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Abstract

This dissertation studies methods for estimating extremely small probabilities by

._Ionte Carlo simuiation. Problems in radiation transport typically involve estimating

very rare events or the expected value of a random variable which is with overwhelm-

ing probability equal to zero. These problems often have high dimensional state

spaces and irregular geometries so that analytic solutions are not possible. Monte

Carlo simulation must be used to estimate the radiation dosage being transported to

a particular location. If the area is well shielded the probability of any one particu-

lar particle getting through is very small. Because of the large number of particles

involv,ed, even a tiny fraction penetrating the shield may represent an unacceptable

level of radiation. It therefore becomes critical to be able to accurately estimate this

extremely small probability.

Importance sampling is a well known technique for improving the efficiency of rare

event calculations. Here. a new set of probabilities is used in the simulation runs.

The results are multiplied by the likelihood ratio between the true and simulated

probabilities so as to keep our estimator unbiased. The variance of the resulting

estimator is very sensitive to which new set of transition probabilities are chosen. It

is shown that a zero variance estimator does exist, but that its computation requires

exact knowledge of the solution.

A simple random walk with an associated killing model for the scatter of neutrons

is introduced. Large deviation results for optimal importance sampling in random
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walks are extended to the case where killing is present. An adaptive "learning"

algorithm for implementing importance sampling is given for more general Markov

chain models of neutron scatter. For finite state spaces this algorithm is shown to

give, with probability one, a sequence of estimates converging exponentially fast to

the true solution.

In the final chapter, an attempt to generalize this algorithm to a continuous state

space is made. This involves partitioning the space into a finite number of cells. There

is a tradeoff between additional computation per iteration and variance reduction

per iteration that arises in determining the optimal grid size. which require more

work. but achieve a greater variance reduction. All versions of this algorithm can

be thought of as a compromise between deterministic and ,Monte Carlo methods,

capturing advantages of both techniques.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
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Chapter 1

Introduction

Problems in radiation transport often involve estimating extremely small proba-

bilities or the expected value of a random variable which is with overwhelming prob-

abilitv equal to zero. High dimensional state spaces and irregular geometries make

the problems complex enough to require Monte Carlo simulation for their solution.

Ordinary simulation for such rare events is typically insufficient to produce reliable

estimates in a reasonable amount of computer time.

Importance sampling is one technique which can dramatically improve the effi-

ciency of our calculations (see Glynn & Iglehart [9]). Here the transition probabilities

for the path of the particle are changed in the simulation. The result is multiplied by

the likelihood ratio between the true and simulated probabilities in order to keep our

estimator unbiased. The variance of the resulting estimator depends heavily on how

we choose our new set of transition probabilities. A good choice can give us a substan-

tial variance reduction while a poor choice can increase the variance of our estimator.

This dissertation studies methods for making that choice so that the variance of our

estimator is made as small as possible.
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1.1 Radiation Transport

Suppose we have a neutron emitter at a known site and wish to predict the

radiation dosage transported to a particular location. A neutron leaving the emitter

will travel a random distance before colliding with a molecule. Upon collision, it may

be absorbed with a certain probability, or it may scatter in a random direction with

a random chan_e in its energy level. This continues until the neutron is absorbed.

Vv'eassume that interactions between neutrons are negligible so that we may sim-

ulate their paths one at a time. The radiation dosage at our target location will be

the rate at which the source is emitting neutrons multiplied by the expected eneigy

delivered to the target per neutron leaving the source.

The probabilistic mechanism for the scatter of the neutron is assumed to be known

from the theory of physics (see Lux & Koblinger [13] and Lewis & Miller [12]). Its

path may be modelled as a Markov chain provided the state space contains enough

information on time. location, velocity, and energy level.

Figure 1.1 shows a two dimensional version of a simple transport problem. Suppose

we have a radioactive source inside a nuclear reactor. We want to shield off a control

room so that operators will not be exposed to an unacceptable level of radiation.

The arrows show a potential path a particle may take to introduce radiation into

our "'protected" area. Realistic problems are complicated by the irregular geometries

within the reactors: machinery, bending pipes, air ducts, etc.

The probability of reaching the target location is very small for any one particular

neutron leaving the source. In order for our particle to score, or hit the target, it must

penetrate the lead shield, leave the shield at an angle in the general direction of the

control room, avoid being absorbed or deflected away from the control room by the

pipe. penetrate the cement wall. and scatter off the wall in the direction necessary

to reach the target. Because of the large number of neutrons being emitted by the
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control room

ilil i

cement_

source

Figure 1.1' A sample transport problem
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source, some will reach the target• To predict the amount of radiation at the target

we must be able to accurately estimate the expected energy delivered to the target

by a single neutron leaving the source.

These types of transport problems are of gre_tt interest in reactor design• Ap-

plications include reactor safety, shielding problems, criticality safety, and nuclear

safeguards. Transport problems also arise in oil well logging where a nuclear source is

placed in a borehole along with a detector. By observing how the radiation is trans-

ported from the source to the detector, inferences can be made about the geology

surrounding the borehole (see Ullo [24]).

Deterministic methods of solution are difficult because of the high dimension of the

state space. The problem may require as many as seven dimensions (three for position,

three for velocity, and one for time). To solve deterministically, it is necessary to

approximate the continuous state space with a finite number of cells. The number of

cells required, and hence the amount of work needed for solution, grows rapidly as

• the partition becomes finer and finer.

The problem is further complicated by a very erratic probability transistion kernel.

Figure 1.2 shows the cross section of iron as a function of energy. The cross section

represents the instantaneous hazard rate for a collision within an iron medium. We

can see that a very slight change in the particle's energy level can change the collision

probability by orders of magnitude. Thus. for the discrete version of the problem to

closely resemble the continuous problem, the partition must be very fine. In seven

dimensions, this requires an excessive number of cells.

Monte Carlo simulation is an alternate method of solution that does not suffer from

the curse of dimensionality. The simulation can be done directly in the continuous

space avoiding the need for a discrete approximation. By the central limit theorem,

we know that the acc_lracy of our estimator grows as the square root of the amount

of work done. This rate does not depend on the dimension of the problem so that
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Figure 1.2: Nuclear cross sections of iron at various energy levels.
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.Xlonte Carlo may be superior in high dimensional state spaces. However. without

methods of variance reduction, simulation would be impractical to estimate such

small probabilities.

A great deal of effort has been made to develop methods of efficient simulation of

transport problems. The problem is discussed frequently in the nuclear engineering

literature. Booth [4]. [51. & [6]. Troubetzkoy [23]. and Cramer et al [S] are good

examples. Much progress has been made towards creating programs that can give

accurate solutions to realistic problems (see [14]). but these problems are difficult

enough so that more efficient methods are still being sought.

1.2 Importance Sampling

Suppose we have a probability space (_..T', P) and a random variable X defined

on that space. We wish to use simulation to estimate the expected value of that

random variable, EPX. If we choose a probability measure, Q. on that space such

that Q >> P (ie Q does not assign probability zero to an event having positive

probability under P), we may wish to perform the simulation under Q instead of the

"'true" probability measure P. By multiplying the random variable by the likelihood

ratio between P and Q, we obtain an unbiased estimator for the expected value of X

under P. That is.

dR .X) (1.1)EPX = E Q (-_

which is the result of the well known Radon-Nikodym theorem (see Theorem 32.2 of

Billingsley [1].

In _ransport problems. F_is the set of all possible paths a particle can take leaving

the source. The random variable X is the amount of energy delivered to the target

(which is zero when the particle fails to reach the target). The measure P represents

the true probabilities for the scatter of the particle which is assumed to be known
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from the theory of physics, and the measure Q represents the probabilities for the

scatter of a simulated particle in our computer runs.

As an example, suppc3e we perform importance sampling on the problem in Figure

1.1. and our simulation run has produced the path indicated. Let us say a particle

following that path delivered 2 units of energy to the target. Supl:,'ose that in choosing

our simulation measure Q, we made that particular path 10 times as likely as it should

have been under the true probabilities P. \Ve then count that s',mulation run as having

delivered 2.1/6 = 0.2 units of energy to the target.

Under P. the particle has an extremely small chance of scoring (reaching our

target location). The idea of importance sampling is to choose Q in such a way so

that the particle is more likely to score. This way, we do not need an extreme number

of computer runs before our simulated particle hits the target. We can do this by

making collisions less likely to occur under Q, and making absorption less likely when

the particle does collide. When choosing the scattering angle, we can give more weight

to directions towards the target rather than awav from it.

To simply say that we want to change the probabilities so that the particle is more

likely to score is very vague. There are many ways this can be done and not all of

them will result in a variance reduction. We may decide, for example, to choose Q

, so that with very high probability the particle goes straight from source to target

without a single collision. While this would lead to our simulations producing many

scores in a reasonable amount of time, it will not necessarily give us a good estimator.

We need to be very careful about just exactly how we make the particle more likely

toscore.

Ideally,we would liketochooseQ tomake thevarianceofourestimatorassmall

aspossible.From (l.l)ifQ >> P then

dP dP dP X 2 dP 2 2vo o( x) - : x)
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If we choose Q by

d_.QQ .V. EPxI (1 2)clP '. •

then
dP '. _.

x) = .:E = E
and hence

,iP

__( _ .._)=o.
It should be ,_ointed out that l i.21 is cheatin__ a little bit since it does not satisfy

Q > P. Note ,.,_.atQ {.\" = 0} = 0 while P_.\" = 0} may be positive, in fact. {X = 0}

represents the neutron not reaching the target which has probability very close to one

under P. Nevertheless, it can be shown that ¢1.l) still holds so long as

dQ
d--fi > 0 on the event {,\" > 0}.

This is clearly satisfied by (1.2).

This choice _ives us a perfect estimator. Clearly this is not practical since the

formula for Q depends on the unknown quantity Em,Y. However. this can give us

some insight into how we want to go about choosing Q. .-ks an ileuristic, we can

think of EP,Y as a "sum" over all possible paths of the true prooabilitv of the path

multiplied by the energy that a particie following the path will deliver to the target.

expected energy delivered _ _ P{path}. Energy{path}. (1.3)
_il paths

Formula (1.21 essentially says to take dO, proportional to .\'. dP or equivalently,

take

Q{path} x P{path}. Energy{path}.

We should sampie each path in proportion to its contribution to the sum in (1.3), or

its importance.
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Let us consider the path mentioned before where the particle goes straight from

.,ource to target without a single collision. A particle following this path does not lose

energy in collisions and may deliver a high dose to the detector, but its probability

would typically be so small that its term in (1.3_ would be negligible. This path

would have very low importance and anv choice Q which gave it high probability

would likely leaci to an estimator with very high variance. A particularly" poor choice

oi Q can actuaiiv give our estimator infinite variance.

To sucessfulh" perform importance sampling we need to identify which paths have

"he high importance and adapt our simulations to favor those paras. For the high

dimensional transport problems this is not an easy task. We need to find the op-

timal tradeoff between paths with few collisions _and hence high energy) and low

probability, and paths with more collisions (less energy) but higher probability.

1.3 Summary

In Chapter '2. neutron scatter is modelled as a random walk with killing. While

th_:se models are much too simple to cover realistic transport problems, thev do pro-

vide exellent intuition into the trade-off between paths with many and few collisions.

A probability measure Q with the interpretation of "stretching" the distances between

collisions is considered. Unlike the measure given bv (1.2/ this one can be obtained

without prior knowledge of EPX. The theory of large deviations is used to prove this

choice of Q to be asymptotically optimal among a large class of potential probability

measures.

In Chapter 3. more general Markov chain models are considered for neutron scat-

ter. ['he problem is simplified by considering only finite state spaces. An algorithm is

presented which adaptively "learns" which paths are important and iterativelv modi-

ties the simulation probabilities in an attempt to converge to the ideal choice of (1.2).
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Because. the probabilities are continuously being changed, the algorithm avoids the

n-_ rate of convergence .#iven by lid simulations. The convergence rate is shown to

be exponential, paralleling deterministic methods of solution.

Various methods of extending the algorithm to continuous state spaces are dis-

cussed in Chapter 4. The algorithm needs to divide the state space into a finite

number cells givin._ it the flavor of deterministic methods. Indeed. the algorithm can

be viewed as a com_)romise between deterministic and ),Ionte Carlo methods. If we

:rv a very fine ciivision of the state space, our algorithm will suffer the same curse of

,iimensionalitv c_z"b,e (ieterministic metnods. However. even a coarse ,iivision of the

continuous space. .'.'nich would not suffice t'or deterministic soiutions, may provide a

large variance reauction so that simulation can provide good estimates in a reasonable

amount of time.



Chapter 2

A Random Walk Model

Instead of a general transport problem, let us consider a simple shielding prob-

lem where the particle is penetrating a homogenous solid. For example, suppose a

lead shield is placed directly in front of a neutron source. We are interested in the

probability that a given particle leaving the source passes completely through the

lead before it is absorbed.

A particle penetrates a random distance within the shield before it collides with

a molecule. If it is not absorbed, it travels another distance until the next collision.

This continues until the particle passes through the shield or is absorbed. Because

•.he shield is homogenous, we would expect the probability law for the inter-collision

distance to be independent of the previous collision site. It also seems reasonable

that the absorption probability would be independent of collision site. Thus, we

could model the path of the particle as an lid random walk with killing.

Let us assume that the shield's height and width are large compared to its depth.

We model these two dimensions as being essentially infinite so that we need only keep

track of the particle's depth. Note that the particle's depth is itself a one dimensional

iid random walk with killing.

In general, suppose we have a one dimensional random walker taking lid steps with

ll
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finite mean. After each step he survives with probability p > 0. and is killed with

probability 1 - ._. We wish to use importance sampling to estimate the probability

that the walker crosses some large level ._I > 0. corresponding to the edge of the

shieid, before he is killed.

To perform importance sampling we need to choose a new probability measure for

the step sizes used in the simulation. As we shall see in Section "2.2.there is only one

choice that can ._iveus reasonable results for very "'Large" values of .lI. corresponding

to "'rare events.

_iegmund 12" studies levei crossing probabilities for random walks in the context

of .,equentia[ testing. He introduces the idea of using ezponentzal twists of the original

distribution in importance sampling. Lehtonen and Nyrhinen ill' study the problem

mentioned here for a negative mean random walk without killing tp = 1). They

arrive at the same optimal distribution as does Siegmund [21]. but use a different,

asymptotic, notion of optimality and consider a wider class of potential distributions.

This chapter extends their results to the case of general 0 < p <_1. Note that due to

the killing, this is an interesting problem even when the step sizes have a non-negative

mean.

['he general setup for a random walk with killing and the use of importance

sampling is given in the next section. In Section '2.2 a new probability measure is

introduced and is shown to give minimal variarice asymptotically as M -- _x_. The

theory 'of large deviations is used to obtain a lower bound on the variance over the

entire class of eligible probability measures on the real line. The proposed probability

measure is shown to be unique in achieving this bound. The method of proof is analo-

gous to that given by Lehtonen and Nyrhinen [11}. An example using a simple model

of neutron scatter is provided in Section "2.3 to demonstrate the variance reduction

achieved by usin_ the optimal importance measure.
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2.1 Preliminaries

Let {X,},_l be lid random variables with common cdf F having finite mean.

They represent the distances travelled by the particle between collisions. Take S_ =

.V1 -,-'..- .\',. Let {Z,,}2'=l be lid Bernoulli (p) random variables independent ot"

{X,}_t. Define Tv = inf{n > 0" S, >_.._,I} and U = inf{n > 0" Z, = 0}. If Pis

the measure induced on path space. _i.e. the set of sequences {.V,. Z,}_l), then we

are interested in P{Tw < U}. That is. the probability that _he random walk crosses

3I before killin._ occurs.

To avoid trivial casea assume that F is not a unit mass so that P{.\'l = z} < 1

for all z E 7_. Let EP(.) denote expectation under P. Let _ denote the collection of

all cdf's G on the real line having positive mean such that G >> F. That is. G does

not assign probability zero to a set that has positive probability under F. Let G_

be the measure induced on path space by taking {.\'i }_t lid with cdf G instead of F.

Note that since G has a positi, e mean T v < _ with probability one under G _. By

Wald's likelihood ratio identity (see 5iegmund [21] Eq. (33_!

P{Tv < U} = EPP{T_.t < U'Tw} = EPp r'v ' !lT'it < vc} =

r,_ dF.

zc'*/ lI ). (2.1)
t--'--I

We can periorm importance sampling on this problem by choosing G E _ and

generating X1. X2,... lid under G until S,, >_.M for some value n. Taking TM to be

this value n. we can estimate P{T.w < U} by the random variable

}[u.o a,f ri_ dF= pr._. = _'(Xi)'

Equation i2.1/ shows that Y,f.c is an unbiased estimator for P{T:u < U} under

G"_. Note that by conditioning on Tw the actual realization of {Z,}_l becomes

irrelevant. This has the effect of removing the killing from the problem, multiplying

the "'weight" of the neutron by p at each step instead.
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We want to select G to minimize Vat( }i_fa) under G"_ in some asymptotic sense

_s ),I -- _. Since the mean of _i,f.a under G_ :s the same for all G _ g. this is

equivalent to minimizing
def "2

rltAI. G) = Ea_(_..ta).

2.2 Optimal Importance Sampling

Let cl01 = ioq{EPe =''\''} be the cumulant eenerating function ot' F. Define

and let 'Do denote its interior. ["or 0 E D. let F_ be the twmted cdf given by

dF,

Assume there exists a u: E Do ,"1(0. _c_ such that

' 1
c(w) = log- and c'(wj > 0. (2.2)

P

Note that

,iF.,., ,,_
"-_tz! = pe (2.3)

Take Q to be the measure on path space induced by taking (.V, }_l lid with cdf F_,

instead of F. This will turn out to be the optimal measure to use in importance

sampling.

The cdf F has mean c'(O) while F,,, has mean c'(w). For 0 E "r_°, c"(O) is the

variance of the cdf Fe. Because F is not a unit mass neither is F0. and so c"(0)

s strictly positive. It follows that c'(w) > c'(0) . Thus. unde_ Q the random walk

i ': }_ has a lari_er (positive_ drift and should cross the level ._I in a smaller number"" _ rl,o_O

of steps. These shorter paths have higher importance due to the killing. The more

._teos a path takes to cross the level M. the more times the random walk is vulnerable



CHAPTER 2. .-_RANDOM WALK MODEL 15

to killing• If we condition on the random walk under P having crossed a large level M

before killing occured, we would therefore expect it to have happened in a relatively

small number of large steps. This is exactly what happens under Q.

It will be shown that F,,.given by (2.3/represents just the right amount of "'stretch-

ing" of the inter-collision distances. Any less. and Q would be giving too much weight

to paths with many collisions. _Iore stretching would give too much weight to paths

with to few collisions. Note by t'2.2} the higher the killing, the higher the value of w

and hence the more the drift of the random walk gets stretched under Q.

Now EQ.\'I = (, w_ > 0 and by 12.31 F.,. >> F. Thus F,,, _ d and we may choose

G = F,_. In this case G '¢ = Q so 1"2.1}becomes

Tw( 1 -_2",) E Q ,,..5-_,,P{T.w < t'}= E Qpr.,_, l'I -" e - e- (2.4)
.=1 P

Theorem 2.1 lira _ log P{TM < _'} ---w.M--_

Proof: Since w > 0 and Sr_ > M. (2.4) implies:

1
limsup -;--;log P{Tst < L'} < -w. (_.5).-no ._ -

Let c'(y) = supe 8y - c(0) be the convex duat of c(.) (see Bucklew iT] or Rocka_ell_r

1191) Let y > max (O, EPXI) and take .V= _._tl_ 1 where in] is the greatest integer• " L';'J'

<e.

Then

S:v>,j}P{TM< '_'}>_p".P{S.,.>_M} >_p_.P{-_ _
and so

.V 1 S,v
1 IogP{T_ <C'} >--logp+ logP{ >.Ti - .u Yi 7 - yt =

.Ti ' logp. .-fi . .-#lo9,o{.-7->__yr.
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By Cramer's theorem Isee Bucklew [7], pp. 9-10) we have

lira inf I . i I
w-_ .'_ P{T.v, < t } > -. logp - -. c'iy). (2.61Y Y

Set y = c'(w,. Then sup00y -c(10) is achieved at 0 = w so that

1
c'(y) - wy - c(w) = wy - log- = wy + logp.

P

Recall c'(wJ > c'q01 = EP.V,. B.v assumption c'(wJ > 0 so we can plug y = d(w)

into f2.6/to __et

i I i

]im.xt_..in.,_ /og P {T_t. < ['} -y>-. log p - -.y [toy -, log Pi = -u.,

which together with (2.5) establishes the theorem. |

The result ofTheorem 2.1 is rather weak. It provides oniy the exponential rate

at which P{Ttl < t;} tends to zero as M -- oo. Indeed. Theorem 2.3 given later in

this section is a stronger result. Nevertheless. Theorem "2.1 is good enough to show

that F,, has the best asymptotic variance over the class _. The main result of this

chapter is given in the next theorem.

' log M. G) > -'_ _'zth equality iffTheorem 2.2 For all cdf's G E G, lim inf _ r/_ w
._¢f _,m, ¢'_O _

G = F_. Furthermore. lim _ log q (M. F_) = -2w.M'.-oo

Proof: Since t'ar_}':_) >_0 we have rt(M.G) >_[P{T,_r < L'}]2 and hence by

Theorem '2.1"

lim inf 1
_t-_ .'_ log rt_3,I. G) >_-2w.

Note that when G = F.,.. G_ = Q so that _(M.F,_.) = EQe -''_sr. <_e -2_M Thus

1
lim log M."7"7, ,7( F_,) = -2w.

.I,1
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To show uniqueness, suppose we have G E _ with

lira inf 1
._t-.,,o _ log rl , ._I. G) = -2w.

Let K be a measure on the real line defined bv

dK(x)=p: dF ( dF ):• -'-_',z_dF(xl = p.-_(x) dG(x)

and note that

T_I ,

,-,i-. =:"+1-I(p f,l-_t .\', / = dKCxt) dKix2_'..dK(xr.,f).
.._[ ', d

_.',4 < ,x.

Let

da ['e_:_dK(,:.,,._O) - log z)

and c_.(y) = supq Oy- cs-(O) be its convex dual. (If c_¢(.) is identically -r.m. take c_.(.)

to be identically -_.)

Since c,,. is not necesarily finite anywhere construct a truncated measure as follows.

Let B > 0 and define L by

dL r ix ,iF }d--K:(_)= tA(_) wh_re .4= J_" t<_B _nd ,_. z, <_B .
def

Then we have c.tO) =. togfA e:_':dK(x) < c:..aO). Note that c,t., is finite everywhere.

Take c'L(y) = supe0y- c,(0) and let ¢" be the minimal closed interval such that

P{Xt E (} = i. Since F is not a unit mass ¢,"is not a singleton set and so its interior,

_-0.is not empty. Let x > 0 and take

def /q_(M.G) _ dK(x_j'"dK(xrMj.
•'r.w<M z}

Note that rl_(M. G) <. q (M. G). Lehtonen and Nyrhinen [11] prove the following two

results (Lemmas 3 &: 4. Section 3)'

If y e :0 ._ [i _cl then timinf
1 i

!! o

x" w-.,¢ .'_ log r/_(M. G) >__ '] c" (y).
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and

lim c:(OI = c_.(0_.

Now for any y > 0 we can find an z > 0 large enough so that y -2 [_. zc j. Thus. the

two results can be combined to give:

If y_ -o _ (0 _c_ then liminf 1 1.+ . -_,logrl(.Xl.G'i >_--.c;.(y). (2.7)
_[.-=,.':_ .}_J .l]

By Jensens inequalitv

• /,'_,.._201= ;,m [ l._e _:,tF ' : dF :... ,. ,-_. a', ) dG(zl >_log( pe _-_txJdG(z,.) = 2cqOl a- 21ogp

(2.S)

and hence for all v:

c[.(y)=sup20_t-c,,._20)<_sup20._-2cfO)-21ogp=2c'(y_-2logp. (2.9)

By assumption c'(w) > 0. Now c'[w) = f z dF,,(z) = f z pc-"': dF(z) E (o. So we

can plug y = c'(w) into _2.71 which together with (2.9) gives:

lim inf I 1 1
._t-,.-,o .-_ l°9771"lI'G) >----.c_:(y) >_--. , 2c'(y) - 2logp_ = -'2w.y q

trecall that y = c'[w) implies c'(y) = wy _, logp).

By supposition liminf _ log r/iM. G) = -2w so _2.91 must be an equality when

y = c'(w). For y = c'lw), we know that supoOy- c(0) is achieved at 0 = w, and

hence (2.81 must be an equality when 0 = w. But in order for Jensen's inequality in

2.8) to be an equality for 0 = w. we must have

dF

e"= . -d--_(zi = constant Ga.e. and hence Fa.e. iG >> F).

That; is. we must have _(zt = pe -_'_ Fa.e. so that G = F.,.. This establishes

uniqueness which completes the proof. |
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This result clearly establishes F,_ as the optimal measure to use in importance

sampling for "large" values of 31. If G is an,," other eligible probability measure on

:he real line then

lim inf I t'ar6,, (}iwa _ > lim inf 1 q qM. G'_
.,,-,o log J _ log t.CY.,:t>0.

The penalty for using anything other than F.,. in importance sampling grows expo-

nentiaUv in M.

\Vith a more careful analysis we can describe the relative error when using F_,. If

we add the conoition that /'- is non-arithmetic we get a result which is stronger than

Theorem '2.1.

Theorem 2.3 Suppose F is a non-arithmetic distribution. Then there exist finite

positive constants Ct and C2 such that P{ Txt < U} ,,, Cl " e -'_''_f and r1(M. F_) _,

C2 " e -2wM.

Proof: From i2.41 we see that

P{T_t < _'} = e-.,.M EQe-,.(sr.-_t)

and an analogous calculation shows

rl(.ll.F,_, ) = e -2wM EQe-2_Sr,t-._tl

Fix y > 0 and let r+ = inf{n > 0" S, > 0} denote the time of the first ascending

ladder. Recall that EoXI = c'(w) > 0 so that Q{r+ < _c} = 1 and EQs,+ < _. By

Corollary 8.33 of Siegmund [99]_....

lira Q{Sr,-M>y}= [_ Q {S'" >m}dm
._t--_ " E Q ,_q_..

.Note that lim Q{Er_ -3I > y} is a proper survival function in y. That is, under
._4 .-,,00

Q the
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random variables ST,, -._,I converge in distribution as M -- _c. By the bounded

convergence theorem there exist positive constants _less than one, C, and C2 such

that

lim E_e-'qsr_' -'_'tl = Cl and lira EOe-a_'Isr,, -_tl = C_..
.%/-...'_ 34 --_

The theorem follows. I

Ifwe take tne relative error of our estimator to be the ratio of the standard

,ieviation to the _robabilitv being estimated then Theorem '2.3 shows us that

:__o_;,_.. j]; c.o_ c;_]_iim -- • "
_I-_ P {T_, < L'} C,

By Theorem _'.'2the relative error grows exponentially in ._,Ifor any other measure

G. Thus. F_, is the only choice where the standard deviation of our estimator tends

to zero as quickiy as P{Tw < U} does when M --- co. No other cdf G E _ can

give reasonable estimators for "'large" values of M. Similar results follow when F is

arithmetic.

.Note we can interpret F,,, as the asymptotic distribution of the step sizes .k'i

conditional on ',T._t < U}. Fix values x, ..... x,. Then for "'!ar._e'" vaiues of M we

have the followin_ heuristic:

P{X, E dz,,....X, E dz,,. _" >_n} . P{T._, < U {X, E dz,,....X., E dz.,, U >_n} _.
1,1

I'I p P(X, s dx,}• c,._-,,..,,',,-E_-,_

Dividing both sides bv P {T.w < U} _ C1 • e-_'M gives:

P {X, E dx,,.....V,, _ dx,, ; 7"._t< _'} ,-_

l:Ip_-'_' P(X, s d_,} = Q(X, _-d_,......V, s d_ 1.
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Conditional on {TM < U}. the path of {X, } looks like an lid random walk under

Q. We are essentially" generating the sampie paths under their distribution conditional

on the event we wish to estimate.

2.3 An Example

Consider the following two dimensionai model of neutron scatter. Figure '2.1

-:hows a semi-innnite solid occupyin_ the re_ion {ix. y) "re < 31t in the z-y plane.

.k neutron collides with a moiecuie at the origin. Upon collision it is absorbed with

_robabilitv ½. I:"the particle is not absorbed, it scatters in a random uniibrm(0,2:r)

direction and travels a random exponential (1) distance until the next collision. This

continues until the neutron is either absorbed or passes through the solid.

We want to use simulation to estimate the probability of a sucessful penetration.

That is. the probability the neutron crosses the line y = 3I before it is absorbed.

This is similar to the model problem discussed by Murthv and Indira [15]. In their

problem there are onlv two possible scattering directions. "'forward" and "'backward".

Here the scattering is taken uniformly over all possible directions in the x-y plane.

Note that the distance travelled in the y direction between collisions is given by

the random variable

.V = D. sin o

where D is an exponential (1) random distance between collisions, and o is a uniform (0, 2,_)

angle independent of D.

Thus. the total penetration in the y direction is itself a one dimensional random

walk with lid increments. We want to know the probability that the random walk

will cross the level M before killing (absorptionl occurs.
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Jy

Edge of solid : Line y=M
i i

FiRure 2.1: A two dimensional random walk model of neutron scatter. The distance.

D. betweencollisionsisexponential(1I.and thescatteringaneie,o.isuniform(0.2r).
Upon collision,theparticleisabsorbedwithprobability0.5.The distancetraveled

inthey directionbetweencollisionsisgivenby D. sino.
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Now for z > 0

fo" 1 fo'i2 -r } d°"tl exp{-_z }do=- exp{-___inoP {.V > z } = '2:r sin o

Since the probability law of X is symmetric about 0. we see that X has density

t
f,_/2 t .exp{ lzt }de for z_4. (of0)Jo sine_ sino

Faking p = '. equation _'2.'21becomes

- _ • , -ino'exp{ sino

Exponentiatin_ both sides, switching the order of integration, and evaluating the

integral with respect to z gives the equation

t
f-/2 1 1 d_ = "_, a0 l+wsino ].-wsino

which may be solved numerically to give w _ 0.86602540378.

By (2.3) X has the twisted density

e.wz

_-/2 1 exp{ 'zl } do for ,v ,-: P_ (2.11)2r, sin o .,in o

under the Q measure.

To perform the importance sampling, we generate .\'1, .\'2 .... iid with the twisted

densi.ty (2.11) until S,_ = .\'t "+".'/'2 -r...-'-.\',, >_M for some n. Faking T.v to be this

value n. we estimate our probability of complete penetration. P{Tv < ('}, by

}'_,_,,r,_= e - w'_'rM .

Note that Ec_.Y,_= c'(w) > 0 for this choice of w and so with probability one there

will eventually be an n such that S. > M.

Random variates with the density given in ('2.11) were obtained using the acceptance-

rejection method (see Algorithm 3.4 of Ripley [18]) with a mixture of the true density
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estimate for , relative error
._I P{TsI </.') orror reduction
20 5.72 E.09 0.045 'J.2S E-u3
40 1.58 E-16 0.046 5.44 E-07
60 J,.99 E.24 0.046 3.06 E-f1
_0 1.67 E-31 0.043 1.82 E-i5

Table '2.1' .'imutation results, i000 runs using importance sampling with F,,..

'2.:0) and an e::oonentiai with mean 1.13i -l One thousan0 runs were made at var-

ious levels of ._I' "i_e resuits are given in Table '2.1. Relative error is the ratio of

:he standard error of the estimate to the estimate. The finai column compares the

standard errors of ordinary simulation i binomial) and our importance sampling. Note

that as Theorem '2.2 would predict, the error reduction appears to be growing expo-

nentially in M. As Theorem 2.3 would predict, the relative error does not seem to

varv with M.

It should be pointed out that the acceptance-rejection algorithm needs to evaluate

the integral ('2.1i) to produce the random variates. Simpson's ruie was used with 103

intervals. So generating a random variate with density ('2.11 _ is on the order of i03

times as much work as generating a ranciom variate with the _rue density (2.10).

From Table 1 we can see that for M > 20 the error reduction more than makes up

for the extra work.

2.4 Adding Energy to the Model

While the random walk model of this chapter is admittedly simplistic, we can

add some realism by considering the particle's energy level. That is. instead of merely

calculating the orobabilitv of penetration. -re can calculate the expected energy of

a particle after having penetrated the shield. The energy of a particle that gets
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absorbed (killedi is counted as zero.

We now interoret the quantity p as the exr_ected percentage of the particle's

energy it retains after a collision. Thus. p is a measure of elasticity for the collisions

between the neutron and the shielding medium. Here. instead of being a Bernoulli

random variable. Z,, is the percentage of energy retained in the n:'_collision. Note that

{Z,, = O}still represents absorption after the n:h collision. So instead of P{T_f < (.'},

we are now interested in
T',,t

EP rI Z,
.m|

,.,.nichrepresents tae energy of a particle after having penetrated the shield. If we

stiil assume that _Z,}_I is independent of {-\',}_l then equation ,'2.1} holds with

P!Tst < L.'} repiaced by E p 1-I,_ Z,. The same optimality results go through when

we choose w by t'2.2}.

The choice of the stretching parameter, u:. can now be interpreted as a trade-

off between the high energy low probability paths with few collisions, and the lower
Q

energy higher probability paths with many collisions. For the case considered in this

chapter, lid inter-collision distances, and lid energy losses, the optimal importance

scheme may be calculated exactly. This does not achieve the theoretical ideal of

; 1.21. but is the best that can be done if we restrict {-\',}_l to be iid under Q. More

general models are considered in the next chapter.



Chapter 3

Markov Chain Models

In realistic transport problems, there are many different types of solid barriers,

the probability of absorption and the distribution for the scattering angle depend on

the position and energy of the particle, and we need to keep track of more than just the

particle's position in one dimension. The path of the particle, recorded at its collision

sites, is modelled as a discrete time Markov chain. As mentioned in Chapter 1, the

state space must contain sufficient information on the position, velocity, and energy of

"he particle. \Ve oerform importance sampling on this problem by generating sample

paths according to a new set of transition probabilities and muitiplying the result by

:he likelihood ratio between the true and simulated probabilities.

If we choose a good set of new transition probabilities, or importance scheme, we

can get a substantial reduction in variance. In fact. it is well known that zero variance

importance schemes exist for linear Monte Carlo transport problems i see Booth [6]).

Unfortunately, the zero variance scheme depends on the expected score from each

state, which if known would make Monte Carlo simulation unnecessary.

We can take a "'guess" at the expected scores to compute the importance scheme.

[f our guess is close to the true expectation we hope that our importance scheme has

close to zero variance. Simulation output can be used to update our "._uess'" at the

26
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expected scores and hopefully produce a better importance scheme. This suggests

a learning technique where the importance scheme is continuailv being updated by

:he results of the simulation. Such learning techniques have been studied in the past

,see Booth [2]. :4}. & [5}. and Troubetzkoy [23]). Because the imoortance scheme is

continually being updated, lhopefully improved} we may expect to obtain better than

:he n-_ rate of convergence given by lid simulation.

The behavior of such an adaptive learning algorithm on a finite state problem

s analyzed in :his chapter. Booth '._1• !.: _jives empirical resuits for a simple two state

:_roblem which _u_gest that the convergence is exponential, ttere a proof is given that

•_e convergence is indeed exponential for a finite state problem.

Halton [10i describes two similar algorithms. In one algorithm, the importance

.,cheme is chosen by the user and remains constant throughout the algorithm. He

proves that this algorithm coverges exponentially fast. but the particular rate of

exponential convergence depends on the importance scheme seiected. The second

aigorithm can be made to converge as fast as an arbitrary polynomial in the number

of iterations, but the amount of work per iteration is growing as a polynomial. For

"he algorithm considered here. the user supplies an initial "guess" at the expected

.,cores from which the first importance scheme is computed. The amount of work

required per iteration is constant.

In Section 3.2 a general finite state problem is described. Section 3.3 describes

importance sampling for these problems and derives the variance associated with

using an importance scheme. The algorithm is presented in Section 3.4 and a proof

of its exponential rate of convergence is given in Section 3.5.



CHAPTER 3. .\IARKOV CHAIN MODELS 28

3.1 The Model

Consider a particle on a finite state .X.larkovchain {.V, }_¢=_,with transition matrix

P. At each state the particle may be subject to absorption. We assume that eventual

absorption is certain _i.e. tim P" = 0}. When the particle caanges state from i to
_ -,.,00

) a nonnegative score s,_ is incurred. T.vpically these scores are zero unless state j

corresponds to our target location. In this case..._,: is intended to denote the energy

delivered to that location by the particle. We allow an arbitrary nonnegative scoring

ruie for _eneralitv. Let A denote _he "'cemetarv". or absormion state. When the

particle is absorr)ed from state i a nonnegative score s,., is incurred. If we take r to

be the time oi adsorption then a particle's total score is given by

_" = Z "_x--_,x."

So for example, if a particle's path is: I --"2 --- 1 -- A the total score would be

$12 "+""_21 "b 81._.

def
We are interested in estimating g, = E[YIXo = z]. that is. the expected total

-.'core for a particle starting in state _. Let d be the number of states and take
.t

p,,, = i - v" p,: to be the probability of absorption directiv out of state Z. If we
j--!

condition on .\'i. the first transition, we see that

_,=:p,_._,__-_ p,. (_,,-__:). (3.1)
;=I

In matrix form. this can be written as # = a + P, where a, = P,a',s,_, -r _ pq.sq.
j=!

Since lim P" = 0. I- P is invertible and the system of d equations in d
n --,,,'JO

unknowns may be solved exacth'. Alternativeh,. the deterministic recursion

will converge to the true value, exponentially fast for any starting point u_o_. This
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suggests the existence of an analogous _[onte Carlo procedure which also converges

_xoonentiallv fast.

3.2 Importance Sampling on Markov Chains

Suppose that instead of simulating the particle under the true probabilites (p,j }
i

f

v'e choose new r_robabilities {q,:}. Each score is weighted by the likelihood ratio

between P and Q. On the event {r > n} set

/-,_= ]7" P_"°__-"--"_.
•"'_m q X, _ |. X,

\Ve must choose Q >> P (ie q,j > 0 whenever pi) > O. and q,,, > 0 whenever p,_ > O)

so that L,_ is well defined. Then our estimator becomes

Z: -.L_x__l.x. ' L.j
rL----I

It is easily shown that }Q has expectation p,, where i = X0 is the starting point of

the simulation.

Let t', = l'ar:}'Q, i.\'o = ti. We can derive _.. by conditioning_ on .\'!. the first

transistion. Note that on the event {.k'l = j }. we have }Q = "'--.;,,,;,, .- }_), where Y_

is the total weighted score of a particle starting in state j. By the NIarkov property

(1'E(YolX_ =j, Xo =i/= P'--A_.(s#+u:)and Var(YQI.'Q =j. Xo =i)= I_ .vj.
q# \qij]

The variance decomposition t'ar(}'_[,k'o) = Var[E(}'Q[.\'_, .\'o)] + E[_,'art YQIX_, Xo)]

_ives us:

.... . , iq'J ' ' _': =
". = qi,_" \ q,a ] . \ q,.i/ • \% /
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.

Z. ' Zp .s'..a' , rpT, 'IS,r: -- _:)2] V7 " PT'
qta _ 't,; , q,; "

Here we take 0 _0 = O.

Let

ft '' ' " P,t

q,a : qij "

takeO/O=O}. Define Rto be the matrix whose tt.j) _ element is __iven by

if % > 0"

%

[0 it" q,; =0.

Then in matrix form our equation becomes:

v = f _- Rv. (3.2)

We now show that v is the minimal solution to (3.21"

Theorem 3.1 v= * R"f.
rt=0

Proof: Note that any v satisfvin_ t3.21 aiso satisfies

_.--I

v = _ RJf -' R'_v
.' "U

so that _, = _ P,._f is the minimal solution to t.3.2).
n----'O

Take
"A'I2

_'= Z _,_,.x,L: . !,x..r_o.t{,>_}i.
d-'|

Note that }_ '_}has expectation #, under Q. but is unusable in practice since it depends

on the unknown vector ,. Let v}"_ = Vari}_) I.¥0 = i). Then using an analogous

argument as before we see that

v_) = f 4- Rv (_-t) n = 1.'2.....
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Bv induction
-.--1

vL_J= _ R:f.
"'-0

Now I,'o = lim }_"_ so by Fatous Lemma v < r" R"f. Since_, = r" R"f is_-'= - _='o _=-"o
the minimal solution to (3.2). the proof is complete. |

Note that when we choose

Dr, " I"'_.r, -- lt, i ]')t._ "'-_:._
q,: = " " and q,A = (3.3)

Pt-', "_"a -- 7"z V"'z-..=l P..t " '.',l -- _t J P..a'o,a -- --,=l ;,l " _.s,t -- #t )

•.re get

• '" PT, ._.s.j -/_: ,
ft _ "'_ " " '

P,a o,a :=i Pij'(-s,j--, #,) " _pia ",s,,,, '-'/=lPd'ta't--/at) -- #'_ --

+Ev,,. - - =o by
.;-'='l :--1

This choice of Q gives f = O and bv Theorem 3.1 v = O. We have a zero variance

importance scheme. However. this choice of Q depends on the unknown vector p.

3.3 A Learning Algorithm

For a vector/A in 7U we parallel (3.3) by taking

def Pt,a "_ta
q#(t_) act= p#. (s,jd+/_J) and qia(t'_) = _ •

Pin's,a "r _ pit" (sit + [zi) Pin "sin "r" _ Pil " (sit + _l)
1----1 /--1

Take Q(t_) to be the matrix whose (i,j)th element is q#(t_).

The idea of the algorithm is to simulate under Q(_) where/L represents our best

"'guess" at p. We will take t_ to be the estimate obtained from previous simulations.

but we must be careful to ensure that Q >> P. If s,: = 0 and we have/_: =Othen

q,j(_) = 0 even though pi: may be positive.
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Note that if there exists a 6 > 0 such that s, _>6 for all i then _, _>_ for all i. The

particle is assured of scoring at least 6 since it will eventuailv be absorbed. Since we

know that _, > _ we can take the maximum of 6 and our estimate without increasing

the error. This ensures that _, _>_ and hence Q(u} >> P throughout the algorithm.

If no such _ exists we can easily alter the problem by adding a _ > 0 to each

.._,. Since every particle gets absorbed exactly once. this just adds 6 to each #,. We

can subtract e from each _, to shift back to the original probiem. Without loss of

generality then. '._.ere exists a known 6 > 0 such that #, _>_ for all i.

Algorithm 3.1

Choose an inte_.er/_" and start with an initial guess _t0) > d 1. The algorithm is

defined inductively:

1. Suppose after m iterations the algorithm has produced an estimate h !'')

'2. For each state _ = 1.2 ..... d. run k independent simulations starting the particle

in state i. using Q(_t,_)_ as the transistion matrix•

3. Let r,_., be the absorption time for the -:_ simulation I " = _..... k'mstarting from

_,tare i. Take
'qrP'l8 I

r_----'l

where t.he {X, } and {L,,} are obtained from the z :'_ simulation starting from state i

(this dependence on - is suppressed to keep the notation managablel. Let

k
::|

Here. the notation is chosen to emphasize that the sample mean is based on k simu-

lation runs.
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4. Define/_'+_) by:

#, = max ,, . ¢ _ = 1.'2..... d. I
i
i

i

Remarks: 1. Since the probability law of _.,,,+l) depends only on /_t,,,). the se-

quence {/_(_}_=o is itself a _Iarkov process on _. It cteariv has the state u as

an absorbing state. Thus. a unit mass at 0 is an invariant measure/or this Markov

chain. Transition probabilities typically converge exponentially fast to the invariant

measure in Markov chains. If it can be shown this is the unique invariant measure

•.re may. therefore, expect {h '"_'} to converge exponentially fast to u..-k proof of this

!s given in the next section.

2. By construction./,(") >__51 and hence Q(/,t"*l >> P for all rn.

3. By taking the maximum of our estimate and 6 we introduce a bias. However. since

we have set up our problem to ensure #, >__ we know with probability one that
-Ira.l) t_-

4. This algorithm wastes information by not using paths starting from state _ to help

estimate _j for other states j. For example, suppose starting from state 1 we get the

path 1 --, '2 -. A. Then in addition to providing information about _ we can use

the path from the point it hit state '2 (i.e. '2 --. ,x) to help estimate p_. The strong

_Iarkov property says this has the same probability distribution as a particle started

in state 2. The proof given in the next section would also cover this improved version

which uses such information. The critical point is that at least k independent paths
.Im.ll

._tarting from state i are used in the estimator _,
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3.4 Exponential Convergence

We have made two assumptions about the problem:

Assumption 3.1. limP" = 0.
rt.-_OO

Assumption 3.2 There exists a 6 > 0 such that s, >_6 for every z see discussion in

Section 3.3 }.

The main result of this chapter is stated in the next theorem:

Theorem 3.2 ['ader the assumptzons .stated above there ezzsts aetermznistic con-

_.tants 0 > 0 and If .such that if .41gomthrn .3.i is run with k >_ If then with probability

one e " li' -  'jl - O as m -

Before giving the proof we need to derive some preliminary results. The critical

point when stud.ring this algorithm is how quickly the variance tends to zero as we

approach the perfect importance scheme. [.emma 3.1 shows that the variance is

locally bounded by a quadratic in the distance from the true mean _.

Notation: In Section 3.2 we defined the quantities R. f. anti v depending on our

choice of Q. Sow that our Q is a function of/_. we can define these quantities as

functions of h. Take R(/,) to be the matrix whose li.j) :_' element is given by

Pf'. if %(/,) >0.

ri:(h) =

0 if qO(/*) = O.

and f(_) to be the vector whose i :h element is

f,(h) = P:"a'sTa [P:_' (_,: +/_: ] -/,_
)
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ttake 0/0 = 0).Let v;(_) be the variance of }_ starting in state i when simulating

under Q(_). Take vi_) to be the vector whose i :h element is c, lhJ. Then by Theorem

:3.1of Section :3.2

v A)= R"I/,)r(;).
rt----O

Lemma 3.1 T_ere ezzsts a matrzz A and an e > 0 .such that

l'rv(_) < (_-,,'l'A(t_- _j whenever i!h-tjii < _.

Proof: By A._sumption 3.2 ,,:'e know u >_._ 1 and so Q(#j >> P. If p,j > 0 then

'!,:_t_) > 0 and thus

= ;--I _ Pi: "fli < Pij "#i

q':(_) Pu ' t'_U --,#:) ,5,j --#j -- #:.

,when pij = 0 the inequality between the first and last terms still holds since they are

• both zero). An induction argument shows that for all n = 1.'2....

#j

where _(a) in) ):h nr,: (t_) and Pij are the (i.j elements of R'_(tJ) and P respectively. From

Assumption 3.1 we know

P'_< oo and hence _ R"(,) < _c.
rt-O n--O

Thus

(I- R(.))-'= _ R"(.).
rL--'-0

Xow on the open regionin which (I-R)-' isdefined,eachof itselementsisa

convergentpowerseriesineachri;. By Theorem 8.1ofRudin ,120}theelementsof

_I- R)-IareinfinitelydifferentiablefunctionsofrU foreachfixedpair(i.j).When
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all the elements of _ are positive Q(_) >> P and so both r;_(h} and f,(h} are infinitely

differentiable in h. By Theorem 3.1

vt_) = ,_ R"(h) f(_) = tI- R(_)) -_ f/_)
n_t}

for _ sufficiently close to u so that I- 1_(_) is invertible. Thus. vl./ is infinitely

differentiable at u. In Section 3.2 we showed that f(_) = 0 and hence v(_,) = 0.

Thus. _ is a _lobal minimum for vz.). and so

r)c.
--,pl =0 :'or alli,_nd l.
rJl21

So. lrvl/,)is a function from R2 --- 7_ that is infinitely differentiable at _ with

l"_vl_) = 0. and U[lrv](/J)= O. The lemma follows by Tavlor's theorem. II

This bound on the variance is good enough to show that exponential convergence

is at least posszble provided we start the algorithm close enough to the true mean.

Recall the initial guess. _lo_. is supplied by the user and is considered deterministic

in our analysis.

Lemma3.2 Thereezistsaconstant c E ;O. l ), an integer l(1. an e > 0. and a 3 > O

.such that if Algorithm 3.1 is run w_th [[h'°_- _i[ < e and k >_h'l then

er{ll_I'_ - t,,i < c_ I_¢°!- t,il for all m } >_.3.

Proof: By Assumption 3.2 we know #; _>_ for all i. [.'sing step 4 of the algorithm

we have with probability one

t .(re+l) 2 I, 2

It follows that

, .(re+l) _(rnl t l[ zl''nllE ¢_1_, - _,i1_I ) < £ 11_, - _, i_/'_!l2= "- 1,.
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Let e and A be as in Lemma 3.1. Then on the event {t1_I_' - _,,,< _} ,,'e have

i

E,',:h','*L' - _.," .'_1 = E(1_',_'_' - _,ll" h'_" !

i t_'ml - t_jr At (t_t'n_ - t_i
k

Let
,tel i

b__--. sup llAe,l.
]C ,_ll=l

Choose an integer A'I large enou,zh so that k > A', implies b < ' T:,en on the event

E ( ht''_''' _,,i2'i,''_') < b :h(''' "- . _ ' - u,, . (3.4)

We would like ,3.4) to hold with probability one. not just on the event

{!{;,c,,__ _,11< e}. Construct a coupled process as follows: Let

T = inf{m" lib (''- ul[ > e} and take

A(,.,,,da_[ _("_ - t, if rn <_T.
( 0 if m>T.

Bv forcing the orocess {a Ira' } to be zero after {_t_} leaves the e-neighborhood of

_. we impose the analog of (3.4! to hold with probability one for the process {X(_)}.

Bv construction

{x(_.') ---o} __-.{x'_ -- o} u ({Ix(_)!l> .}

and

{o< Ilx(_)ll< e}c {T > m _-t} c {x_, - h(') - _} n (x¢''-+''-- h'_.'_ - _}.

Thus.

x'''''') =,ht''_'') - _,j. 1{0< {x'')!l < el
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Together with (:3.4) these give:

E ( Ix' "_'lb''2 _,X("_"_= E ( " l_ -' I ,., _ d"" -_,ol .{O<l]x_'''<_ x'_'l=

E (E(ll/,',"*" - _,iizi {/,'"'}Lo) ix_m'). l{0 < :x'm'''< _1=

E (E(II/,("''_ -_,it: Ih('t)Ix''_) . l{0 < llx('_',< _} <_

E lb. ;h _m_-,,l t t{0 < 'Ixt'''' < _} ',_"t) < 5. x_m'''2 (3.5/

By induction w_ 5ave

E _,V'_'''_ < /_'. A _°b''2 ;3.6)

,note that ,V"* = a 'j_- l' is deterministic, t

Choose c so rb.at b < c" < i. and note that c < 1. Define events

We want to show that the values Pr{ F_ IF,,,-_ } are small enough so that the event

N_=t F,, has positive probability.

By (3.6) and 3Iarkov's inequality

Pr{F,_} > I- b" " 'IA(°)''2 (_)'_- c'' !A_°)l _ = 1 - (3.7)

By Markov's inequality. (3.6). and (3.7) for m > l

Pr{F2,;F.__,} < E(IIx(_'I21F"-_)= E(IIx('''1_. iF.._,._ <
c-'', tx¢°_ll_ _'. llx¢°_ll=Pr{F__,} -

< 1- (3.8)_:_. tl_O_,!_ _;;-{_'__,}-
Take

"._ - 2.

\Ve can choose 31 large enough so that for m > M

- >.S
m



CHAPTER 3. MARKOV CHAIN MODELS 39

and

Z "_<L,
_=,tl.4-1

By (3.81

P{F_ZF,,,-I} < ",.,,, for m > M. (3.9)

By (3.5) and the conditional Markov inequality

h. :,_lmPvl2 b
P{F_,F.._I} < = -- for all m. !3.10)

Take

"n=M.l

Xote 3 does not depend on our choice of _,o). By the relation ['I ( i - ",.,_)>_ I - E 3'm,

and our choices of c and M. we have 3 > 0.

The sequence {A{"_)}_=o is a stopped Markov process and is therefore Markov.

By (3.9) and (3.10) and the Markov property

_o z¢ m-I _o

Pr{_ F_}= I'i Pr{F_I _ F,,}= 1"_ Pr{F,_':F,__L} >._.
m---I m=l n-'-I rn----I

If i/,(°)- _il < e then {,ix{rIll> _}_ {T < _c}. and hence

{_ F_} " {T=zc}" {,x_'t=/t t_i-tJ forailm}.
rn----I

That is. these processes never de-couple on this event. So

Pr{ll/, (_ - ,tl < c_. IIA(°_- ,II forall m} > Pr{ iq F_} >_.3. I
re=B|

We must start our initial guess, t2{°).close enough to the true t_ for the probability

bound of Lemma 3.2 to hold. However. even if we start with ilt_t°)- ull >--e we can

wait to see if I1__''')- t_ll < e for some m °. If this happens the strong Markov property

tells us there is probability at least 3 that

'I_ t"_- u0]< c"-", il/,!'''1 - uit for all m > m'.
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That is. every time the process {_t"t}_--,u enters the e-neighborhood of., there is

probability at least 3 for exponential convergence. If we can show this must happen

infinitely often then exponential convergence would be certain. We are now ready to

complete the proof.

Proof of Theorem 3.2: Choose a real number H large enough so that

max, _, -- ¢/
---

H 2d

By step 4 of the a _orithm

o< _'+_1 < f:._,-_.|

Recall that I_%_,is an unbiased estimator of _z, conditional on h '_ so that

E(,, 1 1< _, -_

By ),Iarkov's inequality

A unionbound rovesus

I
Pr{_ (_._ < H 11_ t_i} > _. (3.11)

Let/4 denote the set of vectors in 'R.d having all positive components. For a vector

in/4 let £,(. Ih} denote the probability law of 1%.., when simulating under Q(_).

That is. for measurable .4 C R.

Z.:,(A le2)= Pr{F_,, e .4 le2_'_l = _}.

Note that the right hand side does not depend on m or " Recall that the transition

probabilities qothi are continuous functions of _. For _ E U. Ql_i >> P so that the
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likelihood ratios (L, } and estimators (I_,, } are well defined continuous functions of

h. It follows that the probability measures £,(. h} are continuous in the sense that

:'or any convergent sequence of vectors in 12 the corresponding probability measures

,:onverge in distribution:

P
If h,,--_, then £,(.i_,,)=_£,(.[_}.

Let a > 0 and take E/_( ., to denote expectation under £,_.. h_. Suppose we

!:ave a sequence of ,,'_,ctors in U with _,, -. _. Then the the probability measures for

•-.e random vanabie _,-, ].{_., <_Q} under q(_,,) converge in distribution to the

._robabilitv measure of _t_,., 1{_,,, < a} under q(_). By the bounded convergence

_heorem

E_-(_;,,, . I{_'_,,, _<a})- E_(Y_,,. I{Y;,,, <_.a}_.

That is.

E_(Y,,,, . I{Y,,,,, _<a}) is a continuous function of _ for each fixed a.

For ii E/4

£_(};,,,, j = u, (3.12)

which is a constant and hence continuous function of h. So. on/2

Ef_(Ymx, . l{]t_,.., > a})= E_f}'m,,)- Ef_(Ym,, . 1{:_'_,, <_c_}) is continuous in _.

Since Y,,,,, has finite mean

Jim t{ > })= o.

If we restrict/_ to {/J' 6 1 </_ <_ H 1 } then we can think of Eh(],_,..,. 1{}_,, > a}) as

a family of continuous functions of/J on a compact set indexed by _. These functions

"end monotonically to zero pointwise as a -- vc. so by Theorem 7.13 of Rudin [20]
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the convergence is uniform. That is.

lim sup E_(}_,,, I{}_,.., > a}) = 0 (3.13)
a--oo -_1<__</'/1

so that the family of probability measures

{£:,(.,_) ' 61 <_< HI}

is uniformly inte_rable. By t i0.21 of Parzen i17] this implies ti_at the weak law of

',arue numbers holds 1:niformlv ow, r {_ . e 1 _ h <__H 1}. Let e be as in Lemma 3.2.

lien

':m sup Pr{l];_,,, - p,, > --= j = _} = 0. (3.14)
"-_ _1<__<_H1 v d

Note this is where the assumption _, > 6 for all i is critical. Equation (3.12) does

not necessarily hold unless all components of _ are positive. We must have acompact

set in order for 13.13) to hold and so we must bound h away from O.

By (3.14_ we can choose K_ large enough so that k >_K2 implies

e 1

sup P_{I];;.,,- _,1> -= t/,_'* = _} < 2U._<___<H1 vd

If the algorithm is run with k > h'_ then a union bound gives us

Pr{ll/'_''*_ - _'11< _i/,_"_}> t_ .-; (3.15)
m

on theevent {_ 1 <__(_) <_.H 1 }.

Let Kl,c. and 3 be as in Lemma 3.2. Let K = max(K1.K2). Suppose the

algorithm is run with k >_K. Now {h("_}_¢_o is Markov so (3.11) and (3.15) imply

Pr{ll_1''.2_- _,il< e,/,I,,,_}> 1_o

-4

Hence by the conditional Borel-Cantelli lemma (see Section 1"2.15of Williams [25])

Pr{llh('_- _,il< e i.o.}= t. 13.16)
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Now definetwosequencesofstoppingtimes{U.}and {W. } inductivelyasfollows

I_,'0= O. U,_.t= inf{m > tI,'_.ilt_''_,-ttli< e}. and

{IV,} just marks times at which exponential convergence fails and {t', } marks the

next time after failure that I_!"! enters the e-neizhborhood of ,. By Lemma 3.2

and the stronl ._larkov property

Pr_l|.'. = _c ,t'_ < _c} >_ 3. (3.17)

By q3.16)

Pr{t', < _ciW._, < _c} = I. (3.18)

Let

G,,= {I4__, < _¢ and IV,,=_¢}.

Note that
n-I n-i

Y]GT=N{w,<=}
;=1 i=1

and so by the Markov property. (3.17). and 13.1S)

n--[

Pr{G. t _ a_} = Pr{C. I W._, < _¢} >
i_-I

Pr{t'.< < =}. Pr{W. = 0¢16"., < _¢} = 1.3 = 3.

It followsthat

P,'{U c,,}=

Now

G, = {IV,_t < z¢ and (.',,=ze}U{t', < zc and II'_ =_c}.

By (3.18) the event on the left has probability zero and so
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n-'[

Recall from Lemma 3.2 that c < 1 and hence -Iog..(c) > 0. ('hoose 0 < 0 <

-tog:(c) and note

{e'_° • ",_) - _il -- 0} - {U,, < :_ and It,_ = _: } for all n.

Thus by I3.19 I

er{e _" h!"'-uii--0} >_Pr{_j{_'_ < _ and lI'_ = m}}= 1
"'='1

-.vnich is the statement or the theorem. |

3.5 Using Previous Information

The algorithm described in Section 3.3 uses information from previous iterations

only to compute the matrix Q(jit")). Once this matrix is used to run the simulations.

• h ''_ is no longer considered in our estimation. The estimator h !'.l_ is based solely

on the results of the most recent simulation runs. It seems more efficient to base our

estimator on all available information and take h !'_'l* to be some weighted average of

'he most recent simulation runs and ht*'_ That is. suppose we choose some 0 < _ <_.1

and replace step 4 of the algorithm by

4=. Define _,.._,-l) by

:.(,,+,) (1 _-t_ )_,, = a. max _. :i.,:,. E , i - <_)./_(,') i = i '_ d.
:--I

Note that the sequence I_ !'_)} is still _larkov. In fact. if we look closely at the

arguments given for the original algorithm, we see that they all apply to this version

or"_he algorithm except the ones establishing equations (3.4} and (3.16i. To derive

,3.4}. just note that on the event { [_(") - #li < _} we have

" i _" )2 ,n)E, ,i),(_'*',-),," './,(')_< _".Z: E ((Z:-_ __''' - "' ):I/'(_))-_(l-_ •;i/,_ - _,ll'<
::I -':1
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°

Thus. the analog oi (3.41 holds for the new algorithm if we replace 0 by

b" =a:b+(1-(_t 2.

Note that b < I and 0 < _ <_1 implies that b" < 1.

To establish 13.161 we note that i3.14) implies that we may choose k large enough

so that

e -,m) i

,uo Pr{il:2,,- t,,i > ----= t_" = h} < 2"d'
15_<_HZ 2 v d

Now sinceo > ()_'.'ecan choosean integer.Vlargeenough so that_t- o)v < 2-'_"

Let

6

E.,= {(l]7'_,k,- #,I> "---=-forall i= 1.2.....d}.
•2,,/d

On the event, {h _,'_ <_H1} a union bound gives us

1
Pr{E.,._ l_('_}>_3" (3.20)

Note that by step 4" of the modified algorithm

., m-*-N) __ _.V .(mj Z#, =(I c, a; +a. (l-c_)v-".}-L,.,._.,.
u----I

By choice of N. if A''1 <_H1 then (1 - m)x . t_i < _ for all i. If. in addition.

]t_,,_.k.,- #il < -'_ n = 1 .V then2Vd .....

th;- .t < -=.
Vd

It follows that

N

{!I_('_*'v)-.il< _}D {h('_'<_H1}N N E._.,.
n----I

By theMarkov property.(3.11).and (3.20)

pr{,h( ''*'v*', _.,I < e,h(""} >_ (_)"'"
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Equation (3.161 now follows bv conditional Borei-Cantelli (Section 12.15 Williams

.._,,__;/.

Ideally, we would like to choose o to minimize the variance of the resulting esti-

mator. Recall that in the proof of Theorem :].2 there exists a deterministic constant,

b < 1, such that with probability one
i

(Z i/. <__ _
.---I

This suggests the heuristic:

If this were the case. then to give each estimator a weight inverseiv proportional to

its variance we should take
1

O=

However. b is the norm of a d x d matrix, and would be too much work to compute

for large d. Even if b were known, it is only a theoretical bound. As we shall see in

the next section, empirical evidence suggests this variance bound is not tight. Nev-

ertheless, when we perform the algorithm, we mav estimate the conditional variance.

_'art _'_,, i i,_'_'_.. from our k data points at each iteration. If this ouantitv appears to

be decreasing exponentially at a constant rate. as in our heuristic, we may empirically

estimate the ratio, b. of variances on sucessive iterations and choose

1

Of course no proof has been given that the rate is constant, but for the problems

condsidered in the next sec'.ion that does appear to be the case.

3.6 Sample Problems

.Now that the theory for the algorithm has been presented, two examples are

__ivenhere. Empirical results are given to confirm the predicted exponential rate of
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convergence.

One consideration when running Algorithm 3.1 are the choices of k and a. As in

the previous section we can get some heuristic ideas for how we should select these

quantities, but they require knowledge of the exponential rate at which our estimators

are converging.

Suppose we run some trial iterations using the suggestion in Remark 4 of Section

3.3. but without using information from previous iterations as discussed in Section

3.5. For these initial runs we choose /_'.arbitrarily adjustin_ up if necessary until

The process appears to be converging. Based on our empiricai standard deviations at

each iteration, we can estimate the ratio, b. of conditional variances on consecutive

iterations. Now _/' = k'o.b represents what would be the ratio oi variances on succesive

iterations if we had chosen k = 1. Note that tb is not necessariiv less than one since

k = I may not be large enough to force convergence.

If we choose k simulations per iteration we estimate that we would see the condi-

tional variances decrease by a factor _ at each iteration. Once we make that choice

of k. we would employ the heuristic of the previous section and take

1 k
a = - (321)

This should reduce the ratio of consecutive variances to

k+ = (3.22)

Suppose we budget T units of computer time for our simulations. Let r denote

the ratio of time spent updating the matrix Q(_J) to the time required to run

one simulation starting from each state. (This can be estimated empirically and will

tend to a constant as _i(_'j tends to .j. Now (3.22) is clearly minimized by taking k

arbitrarily large, but the price you pay for large k is that you oniv have time to run

F
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number of iterations. Thus. we should choose k to minimize

- =]k = '. k,_i'

Note the minimizing value does not depend on T. \Ve choose i" to minimize

k .....,2 (3.23J

which can be done numerically.

Of course tr, ere is no guarantee that the resu;ting vaiue oi ;,' will actually be large

enough to fbrce "he algorithm to converge. Recall that there has been no proof that

,'.he rate of conver__ence is constant. Even if this were always true. our trial iterations

may have given us a poor estimate of the rate. This is mereiv a simple heuristic

attempt to make reasonable choices of k and a.

In the second example, a continuous space transport problem is approximated by

a finite state problem.

3.6.1 A four state problem

Let us start off by looking at a simple four state prooiem whose solution is

apparent. Take the transistion matrix to be

¢0.93 0.02 0.02 0.02

0.02 0.93 0.02 0.02
P=

0.02 0.02 0.93 0.02

0.02 0.02 0.02 0.93

and the score matrix
I I I i i000

I I i I i000
$:

I I 1 1 i000

1 1 1 1 1000
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where the final column coresponds to the absorption score _,_.

.X'ote that the problem is symmetric in the four states. The rows or"S are identical

._o that the transition score does not depend on the state of the particle. There

:.s probability 0.01 of absorption from any of the four states. Thus. the particle

will remain in the system for a geometric (.99) number of transitions and then get

absorbed. The particle gets a score of 1 for each transition within the system and

score of 1000 when it is absorbed. X,Ve expect the particle to make 99 transitions

5efore being absorbed and .so the particle has a total expected score of I099. That

• by inspection v.'_,see this problem has soiution

= _1099.1099.1099.1099) r

The simplest version of this algorithm, without using the suggestion in Remark

4 of Section 3.3 or the modification in Section 3.5. was run on this problem with an

:nitial guess.

• _!0) =(1.1.1.1)r

Ignoring for the moment optimal choice of sample sizes, k = 15 simulations were run

_er iteration. The results given in Table 3.1.

Estimates are given for all four states by iteration. The vaiue in the standard

,._eviat,ion column is the empirical standard deviation of the 15 estimates for #i. This

value divided by the square root of 15. therefore, gives the estimated standard error

•.'or tsI conditional on the previous estimate.

Since these k data points are lid conditional on the previous estimate, we may use

:he central limit theorem to obtain confidence intervals on #,..X,'ote that we can not

"rust our estimate of the error in the first three iterations of the algorithm. The true

mean is more than 30 standard errors away from our estimate on the first iteration•

Here our initial guess/_t0) gives us a very poor choice Q(/_t0_) for use in importance

__ampling. As a result, our estimator has a very skewed distribution and k = 15 runs
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z_era_zon expected score standard devlatzon

: 55.782953 1.182E+02

20.749360

29.518720

29.518720

2 273.641157 2.365E+02

174.246171

116.641568

144.616742

3 748.456441 9.280E+02

862.519766
452.722070

410.659111

50 1098.999991 1.861E-04

1099.000092

1099.000044

1098.999968

80 1099.000000 6.895E-08

1099.000000

1099.000000

1099.000000

"Fable :_.1. Empirical results from a simple four state problem
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is not good enough for the central limit theorem to take effect• As our estimate, t_t_).

gets closer to the true t_. the conditionai distribution of the subsequent estimator

becomes less skewed and the resulting confidence intervals become more reliable. By

iteration number 50. our standard error _ives a reasonable estimate for the actual

sampling error.

Theorem 3.2 asserts that the error should be decreasing exponentially by iteration.

If we plot the logarithm of the absolute vaiue of the actual error against iteration

• :(m_number we would expect it to decrease linearly. Figure 3 1 shows logto L_,_ - ut[)

as a function ot rn..ks expected, the relationship appears linear..Note that Theorem

3.2 gives only' an upper bound, there is no guarantee that the rate of decrease will be

constant although that appears to be the case here. The dashed line represents the

upper 95% confidence limit based on the empirical standard errors and the central

limit Theorem..-ks mentioned before, these limits can not be trusted for the first few

iterations, but between the fifth and eightieth iteration the predicted upper limit fails

to bound the actual error only twice.

Algorithm 3.1 was replicated 1000 times to check the actual coverage rates of the

confidence intervals. The results by iteration are shown in Figure :3.2. Taking our

estimate plus or minus twice the estimated standard error should cover the true mean

roughly 95% of the time. We see that after the '25 th iteration the coverage rates are

reasonably close to the desired level.

From the plot. we can estimate the slope of the line by a least squares regression.

If we ignore the first few iterations the slope is approximately -0.13. This translates

into an estimate of b by

: 10(2.-0.13) _ 0.55.

We can compare this to the theoretical value of b as defined in the proof of Theorem

3.2. Recall that Lemma 3.1 stated the existence of a matrix A such that

lrv(t_) < (t_- _)rA(_- #)
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1<==15runs per iteration
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"6 '-' _)' \

-- Iog(lactual errort) \/_,,
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-8 -_, , _

0 10 20 30 40 50 60 7'0 80

Iteration

Figure 3.1" Log error decreases linearly with iteration number

for _ sufficiently close to #. The matrix A can be taken as any matrix whose elements

are strictly' less than the elements of the second derivative matrix of lrvl _) evaluated

at _=_.

For this simple problem that matrix can be estimated by entering various values of

;_close to _ and observing empirical values of vl_). This was done using k = 10,000

at enough different values _ with ![_ - _ti <_10-.5 to determine A. For this problem

we have
( 11.038 -:3.444 -:3.444 -3.444

-3.444 11.038 -3.444 -3.444
A_

-:3.444 -3.444 11.038 -3.444

-3.444 -:1.444 -3.444 11.038

Note this could also have been done analytically by differentiating equation (3.2)

wice.
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We can compute the norm

sup IiA_ot "_ 14.482
'l_ll-i

and hence from the prooi of Theorem 3.2

1 14.482
-. sup JtA_tl _ _ 0.97.

b = ],. ,l_tl-_ 15

Compared to the empirical value b _ 0.55. we see that the aigorithm appears to be

converging much faster than our theoretical bound. Recall this bound was obtained

:'tom ._Iarkov's inequality and is not necessarily' tight.

Algorithm 3.! was replicated 1000 times and the above procedure used to estimate

"he slope of the iine in Figure 3.1. We can interpret the negative of this slope as the

exponential rate at which the conditional variances are converging to zero. These

rates are given in Figure 3.3. Over 90% of the values are in the range [0.1.0.2]. The

rate seems fairly consistent, the variation may be entirely due to error in the sample

variance.

Suppose we wish to incorporate the modification in Section 3.5 and use information

from previous iterations in our estimate. We need to choose the weight, a. to give

:he most recent simulation runs. Since we should weight in inverse proportion to the

variance, we should choose
1

(_ _ ------_..

l+b

Now of course in practice we would not have access to the solid line in Figure 3.1

since it depends on the unknown solution _. But we can use the dashed line which

depends only on the empirical standard deviations. Based on this. we would still

estimate b _ 0.55 and choose
1

a = ---- _ 0.65.
1.55

, Figure 3.4 shows the improvement obtained by using previous information. Here,

lOglo(lt_ _} - #11) is plotted against m for both versions of the algorithm. The solid
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Coverage Rates
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Figure 3.2: Actual coverage rates bv iteration for 1000 replications of Algorithm 3.1.
Dotted line is target rate of 95%.
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Figure 3.3: Estimated rates of decrease for the conditional variance from 1000 repli-
cations of Algorithm 3.1.



CHAPTER 3. )JARKOV CHAIN MODELS 55

k--15 runs per iteration
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Figure 3.4: Using previous information improves the rate of convergence.

line is decreasing at a faster rate than the dashed line which represents using only the

most recent simulations (a = 1.00). Note that the improvement does not seem to take

effect until the estimates are fairly close to the actual expectation. This indicates that

the exponential rates of convergence are only local properties of the process. Recall

that the bounds of Lemma 3.1 only hold locally. Our estimate needs to be "'close" to

the true expectation before they take effect.

Now let us consider Remark 4 of Section 3.3. If we generate a path that involves

several states then we not only have information on the expected score from the initial

state, we really have information for every state hit by the path. For example, suppose

a simulation run generates the path 1 -, 4 --, '2 -- 1 -, A. Once the particle makes

its initial transition to state 4 we know by the Markov property that the remaining

path has the same probability distribution as a particle starting in state 4. Thus.

we can use the path from the point it hit state 4, that is. 4 --'2 --, 1 -- A to help
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estimate _4. Similarly we can use the part of the path 2 --- 1 -- A to help estimate

Here we use the same path to help estimate three different states. By the strong

._larkov property the scores computed from these partial paths give unbiased estima-

tors. We might be tempted to use the partial path 1 --, A to give a second estimate

of ul from this oath. However. using the same path to give _wo different estimates

for the same a, will produce a bias.

In general, su0pose we wish to estimate a paramter, a. and we have one unbiased

e._timator .\" ana poss_bl_ a second unbiased estimator _" In otner words, on some

random event E '.:'eget a second estimator Y which conditional on E has mean a.

The event E here denotes a path hitting an appropriate state so that Y will be the

scores computed on the partial path from that point. We use the estimator

(x.Y)X. 1E0 -t- '2 ' Is'. (3.24)

Vee use X alone if that is all we get. and we use both X and Y if we get access to

both.

I.'nder what conditions is this unbiased'? We need .\" to be unbiased for # condi-

tional on E. If .\" represents an estimate for _ based on one path and ]" represents

an estimate for _ from a different path then we are ok. Here E represents the second

path hitting the appropriate state which is independent of what happened on the

first path. and hence independent of X. However. if X and }" represent estimates

based on the same path. then the event E is not independent of X and (3.24) will

not necessarily be unbiased.

So we can furtr, er modify this algorithm by using each path to contruct an estimate

for each state hit by the path. As long as only one estimate is computed per state for

each path. our estimator will remain unbiased. Note that our estimators for different

states are now correlated since some of them may be based on the same paths.
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k,-15 runs per iteration
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Figure 3.5: Usin_ path information for every state that gets hit increases the effective
sample size.

This does not effect the proof of Theorem 3.2. Nowhere was independence between

estimators for different states used in the argument. The proof used a variance bound

for each state individually. This was based on the fact that k independent unbiased

estimators were used to compute _, . Now a random number of estimators go into

computing #i . but we are guaranteed at least k since we will run that many starting

from each state during the iteration. By the strong Markov property conditional on

the random number of estimates that go into computing _I . they are independent

and have mean #,. Thus. the argument given for the original algorithm hold with

this modification.

Figure 3.5 compares empirical results between this modification and the original

version of the algorithm. Since _I"_) will be based on more than just the k runs we

make starting from state i. we are effectively increasing the sample size. Clearly this

modification performs much better than the original algorithm. Empirically, the slope
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seems to be about -0.70 which translates to b _ 0.04.

Admittedly. _his modification increases the amount of work we must do per it-

eration. For each path generated we must keep track of likelihood ratios and scores

separately for each state that gets hit. Typically, in transport simulations this work

is negligible compared to what is involved in generating the sample path. Here, se-

lecting the next state according to Q(/2 t'_) usually requires work proportional to the

number of states in the _Iarkov chain. Keeping track of an extra likelihood ratio and

,_core adds very iittle extra computation. For each additional state considered, we get

',he equivalent amount oi information as if we had generated an entire new path. So

for a relatively small amount of additional computation we get the equivalent of an

increased sample size.

Before leaving this exaznple we should consider the choice of k. So far k = 15 has

been completely arbitrary. For this problem the time spent updating Q(_("t) was

negligible compared to the time spent generating sample paths, so we take r _ 0.

Note that when r = 0. (3.23) is minimized by k = 1 for any positive value tb. This

suggests trying to choose k as the smallest number that will force the algorithm to

converge. For this problem, when Remark 4 of Section 3.3 was used with k = 1 the

resulting estimators appeared stable suggesting that the algorithm was converging.

3.7 Approximating a continuous space transport

problem

Considerthefollowingone dimensionaltransportproblem. A particlewithin

a shieldentersa collisionat the originand isabsorbedwith probability0.4. If

itsurvives,ittravelsa random exponential(i)distance.Thiscontinuesuntilthe

particleisabsorbedor crossesthe levelM - 50 correspondingto theedge ofthe

. shiei _!.We wish to estimate the probability that the particle will penetrate the shield
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(cross the level M = 50) before it is absorbed.

Again. this problem was chosen because its solution is apparent. Conditional on

surviving the initial collision, the particle's total penetration is a geometric sum of

exponentials and is hence exponential. Its mean is given by _0.4)-_ = '2.5. The

probability of crossing the point ,14= 50 is therefore given by

0.6. e(-°4's°_ _ 1.24.10 -9.

\Ve can approximate this problem by one of the type described in Section 3.1.

Divide up the intervai [0.50] into d intervals as shown in Figure 3.6. Let the d'h

interval denote crossing the level 3I = 50 so we give a score of one for that state.

That is. take

1. if j=d:s;j = O. otherwise.

Once the d th state is reached the problem is over so we set

1; ifj=APdi -- 0. otherwise.

Now from a point x. we know there is probability 0.6.e -(S°-_ of surviving the collision

and crossing the level M = 50 on the next step. Since we have partitioned the interval

[0.50] into d cells, each one has length 50. d -l. Thus we take

Pid =0.6"exp{-50"d -l.(d-i)} i= 1.... d-1.

Since we have an absorption probability of 0.4 from every state we take

Pin "" 0.4 i-- 1.... d.

If 0 < x < y < 50 then the transition density for the continuous problem is given

by

p(z.y) = 0.6. exp{-( - z)}.
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particle boundary

1 2 3 • • . d-2 ,:1-1 d

0 50

Figure 3.6:Approximate the continuous space with a finite number of cells.

\Ve parallel this by taking

Pox exp{-.50, d-'. (j- i)} i.j < d- 1.

That is, we take

PO =Ci'exp{-50"d-''(j-i)} i.j<d-1

with

C, =0.6.(1-exp{ -50"(d-i) _-id }). exp{-,50,d-'' (l-,)}l-'
. /----1

so that
44-1

E Pij -" l.
j-'-I

Fifteen trial iterations were run with ko = 5. a plot of the log of sample standard

deviation against iteration is given in Figure 3.7. The process appears to make a rela-

tively steady descent starting with the seventh iteration. A lea.st squares fit estimates

the slope at -0.67 which translates into

= 10(-2'°'st) _ 0.05.

We take ,b = k0 •b _ 0.25. From these runs the ratio of time spent updating Q(_("))

to the time running one sample path from each state was estimated at r = 0.17.

These values are used in (3.24) to obtain the minimizing value of k = 1.
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k=5 runs per iteration
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Figure 3.7: Trial iterations to estimate rate of convergence.

Here tb and r are so small that we would rather get in as many iterations as

possible rather than running several simulations per iteration. From (3.22) we take

k 1
a= - -0.8.

k + _ 1.25

Six more iterations were run with this value of a and k = 1. Of course with only

one simulation per iteration, there is no way to estimate the variace for the estimator

#l. Note the particle can not go "backwards" in this model so that there is no hope

of getting estimates based on paths initiated from other states. For the last iteration

k = 30 runs were made so that a standard deviation and a confidence interval based

on the central limit theorem could be calculated.

The final result was an approximate 95% confidence interval of

9.3404459618.I0-l°4-5.479.i0-'r

for #1. One more iteration was run with k = 500 to verify that this interval does
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actually cover the true value/_1. Note from Figure 3.7 that the standard deviation

has decreased over the final six iterations from the value of roughly 10-14 after the

first fifteen trial iterations. This is an indication that k = 1 was large enough to

induce convergence.

Compare the solution of the finite state problem. 9.34.10 -_°. to the theoretical

value 1.24.10 -9. Even with d - 1000 states we have almost a 25% error by approx-

imating a continuous problem with a finite one. Better methods for extending this

algorithm to a continuous state space are considered in the next chapter.



Chapter 4

Algorithms for Continuous State

Spaces

An algorithm for solving problems with finite state Markov chains was presented

and studied in the previous chapter. Recall that in transport problems the state

space contains information on the particle's position, velocity, and energy level. The

possible values for these quantities form a continuum, not a finite set of points. Let

us take the state space to be a compact subset of some high dimensional Euclidean

space.

In this chapter, methods for extending the algorithm to the continuous space

are given and their behavior analyzed. The essential idea of the algorithm is to use

previous information on the expected score from each state to compute a low variance

importance scheme. Clearly we can not store information on infinitely many states.

so we must try to characterize the score function with a finite amount of data.
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4.1 Transport Problems as Markov Chains

Suppose we have a transport problem with state space S. a compact subset of

a Euclidean space. The position of the particle at its collision sites forms a Markov

chain {X,},_°__I. If we have a particle entering a collision at a point x E S. the

distribution for the next collision site is given by the density, p(x..), with respect to

Lebesgue measure on S. That is. for measurable A C_S

P{.\',+, E AIX, = x} = / p(x.y)dy.

Take

p(x.?,) = 1-Is p(x,y) dy

to be the absorption probability out of state x. As in the the previous chapter, we

assume

li-moofs p{n)(x, y) dy = 0 for all x e
,9

' where p(")(x,y) is given by

p(l)(x,y)=p(x,y) and pC'_+l)(x,y)= _s p(n)(x.z).p(z.y)dz n= 1.2

That is, eventual absorption is certain.

For each pair (x,y) E S 2 there is the nonnegative score, s{x.y), incurred by a

particle making a transition from x to y. Again. this score will typically be zero

unless state y corresponds to our target, in which case s(x,y) denotes the energy

being transported there. If

r=inf{n.X,=A}

denotes the absorption time then we are interested in

T

_(x) = E (_ _(X,_,,.X'.)I.X'o=x).
n----I
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The system of linear equations (3.1) here becomes a system of integral equations

+fs p(x,y).(s(x.y)+#(y))dy xeS.
#(x) plx. a).s(x, a) (4.1)

We would like to be able to partition the state space S into cells, and approximate

this system with a finite state problem, if we can approximate this system arbitarily

well wi_h finite state problems then we can parallel the theory developed in the

previous chapter. Let us impose the following regularity conditions.

Assume there exists a closed set 14/C S having Lebesgue measure zero such that"
J

Assumption 4.1 There exists a A < 1 such that

lim sup A-". sup [ pC,,)(x, y) dy <
n---_ X E $ J5

Assumption 4.2 For each x _ 14/. the functions p(n) and s are differentiable in

x. except possibly" on set y having Lebesgue measure zero (the exceptional set may

depend on x). Where defined, each derivative is continuous in (x, y). and

lim (x, ) =
h-o _ Y - h

h--olimfsl_0S (x.y)-- ( (x+h'e'_'y)s h -s(x'Y)')ldy=0"

Here. ei denotes a vector whose i th component is 1 and whose other components are

all 0.

Assumption 4.3 The sum

I_ (x,y) dyn----I

converges uniformly on x E S- W. Furthermore,

sup _ (×,y) dy< _
xE,S-W _= _
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Assumption 4.4 The scorefunctions and itsderivativeareuniformlybounded,

, ,0s
sup ls(x.y)l+l-T---{x,y)[< _c.

{x,y) 6S 2

Note that a sufficient condition for Assupmtion 4.1 to hold is that

inf p(x.a) > 0.
xE8

We allow for an exceptional set, )IV. to handle boundaries where the transition prob-

abilities may change abruptly, the edge of a lead shield or a cement wall. etc. As we

impose finer and finer partitions on 5'. the percentage of cells containing points in W

will tend to zero.

Take

a(x) = p(x,a).s(x, a) +/s p(x.y).s(x.y) dy.

Iterating equation i4.1) n times gives

n-1

/_(y) dy.
3--1

By Assumptions 4.1 - 4.4. the final term tends to zero as n --, oc so that

C_

/_(x) = a(x)+ _ fs p('_)(x,y).a(y) dy (4.2)
rt--I

with/_(.) being differentiable for x _ W. By Assumptions 4.3 and 4.4

sup IT,(x)ll <
xES

To avoid technical problems, let us again assume there exists a known 6 > 0 such

that

inf/_(x) > 5.
x6S

See the discussuion in Section 3.3. We shall require _(x) >__, x E $ for our estimates,

of
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4.2 Importance Sampling on Continuous Spaces

Just as in the finite state case, we need to choose a transition kernel q(x. y) to

use in our simulations instead of the true p(x, y). Our choice must satisfy

q(x.y)>O whenever p(x,y)>O and q(x.',)>O whenever p(x.a)>O.

We must also make sure our choice satisfies

lirn q("l(x.,.x) = 1 x E $.
rl--*O0

Note that this would always hold in the finite state case. but not necessarily in a

continuous space.

Let

q(X:-l,Xi)

and take
'r

= t..
n--'l

The Radon-Nikodym theorem tells us that on the event {Xo = x}. )_ has expectation

_L(x).

.Just as in the finite state problem, there exists a zero variance importance scheme.

We just parallel (3.3) taking

p(x.y). [s(x, y)+ p(y)].q(x,y)

The problem here is that even if we knew the function p(.) exactly, we would

need an infinite amount of computer memory to store it. In practice, of course, we

must approximate p(.) with a finite amount of data. We may partition S into a finite

number of disjoint cells {C_}_=l and obtain an estimate ti(') which is constant on

each Cj. This approximation will add some variance to our estimator.
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Note that even with a crude partition of $ we have eliminated the problem of

bias encountered in the example in Section 3.6.2. Since we are doing the simulations

directly in the continuous space, we obtain unbiased estimators for the solution to

(4.1 I. in the finite state example, we obtained unbiased estimators for the solution

to the approximating system of d equations in d unknowns.

Clearly the better our approximation, the better our choice of q(... ) will resem-

ble the zero variance scheme, and the smaller our variance. However. a very close

approximation, will require a fine partition of the state space which will require a very

large number of cells. We must consider the tradeoff between low variance estimators

requiring very fine approximations and the work needed to obtain them. To do this.

we must calculate how the variance grows as a function of our approximation error

/_-#.

Suppose we have an estimate,/_(.), for the function #(.). We use our best guess

at the zero variance importance scheme

_ p(x.y)•[s(x,y)+ _(y)]

q(x,y, _) = p(x,a).s(x,a)+ fs p(x,z).[ s(x,z)+/_(z) ]dz'

Following the notation of the previous chapter take

f(x,/_) [P(X'a)'s(x'A)]2 /s (p(x.y).[s(x.y)+ /_(y)])2= ..................* - dy -[p(x)]2
q(x,a, h) q(x. y,/_)

and let

r(x.y,_) = [P(X'Y)]2.
q(x,y,/_)

Here we interpret 0/0 to be 0. Take v(x./_) to be the variance of our estimator

I_ when simulating under q(.,..[.z) and starting Xo = x. Then (3.2) in this case

becomes

v(x, h)-- f(x)4- fs r(x.y, _).v(y, h) dy.

The argument given in Theorem 3.1 applies here so that we have the solution

r(x,_) = f(x, fz)+ _ _ r("l(x,y, _t).f(y,/_) dy. (4.3)
n---I



CHAPTER 4. ALGORITHMS FOR CONTINUOUS STATE SPACES 69

An analogousargumenttothatgiveninSection3.2showsthatf(x,_) = 0 and hence

t,(x,_)ffi0 forallx E S.

Now forfixedx E S, thefunctionalf(x,.)isdifferentiablewithrespecttothe

function_ inthe senseofDefinitionA.I in Appendix A. That is.thereexistsa

functionVf(x,_,y) suchthatfora functionh :S ---,7_

f(x./_ + h) = f(x,/_) + Js _f(x,_,y).h(y)dy + o([Ihll ) (4.4)

where

hit- ess suph = inf(M' L{y : h(y) > M} > 0}.

Here. L denotes Lebesgue measure on 5". The functional o(.) is taken to have the

property that for any sequence of functionals, {h.} with iIh.Ii _ 0

lim o(h.)
--® IIh.II= 0.

Note that for fixed (x,y) E `92 the functional q(x,y, fi) is not differentiable in

the sense of (4.4) because it depends too heavily on the value/_(y). Any functional

satisfying (4.4) would not change simply by altering the value of/_ at a single point.

The functional f(x, fi) becomes differentiable because it is the integral over 8 of

functions involving q and ft. See the calculation following Theorem A.3 in Appendix

A for details.

For the remainder of this chapter we deal with the class of estimates,

= (fi: inf _(x) > 6_ with topology induced by the norm IIPl[- ess sup ft.xGS

Theorem 4.1 There ezists an open collection, j_, of functions, _ • ,9 -_ _, such

that/_ E J_, and for each fized x E S, v(x,. ) is differentiable on j_. Furthermore,

_v(x,#,y) = 0 for all (x,y) E `92.
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Proof:Let

g_(x._) = £ rt"_(x.y,_).f(y,_)dy n = 1.'2... (4.5)

and

g0(x,_)= f(x,_).

Note

t,(x./_) = _ .$n(x,/),). (4.6)
n_O

When we take/_ = #. we can parallel the argument given in the proof of

Lemma 3.1

#(x).p(x.y) #(x).p(x.y_
r(x, y, #) = ...... <

s(x,y)+ _(y)- _(y)

For _ e £ with [I/_- _11sufficiently small

r(x,y,/_)< 2,u(x). p(x.y).
_(y)

and by induction
9#(x).p(n)(x.y)

r(")(x.y,/_) <_ "
#(Y)

Let

where r/is chosen small enough so that the above inequality holds.

By Assumption 4.2 this implies

t

lira A-" . sup / r(")(x,Y,/_)dY < _c. (4.7)
a---oo _EA4,XE$ J8

For/_ E J_, f(x./_) is uniformly bounded on x E S, and thus by (4..5)

lim A-" • sup g,(x,/_) dy < _c. (4.8)
n--oo _EAd,x6$
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Let

= p{x._).s(x.a)+/sP(X.Z).[s(x.z)+/_(z_]dzC(X._)

be the denominator term in q(x.y,_). For fixed x, the functional c(x.. } is clearly

differentiable in/_ with

Vc(x./_,y) = p(x,y).

Now

i¢ /sP(x'y)'g"_x'_) dy, (4.9)g.+l(x._)=, r(x.y,_).g.(y,_)dy=c(x,[_), s(x.y)-/_(y)

Note that for fixed x 6 S. g0(x. • ) = f(x.. ) is differentiable in/_ (see Theorem A,3).

Using the differentiation rule given in Theorem A,3. and an induction argument, we

see that for fixed x 6,9. g.(x.. ) is differentiable in/_ and

p(x, y).g.(x.[_)

Vg"+'(x'/_'Y)=-c(x'/_)" [_(x.y)+/_(y)]2 + (4.10)

p(x.y)./p(x,z).g,(z.h) dz + c(x,/_). [ r(x.z,/_).Vg,(z._.y)dz.
J5 J ,$

Sucessively iterating this equation gives

p(x. y).g,(x,[_) _s P(X'z)'g"(z'f_) dz +V'g,(x, ft, y) = -c(x./_) • [s(x.y)+/_(y)]_ + p(x.y), s(x.z) -r _(z)

" /a [ /x p(z'w)'g"-j(w'/_) dw]dz+r(J)(x,z./_), c(z.[_) .p(z" y)'g"-'(z'ft) +p(z.y).
j=, [s(z,y)+/i(y)]2 "_[_w7 + _'(w)

_ rl"+*l(x, z, _ ). V f(z, [_.y) dz.

If we choose A > ,\ then by (4.7). and (4.8) we have

lim A-". sup Is Vg"(x'_'y)dY < _' (4.11)n--oo hE,M,xES

Choosing A < ,\ < 1 we see that the sum

F. fsn=l



CHAPTER 4. ALGORITHMS FOR CONTI,_UOUS STATE SPACES 72

converges uniformly over x E S, and/_ E ,t4.

From Theorem A.4. and (4.6). for each fixed x E S. the function r(x.. ) is differ-

entiable on .'_ and
_o

Vv(x.h,y) = _ Vg,,(x./h, y).
n--O

Since v(., #) is identically zero. it has a local minimum at # for each x E S. and so

V'v(x,#,y)= 0 forall (x,y)E $_. I

We now needtodevelopa notionofa secondderivative.Unfortunately,we can

notsimplydefineitasthederivativeofthederivativesincethiswouldruleout too

many functionals.Forexample,in(4.10)thefirstterm ofVg,+1(x._.y)dependson

onlythroughthevalue_(y).Forfixed(x.y)E ,.,¢2therefore._'g,+t(x,.,y)can

notsatisfy(4.4).To includesuchfunctionals,g,a _7_g term isadded tohandlethe

dependenceofVg(/2,y)on thevalue/_(y).SeethediscussionpreceedingDefinition

A.2inAppendix A.

We considera fu..Ict_nalg tobe twicedifferentiableifinadditionto beingdif-

ferentiablein the senseof (4.4),thereexistmappings V2g : .t4x S 2 _ T/,and

V':2g:,t4 x S ---._ suchthat

+ h) = Vg([_, y).h(y) dy + (4.12)

5" h(Y)'V2g(f_'Y'z)'h(z)dydz + V_g(fL'Y)'[h(Y)]2dY + °(]]h]]2)'

Theorem 4.2 Let ,9I be as in Theorem J.I. For each fized x E $. the function

v{x.. ) is twice differentiable in the sense of (.{.12).

Proof: The argument is analogous to the proof of Theorem 4.1. Recall

f(x./_) = [P(X'a)'s(x'a)]2 fs (p(x.y).[s(x.y)+/_(y)])2q(x. a, ft) + q_,y_tj dy -[#(x)]2 =
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V_ g,+,(x, p, y) =

[2p(x.y).g,(y._) _ p(x.z).V_g,_(z._.y, ]c(x._). [s(x.y)_._-(y)]- 5 + _'(x-zi_-'_ dz. (4.14)

We now use the same argument that was applied to equation (4.10) in the proof

of Theorem 4.1. Successively iterating equations (4.13) and (4.14). and using (4.7),

(4.8), and (4.11) we see that

sup [[ V_g,_(x._,y,z)dydz < _clira X-"
JJS

and

lim A-=. sup / Uz2g,(x._,y)dy <
J$

where A isasin(4.1l).

Now applyTheorem A.8 toequation(4.6).I

We cancombineTheorems4.land 4.2toobtainthefollowinganalogtoLemma 3.1

v(x,h) = 2(_(y)-_(y)).V2v(x.p.y,z).(_(z)-_(z))dydz + (4.15)

[ +oIll-, 2).
J5 J

4.3 Partitioning the State Space

As mentioned in the previous section, we might partition the space S into a finite

collection of disjoint cells {Cj }_=, with

= sup sup IIX- yi{.
J (x.y} E C_

Suppose we can impose such a partition so that each point x E 14/lies on the boundary

of some cell C_. For example, if 14; is the edge of a cement wall we can allow that edge

to define cell boundaries. No one cell would contain points corresponding to both air
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and cement. Suppose for each cell Cj, we select a point y: in the interior of C: and

approximate the function # by

4

/_(y) = _ #(y:). l{y E C:}. (4.16)
3-----1

By the mean value theorem, for each y in the interior of C:, there exists an y" E Cj

so that

#(y)- #(yj) = _7/_(y'). (y - y:).

Taking h(y) = il/yl- fl(y), we have

fc V/ ,. y)dyj " yES j

and thus

V:v(x._t,y).[h(Y)12dy < sup [[Vg(y)[[. _ V: v(x.#.y)dy.. 2.yES

Similarly

ffs2 - - #(z)) dy <(_(y) /_(y)). _72v(x, #, y, z). (/_(z) dz

[[V/_(y)[[ •//_ V 2v(x. l.t,y. z)dy dz .,.2.sup
yes

By (4.15)

o(J). (4.17)

Our variance is proportional to the square of the cell diameters in the partition we

choose. Of course in practice we would not know the values/z(yj) so that we would

have to replace (4.16) by
d

= l{y e cj} (4.18)
j---I

where/_: represents an estimate for some notion of the expected score starting from

cell Cj.
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We may be tempted to impose finer and finer partitions on S in an attempt to

converge to the zero variance importance sampling scheme. However. if we do this. we

will encounter the same curse of dimensionality that hinder deterministic methods.

In high dimensional spaces the number of cells is growing very rapidly as we trv to

make the cell diameters. _,'. small. For example, in Section 1.1 we saw that S may

contain information on the particle's position, velocity, and time. This would require

seven dimensions so that the number of cells in our partition is growing as

d = O(w-r).

The amount of work required to obtain estimates/2j for each cell is growing too

rapidly to make very fine partitions worth our while. We are much better off imposing

a relatively crude partition on our state space with d being a manageable number of

. cells. Once the estimates _j are obtained, we can perform lid importance sampling

to obtain the O(n-_) rate of convergence given by the central limit theorem.

In high dimensional spaces this rate is often superior to those given by determinis-

tic methods. The initial work to obtain the estimates _j gives us a variance reduction

so that we need not run an excessive amount of simulations before our particle hits the

target. At the same time, we retain the superior rate given by Monte Carlo methods.

To obtain estimates for _j, we can run simulations starting from each state anal-

ogous to Algorithm 3.1 for finite state problems.

4.4 Computational Issues

We have already noted that the finite approximation (4.16) to the function # can

not be used in practice as it requires knowledge of the solution. Even the approxi-

mation (4.18) will be difficult or impossible to implement in practice. Recall

q(x,y,_) = p(x,y). [s(x,y) + _(y)] (4.19)
p(x. A).s(x,A)+ Is p(x,z).[ s(x. z) +
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Now we can generate random variates using the acceptance-rejection method (see

Algorithm 3.4 of Ripley [18]) without computing the integral

p(x.z).[s(x, z) + h(z)] dz

explicitly. However, when we calculate the likelihood ratio we will need to evaluate

the exact value of q(x. y, h). The function _ is constant on each cell Cj. but we will

not typically be able to compute

/c p(x.z).s(x.z)dz or /c p(x.z)dz

without error. If we replace it with a numerical approximation we introduce a bias

to our estimator.

Instead. we can take

q(x,y.h) = p(x;.xj). [s(x_.xj)+ _(xj)] (4.20)
p(x,,:,).s(x,,a) + Et p(x.,xt). [s(x_,xt) + _(xt) ]

where i and j are chosen so that x E Ci and y E Cj. Note that _(x.y,_z) can be

computed explicitly. We might also consider the better approximation

4(x.y, _) = p(x,xj). [s(x.x_) + h(xj)] (4.21)
p(x. a).s(x, a) + Zlp(x. xt)" [s(x. xt) +/_(xt) ]"

The importance sampling scheme (4.20) has the advantage that the denominator

terms may be computed and stored in advance of the simulation runs. This will

require d units of storage. The denominator in (4.21) depends on the exact value of

x and will need to be computed at each transition of each simulation run. We might

hope that using (4.20) or (4.21) in'place of (4.19) will still achieve the rate in (4.17),

but as we shall see in the next section this need not always be the case.

In continuous problems we can not store the transition kernel p(x,y) explicitly

as it contains an infinite amount of information. We need to define it implicitly. For
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example,thetransistionmechanismforthe scatteroftheparticlemay be givenby

implicitlydefiningtheprobabilitylawsfortheparticle'sscatterangle,velocity,and

distanceuntilthenextcollisionasa functionofthecurrentstatex. Fora givenpair

(x.y)the transitiondensityp(x,y)can be calculatedfrom thesequantitiesrather

thanstoringa matrixP aswas done inthefinitestatecase.

Sincewe do not storethe quantitiesp(x.y)explicitly,we might hope toalso

avoidusingO(d2)amount ofstorageforthekernelq(x,y,/_).We can reducethisto

O(d) ifwe use(4.20)and storeonlythedenominators.The numeratortermscan be

computed asthey"areneeded.Notethiscouldhavealsobeendoneinthefinitestate

case.but we werealreadystoringthematrixP sothiswould not havereducedour

overallstoragerequirementstoO(d).

We canspeedup thegenerationofsamplepathsby usingtheacceptance-rejection

techniquegiveninAlgorithm3.4ofRipley[18].Herewe selectthenextstate,y,by

some probabilitymeasure,v(x,y),thatwe can generateimplicitly.Forexample,we

may usethetruemeasurep(x,y),ora uniformmeasureon S.orperhapsa mixture

ofthetwo.Then we acceptthechoice,y,witha probabilityproportionaltotheratio

ofq(x,y,_) tov(x.y).Ifthechoiceisrejected,we repeattheprocessuntilthevalue

y isaccepted.

Generatingy by a probabilitymeasureimplicitlydefinedsuchasp(x.y),oruni-

form on S willtypicallybe much fasterthan generatingy accordingto q(x,y,_)

directly.To generatey under the truep(x.y),we may onlyhave to generatea

random angle,velocity,and inter-collisiondistance.To generatey directlyunder

q(x,y,_) ,which willnotgenerallyhaveany suchstructure,we willhave touse a

"bruteforce"methodofgeneratinga uniform(0,i)variate.U, and searchingthrough

thecellsone ata timeuntil

j

q(x, xj,/_)./c dz _ U1=I J
y-
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and then choosing y uniformly on Cj. This will take O(d) amount of work for each

new state selected.

The expected amount of work required for acceptance-rejection method is equal
0

to

q(x, y./_)
sup
y_s v(x. y)

W'e must trv to find a measure, vlx. y), with the above quantity reasonably small,

from which we can easily generate random variates. As we impose finer and finer

partitions on the state space ,5'. q(x. y,/_) will approach the perfect importance scheme

q(x. y, _). The acceptance-rejection method will require essentially the same amount

of work as if we were generating variates from q(x. y, _) by acceptance-rejection. The

amount of work required to select new states, therefore, should not be sensitive to

the number of states, d.

4.5 Sample Problems

In this section model problems with continuous state spaces are given. In Section

4..5.1 we take another look at the problem introdued in Section :3.6.2. attacking it

directly in the continuous space ra_her than approximating it with a finite state

problem. This removes the bias, giving us a reliable estimator for the expected score

of the particle in continuous space. In Section 4.5.2 a two dimensional problem with

two different shielding media is introduced. Unlike the previous problem, no analytic

solution is readily apparent so that our algorithm will have to "learn" which are the

important states much like Algorithm 3.1.

4.5.1 A One DimensionalProblem Revisited

Letus considertheshieldingprobleminSection3.6.2.Here.a particleinitially

collidingatx - 0 inone dimensionalspacesurvivesthecollisionwithprobability0.6.
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If it survives, it travels an exponenti,:fl (1) distance to the next collision. The particle

successfully penetrates the shield if it crosses the level x = 50 before it is absorbed.

Here we have S = [0.50] with

0.6:exp{-(y-x)} if x<y<50:
p(z,y) =

0 otherwise.

We consider the particle to have penetrated the shield when y > 50. To keep ,_'

compact we can alias all values greater than 50 into the state 50 itself. Thus. for a

particle at state z. there will be an atom of probability mass

0.6. exp{-(50 - x)}

at the value y = 50. We then take

,]'1 if y=50;S( X, Y) t 0 otherwise.

and

= 0

to terminate the process once the particle has penetrated.

Note that this does not quite conform to the setup in Section 4.1 since we do not

allow for atoms. Since we reqired the transition kernel to have a density with respect

to Lebesgue measure, no one point should have a positive probability. We can, of

course, artificially manipulate this problem into that form by aliasing values greater

than 50 into the interval, say [50,51]. That is. once a particle has penetrated the

shield, we artificially place it uniformly on the interval [50.51] and give it a score of

1.

Thus, we can state this problem in accordance with Section 4.1 by

0.6.exp{-(y-x)} if x<y<50

p(x,y) = 0.6 exp{-(50- x)} if x < 50 <_y < 51:

0 otherwise.
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and

i if 50<y<51:
s(x.y) = - -

0 otherwise.

When we are actually running simulations on this problem we would prefer the

first formulation as it is more natural. This second formulation is merely to show

that the problem falls into the setup of Section 4.1. How the endpoint is treated is

irrelevant since there is no uncertainty about that state's importance.

Recall that an analytic solution to this problem was given as

¢l(x) = 0.6. exp{-0.4. (50 - x)}

so that

p(0) _ 1.24.10 -9 .

If we choose a value d for the number of cells in the partition we wish to impose on

,5' = [0.50], then ',','ecan take

CJ=[ 50'(j-1)d ':_]

as in Figure 3.7.

Note here that we have an analytic form for

c P(X,Z) dzI

so that the importance scheme (4.19) could be used directly in this problem. However,

(4.20) was used to verify that the rate (4.17) is achieved even with this approximation.

Since the solution is known is this problem, simulations were run with _ = p, no

"'learning" process was attempted here. In the problem given in the next section,

the solution is not apparent so that some learning process will be required to obtain

_. The number of cells varied from d = 5000 to 30.000 in increments of 5000. For

each value of d. 10.000 simulations were run using importance sampling with (4.20).

Results are given in Figure 4.1. The sample standard deviation is plotted against
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k=lO,O00 runs at each value of d

12 -_ . -- equatlon:

o10 t

g
=" 8-

I.4-

: _'--_

1
5000 10000 l sooo 20600 25000 so6oo

cl==number of oell=

Figure 4.1: Standard deviation is inversely proportional to number of cells in the
partition.

number of cells in the partition. A curve inversely proportional to the number of cells

is fit to the data suggesting that the rate (4.17) is indeed achieved.

A slight modification to (4.20) was necessary to achieve this rate. When the

particle is at state x in the jth interval, Cj we must allow for the possibility that the

next state, y, falls in the same interval. Now the particle can not go backwards in this

model, so only the portion of C) to the right of x is eligible for the next transition.

If we use (4.20) directly we see that the density _(x, y,_) is proportional to the area

to the right of x in Cj. This inflates the variance since when x is close to the right

endpoint of C_, the likelihood ratio

p(x,y)

islarge.The intervalCj containingthecurrentstatex isoversampledin(4.20).Its

probabilityshouldbe reducedby thefractionoftheintervalCj whichistotheright

ofx.Once thiswasdone theresultsconcurredwith(4.17).This.ofcoursewouldnot
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be an issue if (4.19) were used directly.

4.5.2 A Two Dimensional Problem

Consider the transport problem depicted in Figure 4.2. A particle starts at

the source at the point (25.0) in two dimensional space. A target occupying the

line segment from 120.501 to (30, 50) is protected by a lead shield. However. an air

duct runs though the shield as indicated. Distances travelled between collisions are

exponential with cross section (hazard rate) A - 5 in the lead. and ,\ - 1 in the air

duct. A particle is absorbed during a collision with probability 0.9. and scattering

angles are uniform (0.'2,'r). We want to estimate the probability that the particle

reaches the target before it is absorbed. No attempt to model the particle's energy

level was made here.

The arrows in Figure 4.2 denote one path a simulated particle took to reach the

target. Although a real particle would show no propensity to stay in the air duct,

the simulated particle has "'learned" that its best chance for hitting the target is to

climb up the air duct getting as close to the target as possible, and then penetrating

the remainder of the lead shield.

To perform importance sampling the space was split into d = 10.000 cells on an

evenly spaced 100x 100 grid. Suppose the points x and z are both in the air duct. We

can transform to polar coordinates with R = liz- xi]and 4>being the angle formed

by the line segment _ and a horizontal line. We have

Pr{Re dr and CEdo} = O.__l.exp{_r}.
'2r::

Translating back to Cartesian space and multplying by the Jacobian, r-l, gives

0.1 1
p(x,z) = ---. •exp{-llz - xll}. (4.22)2,-, llz-xll

Because the transition probabilities are given in terms of inter-collision distances

.- - and scattering angles, the problem is more naturally expressed in polar coordinates.

_'_ m'
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(o,so) (zo,so) (3o,so) (4s,so)

target

(so,4o)

lead

_,=5
ai

lead

(0,0) (ZO,O) source (30,0) (50,0)
(zs,0)

Figure 4.2: A two dimensional transport problem. Cross sectionsare A = 5 in the
lead. and A = 1 in the air. Absorption probability is 0.9, and the scattering angle is
uniform (0, 2_').

,_1 '
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There is no analytic form for the transition probability to a Cartesian cell. and so we

can not use (4.191 directly. Similar results follow when one or both of the points are

in the lead shield.

We may try to use (4.20) instead as was done in the previous problem. Unfor-

tunately, this would not yield the same nice results here. If we take {C,},d=t to be

the Cartesian cells given by our grid. then the importance sampling scheme (4.20) is

constant on these cells. Starting a particle at a point x in C,, let us condition on the

next point, z. being in the same cell. Under (4.20) the conditional distribution would

be uniform on this cell. Consider the square of the likelihood ratio

p(x, z}) 1 . exp{_O. ,,z _ x[,}q(x. x IIz- xtl " "

Fixing x and taking z uniform on C, we see that this random variable has infinite

expectation. That is. the estimator from this importance sampling scheme has infinite

variance no matter how fine the Cartesian partition {Ci}_=, may be.

As mentioned before, this problem is more naturally expressed in polar coordi-

nates. We avoid the problem of the Jacobian. r -1. blowing up the variance if we take

q to be constant on polar cells rather than Cartesian cells. For each cell C, with center

x_ in our Cartesian partition, let {C_}d;ft be a partition of S by. polar coordinates

with the reference point, (r = 0), being x;. That is. C_ is the set of points in S whose

distance from x lies in a certain range, and whose angle. V, from x lies in a certain

range. Note each cell in the Cartesian partition {C, }_=t has its own partition of S in

polar coordinates.

Suppose for each cell C, in the Cartesian partition we have an estimate. _,, of the

probability of reaching the target for a particle starting in that cell. Let x'_ be the

center of C_. We take

q(x.y,h) = p{x;.xj). #,,,o (4.23)
p(xj.r) + Et p(xi. xt)' _,,j
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where i is chosen so that x E C,, j so that y E Cj, mij so that x_ E C,_o, and l0 so

that x I E Clij. The quantity p(xj. T) represents the probability of hitting the target

directly from xj.

Similar to (4.20). the denominator terms may be calculated and stored prior to

the simulation runs. This will require d units of storage• Note that the denominator

term itself gives a good estimate of #, when our previous estimates {/_,} are "'close"

to the true/_(.). If we deterministically perform the iteration

._+1) :(;_) (4.24)Izi = p(xj,Y) + _ P(Xi,Xt)" l_tij

we obtain estimates/_(-I converging to the solution to a discretized version of this

transport problem. We may prefer to use this method as a means of obtaining esti-

mates/_i for the simulation runs rather than something analogous to Algorithm :1.1.

To parallel Algorithm 3.1 simulation runs would have to be made starting from each

of the 10,000 ceils. This would take a relatively large amount of computing time. The

iteration (4.:24) would have to be calculated for the denominator terms of q(x. y,/_) as

a first step prior to the simulation runs in each iteration. The deterministic recursion

(4.24) alone is much quicker and possibly more stable.

A simple heuristic was used to supply (4.:24) with the initial guess. _101 Starting

from a point x. the particle may head directly towards the target or may climb

up the air duct to the point, (40,40) and then head towards the target. In a one

dimensional problem with exponential step sizes, we know that total penetration

before absorption is itself an exponential random variable. Its mean is increased by

a factor of the reciprocal of the absorption probability (see Section 3.6.2). Thus, we

might approximate the probability of a particle starting from x hitting the target by

p(x. (25,50))0.9

• Similarly, we might approximate the probability of getting to (40.40) first and then
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reaching the target by

p(x. (40, 40 ))0.9. p((40.40), (25.50) )0.9.

The initial guess was given bv

_o) = max(p(xj, (25.50)) °"9.p(x,, (40.40)) 0.9. p((40, 40 ). (25.50)) °"9).

Twenty iterations of (4.24) were run followed by k = 100,000 simulation runs using

(4.23). Using the central limit theorem a 95c_ confidence interval for the probability

of reaching the target starting at (25,0) was given by

(4.382 4- 0.475) • 10-34.



Appendix A

Differentiating Functionals

Take S to be a compact subset of a Euclidean space and let ,_ be an open

collection of functions, _, mapping $ --, R. Let f • ,M --, _ be a functional mapping

functions into real numbers.

Definition A.1 The functional f(.) is considered to be differentiable at _ if there

exists a mapping V f : ,M × S ---, _ such that for a function h

f(_ + h)= f(p) + Is _'f(_. y)'h(y)dy + o(llhll). (A.1)

Here.

Ilhll= ess sup h = inf{M ' L{y' h(y) > M} > 0}

where L denotes Lebesgue measure on S. The functional o(.) is taken so that for any

sequence of functions {h,_} with IIh_ll--"0 we have

o(h_)
lim - 0. (A.2)

llh ll
The following result is an immediate consequence of Definition A.1.

Theorem A.1 If f and g are differentiable functionals on 34 then f + g and f "g

are differentiable and

U'[f + g] = _rf + _g and _[f .g] = f . _Tg + _ f . g.

88
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We will need the following analog of the mean value theorem to derive our differen-

tiation rules.

Theorem A.2 Mean Value Theorem.

Suppose f is a differentiable functional on ,M. If fz E ._4 and Iihll is small enough so

that _ + h E ,_. then there exists a fz" E ._4 so that

f

f(h + h)- f(f_) = Js V'f([_', y).h(y)dy.

Proof: Let b be a function [0.1] ---,77,given by

b(o) = [f(/_ + h)- f(/_)].a - f(/_ + o.h).

For 3 E _ sufficientlv small.

f([z + (_ + 3).h) = f([fi + c_.h] + 3.h) =

/.

• f([_ +a.h)+ 3.Is V f([_ +a.h,y).h(y) dy + o(3.h ).

Thus. b is differentiable on (0.1) in the regular sense and

/,

b'¢c_) = If(# + h)- f(/i)]- Js Vf([z + o.h).h(y)dy.

Note that

b(0) = b(1)= -f(/_).

Thus. b must obtain either a local minimum or maximum for some a" E (0, 1) where

we must have b'(a') = 0. That is

f

f([_ + h)- f([_) = Is rUf([z"Y)'h(y)dy

where/_" = _ + a'.h. |

The next result is used in the proof of Theorem 4.1.
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Thus, f (fi + h) -

f(fL) + _ [0'(y._(y)). g(y,_)+ fs 0(z.h(z)). V'g(z._,y)dz].h(y)dy+r(h).

It remains to be shown that r satisfies (A.2). Consider the first remainder term

£

r:(h,h)= Is g(y, _ ) . oo(y, h(y ) )dy.

Let {h,_} be a sequence of functionals with h,_ll --, 0. Then for almost every fixed

y E 5'. h,,(y)--, 0 and hence

o+(y, h,(y))
"-*0 as n -- ++"-_

h (y)

(take 0/0 = 0). By the mean value theorem (Theorem 5.10 of Rudin [20])

oo(y,h_(y))
= 0'(y,c_)

h,,(y)

for some a E 7_ and so the quantities

oo(y,h,,(y))

v(y). h_(y)

are uniformly bounded except possibly on a set of Lesbesgue measure zero. Now

Ih_i[ > h,(y) for almost every y E $ so by the dominated convergence theorem

lim rt(f_.h,,) _ O.

Consider the remainder term

t"

r2( h ) = Is O(y).o_(y,h).

Let {h,,} be a sequence of functions as specified above. By Theorem A.2

o_(y, h,,)= Is _'g(y,_',z).h(y)dy
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for some _" E ,V[. Since S is compact, it has finite Lebesgue measure and so the

quantities
o_(y, h,)

v(Y) • [Ih, l[

are uniformly bounded except possibly on a set of Lebesgue measure zero, By (A.2).

for almost every fixed y E S,
oj(y. h,) --.0

llh il
and so the dominated convergence theorem implies

I lim r:(ft, h,_) = 0.
rib.l[

i

Analogous arguments apply to the other remainder terms. |

As an example let us apply this theorem to the function appearing in Section 4.2.

/(x,/_) = [p(x.a).s(x.,a)q(x,a,/_) 12 Is (p(x,y).[s(x.y)q(x,y./_)+/J(Y) 1)2
+ dy -[ ]_(x), _ =

c(x. ft). [p(x, a).s(x, a) + fs p(x.y).[s(x,y}.s.(x_,yi.___iyi+_(y)]: dy -[#(v,)] 2]

where c(x,y) is as defined in the proof of Theorem 4.1. Note here. we fix x E S,

considering f(x.. ) as a functional on ,_.

Let us first focus on the part

p(x. y).[ s(x, y) + #(y)]2
f'(x,/_) = fs ;'(x:Yi "7t-_"(-y)" dy.

Taking

g(Y,h) 1, O(y t) p(x.y).[s(x.y)+u(y)] 2= , = and u(y)=p(x.y)+l
s(x,y) + t

we apply Theorem A.3 to get

p(x.y).[s(x. y) + #(y)]2

_'f'(x._,y) = - [s(x,y) + fL(y)] 2
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Note Vg = 0 in this case. Now apply Theorem A.1 and use _'c(x./_,y) = p(x,y) to

get

_'f(y./:t) = c(x,y). V'/'(x. _,y)+ _'c(x./_,y). f(x./_) =

pIx. y).[s(x.y) +/L(y) ]2

-cix. _). Is(x, y)+/_(y)]2 + p(x, y).f(x./_).

The following result specifies conditions under which we can differentiate infinite

sums.

Theorem A.4 Suppose {.f,} is a sequence of differentiable functionals on .M with

7W_

f([L) = _ f_(_t).
m=0

If the sum

_ V'f,_(/_, y) dy
m=0

converges to a finite limit uniformly on ,M. then f is differentiable and

V'f(/_,y) = _ V_f_(/_,y)dy.
m=0

Proof: Let {h,,} be a _equence of functions such that IIh.II-' 0. Let c > 0. There

exists an integer M such that

_ Vf,_(_.y)dy I < _m=M :

for all _ E .M. By Theorem A.2. for each pair (m. n) there exists a B_.,_ such that

f,_(l] + h,,)- f,,,(_)= V'f(ft_.,,, y) 'hn(y) dy.

Thus. for m > 5I

II 1t < 5
for all n.
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By Definition A.1, we can choose N large enough so that for n _>N

J/5][h,.,[]-t.]f,,,([_+h,,)-f_([t) - Wf,_(_,y).h,(y)l< 3m+2 m=0 ...... _I.

Then forn >Nm

O0

[[h,,l[-t ]f(_+h_)--f(_)--fs[EVfm(_,y)]dy t<_rn----O

[" +rn----I rn-M

_=MI _'f,,,(_,y).h,,(y)dy! <._+g+g=e.

That is.

lime ![h,,[[-'. [f(/_ + h,_)- f(/])- _ [_'_ _Tf_(_, y)] dy I =0rn_O

which establishes the theorem• I

Now we need to develop some notion of a second derivative. Unfortunately, we can

not simply define it as the derivative of the derivative. This would be too restrictive.

For example, consider the functional

Clearly, this is differentiable with

Vf(/_,y) = 2 _(y).

Note that for fixed y E $. Vf(.,y) is not differentiable since it depends on the

function _ solely through the value /_(y). Here we see that we can not define a
+

quantity V2f(/_. y. z) so that

f(p + h) = f(p)_- _'f(_,y) dy + _. 2h(Y)'U2f(_'Y'z)'h(z)dydz + °(llhl12)"
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The quantity gr2f is supposed to parallel a second derivative matrix in the discrete

case. The problem here is that the second derivative matrix for the discrete analog

f(/,) = hT/,

is diagonal. However. the "diagonal" elememts in our double integral have no con-

tribution since the set {(y,z) : y = z} has Lebesgue measure zero. We must add a

second element _2f to incorporate the "'diagonal" contributions of the second deriva-

tive.

Definition A.2 .4 functional f is twice differentiable if in addition to being dif-

ferentiable in the .sense of (.4.1). there ezist mappings V2f : ._ x S 2 _ 7"¢, and

V'._f :,_ × S ---,_ such that

f(f_ + h) = f(f_) + fs V f(f_,y).h(y)dy + (A.3)

/, ]{" , h(Y)'U2f(f_,Y,z)'h(z)dY dz + _o2f(f_,Y)'[h(Y)]'dY + o(llhll').

\Ve see our example

satisfies (A.3) with Vaf(/_,y,z) = 0. and U'_f(/_,y) = 2. The following result is

immediate.

Theorem A.5 If f and g are functionals that are twice differentiable in the sense of

(A.3), then f + g and f .g are twice differentiable with

V 2 [f 4- g] -- Vz2f + V_2g

g'_ [f 4- g] = _o2f 4- _ g .

V'2[f.g](/_,y,z) = f(_). V_2g(_,y,z) + _72f(_,y.z). g(/5) + 2_Tf(fL.y).V'g(/5, z)

and

V'i2[f •g](fL,y) = f(_). V'/2g(_, y) + Vo2f(/_, y). g(_).
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Here, Theorem A.2 is extended to a second derivative.

Theorem A.6 Suppose f is a twice differentiable functional in the sense of (,4.3).

Let f_ E ,VI and Ilhllbe small enough so that f_ + h E ,'vl . Then there ezists a fz" E ,VI

such that

f(f_ + h)- f(f_) = /¢ V f(f_,y).h(y)dy+

2" 2 h(Y)'V2f(f_"Y'z)'h(z)dydz + V2f(fi"Y)'[h(Y)]2dY "

Proof: Let b' [0.1] ---, _ be defined by

b(c_) = f(fi + a.h).

Then

b{c_+ ,3)= f([/_ + a.h] + 3"h)= f(f_ +a.h)+3. fs Vf(fi +a.h.y).h(y)dy+

'7" 2 h(y)._y2f(/_ +a.h,y,z).h(z)dydz + V2f(fi +a.h.y).[h(y)]2dy .+

o(_2. Ilhll_),

Therefore, the function b is twice differentiable with

b'(ex) = / Vf(/_ + a.h y).h(y) dyand Js

b"(a) = ffs2 h(Y)'V2f(/_ + a.h. y,z).h(z)dydz + fs _7_f([z + a.h. y).[h(y)]2 dy.

Now apply Taylor's theorem to b. II

The following analog of Theorem A.3 allows us to compute second derivatives in

the proof of Theorem 4.2.
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where for fixed y E S

lim o_(y, h ) = O.
iIhll-0IIhll

Now proceed as in the proof of Theorem A.3. |

We also need the following analog of Theorem A.4 in the proof of Theorem 4.2.

Theorem A.8 Suppose {f_} is a sequence of twice differentiable functionals on j_

with

f(fz) = y_ fm(_).
rn----O

If the sums

X fs _Tf_(_,y)dy, y_ ffs V2f"([z'Y'z)dydz and y[_ fs _'r'fff'(/_;y)dym--O m---O 2 m----O

all converge to a finite limit uniformly on ,,M, then f is twice differentiable with

V2f(_,y,z) = _ V2f_(#,Y, z)
rrt=O

and

m--0

Proof.' The argument is analogous to the proof of Theorem A.4. using Theorem A.6

in place of Theorem A.2. |



Appendix B

Fortran Code for Algorithm 3.1

c

c This program runs uses an adaptive importance

c sampling technique to simulate the expected

c cumulative score of a Markov Chain subject

c to absorption. Each time the chain moves

c from state i to j, the amount s(i,j) is added
c to the total score.

c

• c To use this program create a file called fort.1
c The first line should have three numbers:

c # of states, _t of simulations per iteration,
c and # of iterations.

c This should be followed by a n by n matrix of

c transition probabilities with each row being
c one line in the file.

c This should be followed by an n by (n+l) matrix

c of scores. (s(i,j) being the amount scored
jumping from i to j, the last column

c corresponding to absorption scores).
c The last line of the file should contain initial

c guesses for the expected scores. (n numbers).

c Output is put in a file called fort.2
c

c This program computes the exact solution. At
c each iteration the actual error of the estimate

c and the estimated standard deviation are

c written to a file called fort .3

99
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implicit double precision(a-h,o-z)
common/ibuff/nhit

double precision p(I00,101),s(I00,I01),score(lO0)
double precisxon sd,s2(lO0) ,b(lO0,100) ,e(lO0)
double precision oldscore(100)
inteEer n,k,it ,nhit(i00)
alpha-- I.dO
do while((alpha.lt.O.dO) .or.(alpha.gt. l.dO))
write(*,*) 'enter value of alpha- wt given'

&,'to newest runs'
read (*,*) alpha
if((alpha.it.0 .dO).or. (alpha.gt. 1 .dO))

& write(s,.) 'need O<alpha<-l'
end do

beta- 1.dO-alpha
alpha2zalpha*alpha
beta2-be_a*beta
write(2,5)

5 format('THIS IS ALG03.1'/'INFORMATION IS USED',
&' TO ESTIMATE EXP. SCORE FOR EVERY STATE THAT',
&' GETS HIT IN THE RUN.'/)
read(l ,*) n,k,it
do I0 i-l,n

read(l,*) (p(i,j) ,j=l,n)
p(i,n+1)-l.
do 15 j-l,n

p(i,n+l)-p(i,n+l)-p(i,j)
15 continue

if(p(i ,n.l).it.le-lO) then
if(p(i,n+l).gt.-le-lO) then

p(i,n.l)=O.
else

write(*, 16) i
write(2,16) i

16 format('ERRDR- transistion probabilities'
& ,' for state' ,i3,'have sum >I')

endif
endif

10 continue

do 20 i-l,n

read(I,*) (s(i, j) ,j=l ,n+l)
20 continue

read ( 1, *) ( score(i), i-1 ,n)
score(n+l)-O.
write(2,25) n

25 format('number of states :',i4/)
write(2,30)

30 format('Transision matrix P:'/)
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do 40 i=l,n

write(2,50) (p(i,j) ,j=l,n+1)
49 format (lOOf 15.6)

50 format (I00 (IpelO. 2))
40 continue

write(2,53)

53 format (/ 'Score matrix S:'/)

do 55 i=l,n

write(2,50) (s(i,j) ,jzl,n+l)
55 continue

do 57 i=l,n

s2(i)=p(i,n+l)*s(i,n+l)

do 57 j=l,n

s2(i)=s2(i)+p(i,j).s(i,j)
57 continue

write(2,60) k

60 format(/'# slmulations per iteration per state:',i4)
c

c calculate exact solution

c

do 62 i=l,n

do 63 j=l.,n

b(i,j)=-p(i,j)
63 continue

b(i,i)=b(i,i)+1.

e(i)=s2(i)
62 continue

call rsolve(n,b, e,sing)
write(2,64)

64 format(/'exact solution: ')

write(2,49) (e(i) ,i=l,n)

write(2,70)

70 format (/ 'initial guess at exp scores:')
write(2,49) (score(i),i=1,n)

write(2,80)

80 format (/'iteration' ,5x, 'expected score' ,lOx, 'sd')
c

c run the algorithm
c

do 90 m=l,it

call iteration(n,k,p, s, score,var)
if(re.he.l) then

sd=beta2*oldvar+alpha2.var
oldvar-sd

sd-dsqrt (sd)
do 95 l=l,n

score (1)=alpha* sco re (1)+bet a*o idscore (1)
oidscore (l) =score (I)
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95 conZ inue

else

oidvar-var

sd=dsqrt (vat)
do 97 l=l,n

i oldscore (I) =score (i)

97 coat inue

end if

write(2,140) m,score(1),sd

do 150 1=2,n
write(2,145) score(l)

150 conZ 1hue

write(3,200) score (1)-e (I), sd,nhit (i)

200 format (2(IpelO. 2),i4)
145 formaz (13x ,flS. 6)

140 formaz (/i6 ,Tx ,f15.6,5x, 1pe11.3)
90 continue

end

c

***************************************************
subroutine iterat ion(n,k, p,s, score, var)

c

c performs k simulations of MC with trans, matrix p
c n is # of states, s is the payoff

c vector, estimates of expected score are given in score.

c var is sample variance of estimator for score(1).
C

c k runs are run starting from each state for a total of

c nk runs. Information is used to estimate expected score

c for every state that gets hit in the run.

c SMP says that's legitimate
*********************************************************
C

implicit double precision(a-h,o-z)
common/ibuff/nhit

double precision p(100,101) ,q(100,i01) ,r(lO0) ,s(100,101)

double precision score(t00),var,score2(10000),dk
real x

integer n,k,i,ix,nhit(lO0) ,nh

logical hit (I00)
data ix/27928/

dk=dble(k)

C

c nhit(.) keeps track of how many runs in this iteration have

c hit the particular state
c

do 2 i=l,lO000
score2 (i)=O.dO
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2 con_ inue

call import (n,p, q, s, score)
do 5 l=1,n

score (1)=O .

nhit (I)=0
5 continue

do I0 istart=l,n
c

c run k simulations starting in state istar¢
c

do I0 ii=l,k

nh=nh i_ ( 1)
c

c r(1) represents the R-N deriv, between p and q
c s_arting from when chain Ist hit s_ate 1 .
c

do 15 l=l,n
r(1)=1.

15 continue

c

c hit(l) keeps track of whether this particular
c run has ever hit state 1

c

nhit (ist art )=nhit (istart) +1

do 17 1=1,n
hit (1)=.false.

17 continue

hit (istar_)-. true.

i=istar_

do while (i.le.n)

c

c state n+l corresponds to absorption

c now in state i. choose next state ] according to q
c

j-1
x=rangen (ix)

do while ((x.gt.q(i,j)).and.(j.le.n))

x-x-q(i,j)
j=j+1

end do

c

c update scores for all states that have been hit
c

do 30 l=1,n
if(hit(l)) then

r(1)=r(1).p(i,j)/q(i,j)

score(1)=score(1)+s(i,j),r(1)
end if
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30 con_ inue
C

c score2(.) keeps track of all scores from state
c #I so that the sd may be calculated later from
c a 2-pass algorithm
C

C

nh=nh it(I)
if((hit (1)) .and.(nh.le.10000))

& score2 (nh) =score2 (nh) +s (i,j ) *r (1)
i-j

c

c state j has now been hit
C

if((.not.(hit(j))).and.(j.le.n)) then
nhit (j)-nhit (j)+1
hit (j)z.%rue.

endif
c

c if j.ne.n.l repeat!
C

end do
C

c ii-%h simulation is _inished (particle has been absorbed)
c

10 continue
C

c simulations for this iteration are over. normalize score
c estimates and calculate sd
C

do 50 l:l,n
score (1)-score (1)/dfloat (nhi%(I))

50 continue
var-O, dO
do 60 ii-l,nh

var-var+ (score2 (ii)-score (I))**2
60 con% inue

if (nh._rt.1)var-var/dfloat(nh-1)
return
end
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subroutine impor_ (n,p, q, s, score)
¢

c compu$es impor_ance probabilities q
*****************************************
c

implicit double precision(a-h,o-z)
double pre¢i_xon q(lO0,101) ,p(lO0,101) ,to_al
double precision score(100) ,s(lO0, I01)
integer n, Z, j
do 5 i=l,n

total=O, dO

do 10 j=l,n+l
q(i,j)=p(i,j)*(s(i,j)+score(j))
tot al=_ o_al +q ( i, j )

10 con_znue

do 20 j=1,n+l
q(i, j ) =q(i, j )/t oal

20 con_ inue
5 con_ inue

return
end

C

Ci_s_ssssssmssssilssssslssi_8_

funct ion rangen (ix)
C

c uniform(O,1) random number

C

in_eger a,p, ±x,b15,b 16,xhi,xalo,lef_1o,fh i,k
da_a a/16807/, b15/32768/, b16/65536/, p/2147483647/
xhi=ix/b16
xalo= (ix-xhi*b16)*a
lef_lo=xalo/b16
fhi=xhi,a+lef_lo
k=fhi/bl5

ix=( ((xalo-lef_lo,b 16)-p)+ (fhi-k*b 15),bl6)+k
if (ix .i_. O) ix=ix.p
ran_en=f loa_ (ix),4.656612875e- I0
re¢urn
end
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c_wsss_slsts_sssssmsslss_isslsssls_sssssssms8

subroutine lu(m,b,p,sin 8)
c
c does lu facorization of matrix b

c stores u in upper half, 1 in lover half
c p is the permutation factors
c m is dim of b

c sing true if matrix is singular
CSSSS:$SSlSmSS_IIS_:$:$_RWSS_S_I_mSS_SSSSSSI

C

implicit double precision(a-h,o-z)
double precision bnorm,sum,temp,b(100,100)
double precision pres,xmax
integer iplvot,p(lO0) ,m
logical sing
sing s .false.
pres=1 .e-lO

C

c calculate norm of b
C

bnorm=O.

do 10 j=l,m
Su_mO.

do 20 i=l,m
sum=sum+abs (b(i,j))

20 cont inue

if (sum._t.xnorm) xnorm=sum
I0 continue
c

c do pivoting
C

do 30 j=l,m
C

c find roy vith largest abs val in jth col
C

x_axmO.

do 35 k=j,,.
if(abs(b(k,j)) .gt.xmax) then

xmaz=abs (b(k,j))
ipivot=k

end if
35 continue

if(abs(b(ipivot ,j)).le.pres) then
sing=,true.

vrite(2,70)
goto 80

end if

p(j)=ipivot
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if(ipivoS.eq.j) go%o 50
c

c swiSch rows j and ipzvoS
C

do 40 k=j ,m
%emp=b(j ,k)
b(j,k)-b (ipivo% ,k)
b(ipivo%,k)=semp

40 cons 1hue

c

c clear jib col below (j,j)th elem.
c store L factors below diagonal
C

50 do 60 i=j+l,m
b(i,j)=b(i,j)/b(j,j)

do 60 k=j+l,m
b(i,k)=b(i,k)-b(i,j).b(j,k)

60 cons inue

if(abs(b(m,m)) .le.pres) %hen
sing= .true.
wriSe(2,70)

end if
30 con% inue

70 formaS('MATRIX IS SINGULAR')
80 reSurn

end
C

*****************************************

subroutine rsolve(m,a,b,sing)
C

c solves ax=b puss answer in b
c sing is Srue if a is singular
C,I,i S,,I,S S,I,_,,SS ,I,,I,_,,I,S,I,,I,_,0,,I,:,I,11,,l,mSS _ S_ R 18 Sil _ m_ _

C

impliciS double precision(a-h,o-z)
double precision a(I00,I00) ,b(100) ,%emp
inSeger m,p(100)
logical sing
call lu(m,a,p,sing)

c
c forward elimination
C

if (.noS.(sing)) then
do 10 j=1,m-i

Semp=b (j)
b(j)=b(p(j))
b(p(j) )=Setup

do 20 k=3+l,m
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b(k)=b(k)-a(k,j)*b(j)
20 cont_nue
10 cont inue
c
c backward substu_ ion
C

do 30 j=m,l,-1
b(j)=b(j)/a(j ,j)

do 30 k=1,3-I
b (k)=b (k)-a(k, j )*b(j )

30 continue
end if
return
end
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