skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Project Response To ASME Question for Comparison of Pure Oxy-Firing to Diluted Oxy-Firing

Technical Report ·
DOI:https://doi.org/10.2172/1015453· OSTI ID:1015453

High flame temperature oxy-combustion and low flame temperature oxy-combustion are the two primary types of oxy-combustion, which is the combustion of fossil fuel with oxygen instead of air. High flame temperature oxy-combustion results in increased radiant energy, but heat flux at the water walls has been demonstrated to be maintained within design parameters. Less fossil fuel is used, so less CO{sub 2} is produced. Latent and sensible heat can be partially recovered from the compressors. CO{sub 2} capture costs are decreased. Evenly distributed heat avoids creating hot spots. The NETL IPR capture system can capture 100% of the CO{sub 2} when operating at steady state. New boiler designs for high flame temperature oxy-combustion can take advantage of the higher flame temperatures. High flame temperature oxy-combustion with IPR capture can be retrofitted on existing plants. High flame temperature oxy-combustion has significantly improved radiant heat transfer compared to low flame temperature oxy-combustion, but heat flux at the water walls can be controlled. High flame temperature oxy-combustion used with the NETL's Integrated Pollutant Removal System can capture 95%-100% of the CO{sub 2} with heat recovery. These technologies create CO{sub 2} capture cost savings, and are applicable to new design and existing design boilers.

Research Organization:
Jupiter Oxygen Corporation
Sponsoring Organization:
USDOE
DOE Contract Number:
FC26-06NT42811
OSTI ID:
1015453
Country of Publication:
United States
Language:
English