above. By Theorem A.2

0y(¥, hn / Ve(y.i".z) -h(y)dy
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for some 4* € M. Since § is compact. it has finite Lebesgue measure and so the

quantities
o,(Y. hn)

are uniformly bounded except possibly on a set of Lebesgue measure zero. Bv (A.2).

for almost every fixed y € S.
0,(y. hn)
| Anll

and so the dominated convergence theorem implies

— 0

l- 7‘2(/‘1. hn)
m -

= 0.
n=2 ||k

Analogous arguments apply to the other remainder terms. §

As an example let us apply this theorem to the function appearing in Section 4.2.

[ﬂxaydmanz+/-(M&y%hbtyr+MYHy
S

) = : : dy — 22
fix.1) q(x.a,4) q(x,y. ) y = k)
. px.y) [sxy)+uy P
el i) [plx.a)-stxa) + [ PELSEILEIIE gy ]

where c{X,y) is as defined in the proof of Theorem 4.1. Note here. we fix x € S,
considering f(x. - ) as a functional on M.

Let us first focus on the part

p(x.y)-[s(x.y)+ u(y)]?
e = | xw+M)
Taking
oty )= 1. oy = LYV LOIHRNE oy ) < gy 41

s(x,y)+t

we apply Theorem A.3 to get

2
Vf(x.jy) = ~EELLAE Y L)
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Note Vg = 0 in this case. Now apply Theorem A.l and use Vc(x.2,y) = p(x,y) to
get
Vily.a)=c(x.y) V(x.4y)+ Ve (xpy) flx.p) =
p(x.y) [s(x.y)+ uly)]?
[s(x.y) + &(y)]?

The following result specifies conditions under which we can differentiate infinite

—ciX. jt): +p(x.y)- f(x. ).

sums.

Theorem A.4 Suppose {f.} is a sequence of differentiable functionals on M with

fi) =S fmli):

m=0

If the sum |
> [ Vialioy)dy

m=0

converges to a finite limit uniformly on M, then f is differentiable and
Vf(ﬂ*)’) = Z me(ﬂ, y),dY-
m=0

Proof: Let {hn} be a c2quence of functions such that ||h,|| — 0. Let ¢ > 0. There

exists an integer .\ such that

20 . €
Zlﬁvmmywﬂ<§

m=M

for all 1 € M. By Theorem A.2. for each pair (m.n) there exists a 7,  such that

Folhn) = f) = [ © S (i) haly) dy

Thus. for m > M

= lfm(ﬂ‘l'hn)_fm(/}')l E
Py I <3

for all n.
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By Definition A.l, we can choose NV large enough so that for n > .V

all | (i hn) = fonl) = [ ¥ fonl it y) Baly) | <

Then forn > N

3m+2

Ihnll™ | £+ k) = 10 = [ [ V)] @y | <

[[Aall ™ - [Z | it thn) = fn o /me (f-y Vhaly) |+ 5 | fm it h) = fn (@) |+

m=M

l/ ¥ fm(i,¥) ha(y) dy |

m-W

That is,

i kol £+ ha) = £(B) = L[ Vin(,y)] dy| =0

m=0

which establishes the theorem. 8

Now we need to develop some notion of a second derivative. Unfortunately, we can
not simply define it as the derivative of the derivative. This would be too restrictive.

For example, consider the functional

Clearly, this is differentiable with

Vay)=24y).

Note that for fixed y € S. Vf(-,y) is not differentiable since it depends on the
function { solely through the value (y). Here we see that we can not define a

‘quantity V2f(j.y.z) so that

f+ ) = f@) = [ ARy dy+ 5 [ )9y, 2) hiz) dy da + ol 7).
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The quantity V?f is supposed to parallel a second derivative matrix in the discrete

case. The problem here is that the second derivative matrix for the discrete analog
f(i)=4n"n

is diagonal. However. the “diagonal” elememts in our double integral have no con-

tribution since the set {(y.z) : y = z} has Lebesgue measure zero. We must add a

second element V.2 f to incorporate the “diagonal” contributions of the second deriva-

tive.

Definition A.2 4 functional f is twice differentiable if in addition to being dif-
ferentiable in the sense of (A.1). there exist mappings Vif : M x 8? — R, and
2f: M xS — R such that

flii+h) = +/ V£ y)-h(y)dy + (A.3)

lQl-—-‘

[/szh V2f(isy.2) h(Z)dyd2+/sV,,’f(ﬁ,y)-[h(y)lzdy + ol |[]1?)

\Ve see our example

satisfies (A.3) with V2f(4.y.z) = 0. and V2f(ji.y) = 2. The following result is

immediate.

Theorem A.5 If f and g are functionals that are twice differentiable in the sense of

(4.3), then f + g and f - g are twice differentiable with
Vi[f+gl=Vif+V7
Vol +9l =V f + Vg
VS gliy,2) = f(R) - Vig(i,y.2) + Vif(iy.2)-g(i) + 2V f(i.y) V(i z)

and

Vo glay) = flin) - Vig(ay) + S (R y) - 9(i).
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Here, Theorem A.2 is extended to a second derivative.

Theorem A.6 Suppose f is a twice differentiable functional in the sense of (4.3).
Let 4 € M and ||h|| be small enough so that j+h € M . Then there erists a 1* € .M

such that
Fla+ ) = () = [ FF(iy) hly)dy+

U/ hiy)-Vif(i.y.2) h(z)dydz*'/s V2 f(amy) [Ay)] dy

!in—-

Proof: Let b:[0.1} — R be defined by
bla) = f(i + a-h).
Then
ba+ )= f(la+ah)+3:h) = f(i+ah)+3- [ Vf(i+ahy)hly)dy+
3? . |
2 [./52 h(y)-V2f(h+ah.y,z (Z)dydz+/s Vo f (i +a-h.y)'[h(}’)]2d}'}.+

o(8% ||AlI*)

Therefore. the function b is twice differentiable with

o b'(a) = [ Vf(i+a-h.y)-h(y)dy

@)= [[, by)- V(i +a-hoy,2)-hiz)dydz+ [ (i +a-h.y)-((y)] dy.
Now apply Taylor's theorem to b. 8

The following analog of Theorem A.3 allows us to compute second derivatives in

the proof of Theorem 4.2.
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Theorem A.7 Let§: S x R = R be a mapping which is twice differentiable in the
regular sense with respect to its second element. Let g : S x M — R be a mapping
such that for each fizedy € S. g(y, -) is twice differentiable in the sense of (A.3). If

there erists erists a a nonnegative density v(y) with

waW<w

such that the quantities
o7y 1By DI+ 107y Ay )+ 16"y iy DI+

gty il + IVg(y. i.2)] + [V 2g(y. oz w)| + |V 2g(y. 1. 2)|]

are uniformly bounded in (y,z.w) € S® and i € M. then the functional

() = /5 0y, iy)) - 9(y. i) dy

is twice differentiable with

V2 f(,y.2) = 200y, ily))Vgly.inz) + [ 6(w.i(w)Vg(w, 4.2 y) dw

and

V2 f(i.y) = 0"(y ily))-a(y. i) + /s 6(z. i(2))-Vg(z. . y) dz.

Proof: Since @ is twice differentiable we have

2
B(y.ia(y) +h(y)) =0y, a(y)) +0'(y, ily))-h(y) + 6"(y, it(y))-[i(—i;{l + 0s(y, h(y))

where (o)) satisfies
. 0, .t
ll -4 (y )

t—+00 tZ

=0
for each fixed y € S.
Similarly

9y i+ ) = gy, i) + [ Vly.iz)-h(z) da+
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%U/S h(z)-V’g(y,,&.z.w)-h(w)dwdz+/s V2(y. jz)-[h(2) dz| + o0,(y, h)

where for fixed y € S
o,(y.h)
—— =0,
=0 1A

Now proceed as in the proof of Theorem A.3. 1

We also need the following analog of Theorem A.4 in the proof of Theorem 4.2.

Theorem A.8 Suppose {f.} is a sequence of twice differentiable functionals on M
with
f(a) =3 fml).

m=0

If the sums

> [ Vinhvidy, X [ Vinlhy.aidyds and L [ Vifaliiy)dy

m=0 m=0 m=0

all converge to a finite limit uniformly on M, then f is twice differentiable with

Vif(py,z) =Y Vifmlihy.2)

m=0

and
x

Vo f(y) = 30 Vi fm(fy).
m=0

Proof: The argument is analogous to the proof of Theorem A.{. using Theorem A.6

in place of Theorem A.2. 1
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Fortran Code for Algorithm

OO0 0000000000 000O0

600000000

This program runs uses an adaptive importance
sampling technique to simulate the expected
cumulative score of a Markov Chain subject

to absorption. Each time the chain moves
from state i to j, the amount s(i,j) is added
to the total score.

To use this program create a file called fort.1
The first line should have three numbers:
# of states, # of simulations per iteration,
and # of iteratioms.
This should be followed by a n by n matrix of
transition probabilities with each row being
one line in the file.
This should be followed by an n by (n+1) matrix
of scores.(s(i,j) being the amount scored
jumping from i to j, the last column
corresponding to absorption scores).
The last line of the file should contain initial
guesses for the expected scores. (n numbers).
Output is put in a file called fort.2

This program computes the exact solution. At
each iteration the actual error of the estimate
and the estimated standard deviation are
written to a file called fort.3

99

3.1
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15

16

10

20

25
30

implicit double precision(a-h,o-z)
common/ibuff/nhit
double precision p(100,101),s(100,101),score(100)
double precision sd,s2(100),b(100,100),e(100)
double precision oldscore(100)
integer n,k,it,nhit(100)
alpha=-1.d0
do while((alpha.lt.0.d0).or.(alpha.gt.1.d0))
write(*,*) ’enter value of alpha= wt given’
&,’to newest runs’
read(*,*) alpha
if((alpha.1t.0.d0).or.(alpha.gt.1.d0))
& write(*,*) ’'need O<alpha<=1’
end do
beta=1.d0~alpha
alpha2=alpha*alpha
beta2=beta*beta
write(2,5)
format (’THIS IS ALGO03.1'/’INFORMATION IS USED’,
&’ TO ESTIMATE EXP. SCORE FOR EVERY STATE THAT’,
&’ GETS HIT IN THE RUN.'’/)
read(1,*) n,k,it
do 10 i=1,n
read(1,*)(p(i,j),j=1,n)
p(i,n+1)=1.
do 15 j=1,n
p(i,n+1)=p(i,n+1)-p(i,j)
continue
if(p(i,n+1).1t.1e-10) then
if(p(i,n+1).gt. -1e-10) then
p(i,n+1)=0.
else
write(*,16) i
write(2,16) i
format(’ERROR- transistion probabilities’
& ,’ for state’,i3,’have sum >1’)
endif
endif
continue
do 20 i=i,n
read(l,*) (S(l,J) :j’l )n*i)
continue
read(1,*)(score(i),i=1,n)
score(n+1)=0.
write(2,25) n
format ('number of states :’,i4/)
write(2,30)
format(’Transision matrix P:’/)
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49
50
40
53

55

63

62

64

70

80

do 40 i=1,n
write(2,50) (p(i,j),j=1,n+1)
format (100£15.6)
format(100(1pe10.2))

continue

write(2,53)

format(/’Score matrix S:’/)

do 55 i=1,n
write(2,50) (s(i,j),j=1,n+1)

continue

do 57 i=1i,n
s2(i)=p(i,n+1)*s(i,n+1)

do 57 j=1,n
s2(i)=s2(1)+p(i,j)*s(1i,3)

continue

write(2,60) k

format(/'# simulations per iteration per state:’,i4)

calculate exact solution

do 62 i=i,n
do 63 j=i,n

b(i,j)=-p(i,3)
continue

b(i,1)=b(i,i)+1.

e(i)=s2(1i)
continue
call rsolve(n,b,e,sing)
write(2,64)
format(/’exact solution:’)
write(2,49)(e(i),i=1,n)
write(2,70)
format(/’initial guess at exp scores:’)
vrite(2,49) (score(i),i=1,n)
write(2,80)
format(/’iteration’,5x,’expected score’,10x,’sd’)

run the algorithm

do 90 m=1,it
call iteration(n,k,p,s,score,var)
if(m.ne.1) then
sd=beta2*oldvar+alpha2*var
oldvar=sd
sd=dsqrt(sd)
do 95 1=1,n
score(l)=alpha*score(l)+beta*oldscore(l)
oldscore(l)=score(l)



APPENDIX B. FORTRAN CODE FOR ALGORITHM 3.1 102

95 continue
else
oldvar=var
sd=dsqrt (var)
do 97 1=1i,n
oldscore(l)=score(l)
97 continue
end if
write(2,140) m,score(1),sd
do 150 1=2,n
write(2,145) score(l)
150 continue
write(3,200) score(l)-e(1),sd,nhit(1)
200 format(2(1pel0.2),1i4)
145 format(13x,£f15.6)
140 format(/i6,7x,£f15.6,5x,1pe11.3)
90 continue
end
c

c***************************#*******t**************
subroutine iteration{n,k,p,s,score,var)

c
¢ performs k simulations of MC with trans. matrix p
¢ n is # of states, s is the payoff
¢ vector. estimates of expected score are given in score.
¢ var is sample variance of estimator for score(1).
c
¢ k runs are run starting from each state for a total of
¢ nk runs. Information is used to estimate expected score
¢ for every state that gets hit in the rum.
¢ SMP says that’s legitimate
3 e e e 0 3 20 30 500 30 o0 2 202 2003 o0 oK 20 a6 e 00 o6 30 20 0k A e ok a0 3 ke a8 20 2 e KR ok 3R 2K 3 3 3 2 3 3 ok oK 3 3 ok 3k K ok
c
implicit double precision(a-h,o-z)
common/ibuff/nhit
double precision p(100,101),q(100,101),r(100),s(100,101)
double precision score(100),var,score2(10000),dk
real x
integer n,k,i,ix,nhit(100),nh
logical hit(100)
data ix/27928/
dk=dble(k)
c
c nhit(.) keeps track of how many runs in this iteration have
c hit the particular state
c

do 2 i=1,10000
score2(i)=0.40
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2 continue
call import(m,p,q,s,score)
do 5 1=1,n
score(l)=0.
nhit(1)=0
5 continue
do 10 1istart=1,n

c run k simulations starting in state istart

do 10 ii=1,k
nh=nhit(1)

r(l) represents the R-N deriv. between p and q
starting from when chain 1st hit state 1 .

0O 000

do 15 l1l=1,n
r(l)=1.
5 continue

hit(l) keeps track of whether this particular
run has ever hit state 1

0O 000«

nhit(istart)=nhit(istart)+1
do 17 1=1i,n
hit(l)=.false.
17 continue
hit(istart)=.true.
i=istart
do while (i.le.n)

state n+l corresponds to absorption
now in state i. choose next state j according to q

0oO0o0a0

j=1

x=rangen(ix)

do while ((x.gt.q(i,j)).and.(j.le.n))
x=x-q(i,j)
J=j+1

end do

0

update scores for all states that have been hit

do 30 1=1,n
if(hit(1l)) then
r(L)=r(1)*p(i,j)/q(i,j)
score(l)=score(l)+s(i,j)*r(1)
end if
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0O0000O0

o000

O000 D00
o

(4]
o

60

continue

score2(.) keeps track of all scores from state
#1 so that the sd may be calculated later from
a 2-pass algorithm

nh=nhit (1)
if((hit(1)) .and.(nh.le.10000))

& score2(nh)=score2(nh)+s(i,j)*r(1)
i=j

state j has now been hit

if((.not.(hit(j))).and.(j.le.n)) then
nhit(j)=nhit(j)+1
hit(j)=.true.

endif

if j.ne.n+l repeat!
end do
ii-th simulation is tinished (particle has been absorbed)
continue

simulations for this iteration are over. normalize score
estimates and calculate sd

do 50 1=1,n
score(l)=score(l)/dfloat(nhit(1))

coatinue

var=0.40

do 60 ii=1,nh
var=var+(score2(ii)-score(1))**2

continue

if (nh.gt.1) var=var/dfloat(nh-1)

return

end
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R AR
subroutine import(a,p,q,s,score)
c
c computes importance probabilities q
e 3 200 2 3 300 20 o 30 00 300 20 30 2 3¢ e 3k 2k 30 e ok 30 30 3 30 20 ke e a0 206 20 e K K 3 e o K K ok
c
implicit double precision(a-h,o-2z)
double precision q(100,101),p(100,101),total
double precision score(100),s(100,101)
integer n,1,j
do 5 i=1,n
total=0.d0
do 10 j=1,n+1
q(i,j)=p(i,j)*(s(i,j)+score(j))
total=total+q(i,j)
10 continue
do 20 j=1,n+1
q(1,j)=q(i,j)/total

20 continue

5 continue
return
end

c

€ 3 3 3 3 e 3 308 28 ok o 302 26K 3 3 ke e e 202 30K 3 ok o8 20 30 ok oK ke e ol ok
function rangen(ix)
c

¢ uniform(0,1) random num)er
(C M 30 308 2je 3je 300 308 2je 24e 2 e e ot o e e ofe e 20k e aje K Kol Y K o o

c
integer a,p,ix,b15,b16,xhi,xalo,leftlo,fhi,k

data a/16807/, b15/32768/, b16/65536/, p/2147483647/

xhi=ix/b16

xalo=(ix-xhi*b16)*a

leftlo=xalo/b16

fhi=xhixa+leftlo

k=fhi/b15
ix'(((xalo-leftlo*bls)-p)+(fhi-k*biS)*b16)+k
if (ix .1t. 0) ixs=ix+p
rangen=float(ix)*4.656612875e-10

return

end

105
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3 e e a0 200 20 2 e 20 20 e 2 2 e a0 e 3 o e o0 2 e o 6 20 o e a0 e e e e e o ok o ol o e e o

00000000

35

subroutine lu(m,b,p,sing)

does lu facorization of matrix b

stores u in upper half, 1 in lover half
p is the permutation factors

m is dim of b

sing true if matrix is singular

200200 300 20 e o0 308 20 34 30 3 30 200 200 3 20k 24 o 3 2 a0 a0 e e a0 300 2 3 e o0 3 ok ok e e ol e e ok 2 o o

implicit double precision(a-h,o0-z)

double precision bnorm,sum,temp,b(100,100)
double precision pres,xmax

integer ipivot,p(100),m

logical sing

sing=.false.

pres=1.e-10

calculate norm of b

bnorm=0.
do 10 j=1i,m
sum=0.
do 20 i=i,m
sum=sum+abs(b(i,j))
continue
if(sum.gt.xnorm) xnorm=sum
continue

do pivoting
do 30 j=1,m
find row with largest abs val in jth col

xmax=0.
do 35 k=j,m
if(abs(b(k,j)).gt.xmax) then
xmax=abs(b(k,j))
ipivot=k
end if
continue
if (abs(b(ipivot,j)).le.pres) then
sing=.true.
write(2,70)
goto 80
end if
p(j)=ipivot
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if(ipivot.eq.j) goto 50

c
c switch rows j and ipivot
c
do 40 k=j,m
temp=b(j,k)
b(j,k)=b(ipivot, k)
b(ipivot,k)=temp
40 continue
c
c clear jth col below (j,j)th elem.
c store L factors below diagonal
c
50 do 60 i=j+i,m
b(i,j)=b(i,3)/b(j,j)
do 60 k=j+1,m
b(i,k)=b(i,k)-b(i,j)*b{j,k)
60 continue
if(abs(b(m,m)).le.pres) then
sing=.true.
write(2,70)
end if
30 continue
70 format ('MATRIX IS SINGULAR’)
80 return
end
c

(32 200 3k e 2 e e ade 2 afe age 30C 3k afe e 20 3 o 3 3 e a0 30 o 0k 200 20 3 a0 e ke 30 e afe ok o0 e ok o
subroutine rsolve(m,a,b,sing)

c
c solves ax=b puts answer in b
c sing is true if a is singular

€ 3300k 20k 20 e 200 o0 e 20 ofe R 30K 3 o 308 o afe 206 20 a0 a0 a6 e 200 o 30 3R 3 e o 308 0 e 38 0K e

c
implicit double precision(a-h,o-2z)
double precision a(100,100),b(100),temp
integer m,p(100)
logical sing
call lu(m,a,p,sing)

forward elimination

0

if (.not.(sing)) then
do 10 j=i,m-1
temp=b(j)
b(j)=b(p(j))
b(p(j))=temp
do 20 k=j+1,m
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20
10

30

b(k)=b(k)-a(k,j)*b(j)
continue
continue

backward substution

do 30 j=m,1,-1
b(j)=b(j)/a(j,j)

do 30 k=1,j-1
b(k)=b(k)-a(k,j)*b(j)

continue

end if

return

end
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