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Chapter A.1

Definition of the Problem

The POISSON/SUPERTFISH Group codes were set 1up to solve two separate
problems: the design of magnets and the design of rf cavities in a two-dimensional
geometry. The first stage of either problem is to describe the layout of the mag-
net or cavity in a way that can be used as input to solve the generalized Poisson
equation for magnets or the Helinholtz equation for cavities. The computer codes
require that the problems be discretized by replacing the differentials (dz,dy) by
finite differences (6.X,6)"). Instead of defining the function everywhere in a plane,
the function is defined only at a finite number of points on a mesh in the plane.

For example, consider the cross section of a long Il-shaped dipole magnet as
shown in Fig. A.1.1. A uniform triangular mesh of the type shown in Fig. A.1.2 is
used to discretize the problem. Starting from a uniform triangular mesh, the code
“relaxes” the mesh until the sides of the triangles match the boundaries and inter-
faces hetween difterent physical materials as closely as possible. Regions containing
different materials, snch as copper, iron, and vacuum or air, have to be identified
and the material properties specified.

The code that generates the triangular mesh is called LATTICE. For many prob-
lems the preparation of input data for LATTICE is a tedious task, particularly for
curved boundaries between different regions. A code called AUTOMESH has been
wrilten to make the preparation of input to LATTICE simpler and more physically
meaningful.

The next step is to use the mesh and physical properties to find the vector po-
tential A(z,y) atl all mesh points. This is done in the code called POISSON. This
code does not solve Poisson’s equation directly, but rather works with a discretized
form of Ampere’s law, to obtain successive approximations to the potential. After
several iteralions, the code finds a solution that satisfies the boundary conditions
and Eq. (A.1.1) over the entire mesh.

f;H-dl:/AJ-da (A.1.1)
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Figure A.1.1: Cross section of an Il-shaped dipole magnet. The boundaries of the
various regions are entered into LAT'TICE, which generates the mesh of discrete
points shown in the next figure.

NN

Figure A.1.2: The “physical” mesh generated by LATTICE for one-quarter of the
H-shaped dipole magnet shown in Fig. A.1.1.
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There are actually two codes (POISSON and PANDIRA) that can be used to
find magnetic fields. POISSON finds the magnetic field caused by electric currents
and soft iron. PANDIRA is primarily used to solve problems involving permanent
magnet materials, although it can be used for POISSON-type problems. The nu-
merical methods used in PANDIRA are different than those in POISSON, as is
explained in Sec. B.13.6.

It should be noted that POISSON and PANDIRA can also be used to solve
electrostatic problems. Currents are replaced by charges, permanent magnets are
replaced by electrets, etc. It will be shown later that the parallelism between mag-
netostatics and electrostatics is nearly complete.

SUPERFISH solves an eigenvalue problem to determine the resonant frequencies
and standing-wave electromagnetic fields in radio frequency (rf) cavities commonly
used in charged particle accelerators. It can also be used to calculate properties
of two-dimensional cross sections of waveguides or cylindrically symmetric wave-
guides. There are four other codes in the POISSON/SUPERFISH group that are
postprocessors. The functions of all the codes are summarized in TABLE A.1.1.

TABLE A.1.I. A List of the POISSON/SUPERFISH Group Programs

1 AUTOMESH - prepares the input for LATTICE from geometrical data
describing the problem, that is, it constructs the “logical” mesh and
generates (#,y) coordinate data for straight lines, arcs of circles, and
segments of hyperbolas.

2 LATTICE - generates an irregular triangular mesh (physical mesh)
from input data for the “logical” and physical coordinates describing
the problem, calculates “point current” terms at each mesh point in re-
gions with distributed current density, and sets up mesh point relaxation
order. LATTICE wriles the information needed to solve the problem

on a binary file that is read by the equation-solving codes POISSON,
PANDIRA or SUPERFISH.

3 POISSON - solves Maxwell’s magnetostatic (electrostatic) equations for
the vector (scalar) potential with nonlinear, isotropic iron (dielectric)
and electric current (charge) distributions for two-dimensional cartesian
or three-dimensional cylindrical symmetry. It calculates the derivatives
of the potential, namely, the fields and their gradients, calculates the
stored energy, and performs harmonic (imultipole) analysis of the po-
tential. The code uses a successive over-relaxation algorithm and an
iterative scheme thal steps successively through the mesh points.
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4 PANDIRA - is similar to POISSON, except it allows anisotropic and
permanent magnet materials, for which the B vs. H (D vs. E)curve
exists in the second quacrant. PANDIRA uses a different numerical
method to obtain the potential.

5 TEKPLOT - plots physical meshes generated by LATTICE, and equipo-
tential or field lines from the output of POISSON, PANDIRA, MIRT,
or SUPERFISH.

6 FPORCE - calculates forces and torques on coils and iron regions {rom
POISSON or PANDIRA solutions for the potential (Presently not avail-
able).

=1

MIRT - optimizes magnet profiles, coil shapes, and current densities
starting from the output of POISSON, based on a field specification
defined by the user. '

8 SUPERFISII - solves for the TM and TE resonant frequencies and field
distributions in an rf cavity with two-dimensional carlesian or three-
dimensional cylindrical symmetry. Ouly the azimuthally symmetric
modes are found for cylindrically synunetric cavities. The modes are
found one al a time.

9 SFO1 - calculates auxiliary cquantities from the ontput of SUPERFISH.
These quantities include stored energy, power dissipation on the walls
and tube stems, transit time factors, shunt resistance, the quality factor
Q, and the maximum electric field on the boundary. The program also
calculates the [requency shift of the resonant frequency cansed by small
displacements of segments of the cavity boundary. This code can serve
as a model for creating additional SUPERTFISH output codes.

Most users are interested in designing either magnets or rf cavities. For that
reason we have divided this manual into three logically separate parts as illustr aled
in Fig. A.1.3. The codes are discussed in the order that they are normally used. The
remainder of this section provides general information describing access to the codes,
suggestions for using this manual, and a short history of the code development.
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| General Introduction]

Magnet Design Programs

RI Cavity Design Programs

AUTOMESH
LATTICE

POISSON, PANDIRA
TEKPLOT

FORCE

MIRT

AUTOMESH
LATTICE
SUPERFISH
TEKPLOT

SFO1

Figure A.1.3: General Layout of the POISSON/SUPERFISH Manual.
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How to use this Manual

The POISSON/SUPERFISII codes are fairly complicated and will require some
effort on the user’s part before they can be mastered. This mannal is intended to
do three things, namely, to give the heginner a quick introduction, to su pply useful
sunimaries of input procedures for persons familiar with the code, and to give an
in-depth summary of the theory that went into the writing of the codes.

The manual has been divided into two major sections, one for magnet problems
and one for rl-cavity problems. The codes AUTOMESH, LAT'TICE and TEKPLOT
are common to both problems. For the convenience of the reader, the magnet sec-
tion and the rf cavity section each have their own description of these three codes.
These two major sections of the manual can be physically separated without de-
stroying the continuity of each section.

To help the beginner, hoth the magnet section and the rf cavily section be-
gin with two “primer” chapters that go through the basic physics contained in the
codes and display the input and output for a simple example. More examples are
contained in a later chapter. Using these examples the beginner should be able to
master the mechanics of running the codes.

These examples do not exercise all the options available in the codes. The de-
tails of these options are contained in later chapters. We have tried to summarize
the input requirements and definitions of important input quantities in tables so
that persons familiar with the mechanics of running the codes can easily remind
themselves of the available options. We have also included a separate chapter on
diagnostics and suggestions of what to do if these diagnostic messages are encoun-
tered.

The remainder of the material in the sections will he of some use in gaining
an in-depth understanding of the theory behind the codes, the numerical methods
used in the codes, and the basic limitations of the codes. No design tool should be
a “black box” to the user.
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How to Access the Codes.

There are several versions of the codes at various locations around the world.
As a service to the user community, Los Alamos Group AT-6 has undertaken the
maintenance and distribution of a “standard” version of these codes. The standard
version has heen installed on the Los Alamos CRAY /CTSS and VAX systems. The
source codes are written in standard FORTRAN 77. The CRAY version and the
VAX version differ by only a few lines that are readily identifiable from the code
listings.

Copies of the source codes are available to users outside of Los Alamos by means
of magnetic tape or transmission over the DECNET, ARPANET or BITNET com-

puter networks.

A.3.1 Access outside of Los Alamos.

AT-6 will provide copies of the complete set of POISSON/SUPERFISH group
codes plus sample input and output for a magnet and an rf cavily problem to any
individual or institution outside of Los Alamos, provided the requestor furnishes a
magnetic tape and the name of the computer on which the codes will be installed.
The general characteristics of the tapes are:

For VAX/VMS: (UTILITY = COPY/LOG)
9-track, 1600 b.p.i., 80 characters/line,
512 lines/block, labeled ASCII tape

For CDCT600-CRAY or IBM (UTILITY = TAPECOPY)
9-track, 1600 b.p.i., 80 characters/line, 30 lines/block,
unlabeled ASCII (EBCDIC for IBM) tape.

Our mailing address is
Group AT-6, MS H829
Los Alamos National Laboratory
Los Alamos, NM 87545.
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Once a requestor has received a copy of the codes from us, he will be informed
by newsletter when corrections and improvements are made in the codes. Should
difficulties arise in running of the codes, assistance is available by calling any of the
numbers on page ii.

A.3.2 Access at Los Alamos.

At present the codes for the C'RAY are on the Common File System (CFS); the
VAX versions of the codes are stored on the CFS and on the MP-VAX complex.
The following is a description of how to access the codes on these two systems. AT-6
does not maintain the CDCT600 version of the codes, butl they do exist.

A.3.2.1 MP-VAX Version.

The directory AT00$DISK:[AT6HKS.VAXFILES] is the location of the source and
executable files. TABLE A.3.2.1 gives the names of the files.

TABLE A.3.2.1. VAX Files for the
POISSON/SUPERFISH Codes

Source Executable

AUTO.FOR AUTOMESH.EXE
FISSO.FOR  SUPERFISH.EXE
FORSO.FOR FORCE.EXE
LATSO.FOR LATTICE.EXE
MIRLIB.OLB
MIRSO.FOR MIRT.EXE
PANSO.FOR PANDIRA.EXE
POISO.FOR POISSON.EXE
LIBSO.FOR POILIB.OLB
SF1SO.FOR SFOL.EXE
TEKSO.FOR TEKPLOT.EXE
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To run any of the executable files on the MP-VAX complex, e.g., AUTOMIESH,
just type:

RUN ATOO$DISK: [AT6HKS.VAXFILES]AUTOMESH

Henceforth underline means “typed by the user.” The code generates an output file

called TAPE7T3.DAT, which is used as input to LATTICE.

AUTSO.FOR is the only source file independent of other files. To compile and
link it, type:

FORT AUTSO
LINK/EXEC=AUTOMESH AUTSO

The POILIB/LIB file must be linked to all other POISSON or SUPERFISH group
codes. For this reason, the library must be created first if any program besides
AUTOMESH is to be recompiled and il the file POILIB.OLB does not exist. To
recreate the library, type:

FORT LIBSO
LIBR/CREATE POILIB LIBSO

There is an additional library used with the code MIRT. To recreale this library
and run MIRT, type:

FORT MIRSO
LIBR/CREATE MIRLIB POISO,LIBSO
LINK/EXEC=MIRT MIRSO,MIRLIB

To compile and link any of the other codes, PANDIRA [or example, type:

FORT PANSO
LINK/EXEC=PANDIRA PANSO,POILIB/LIB

Table A.3.2.I1 summarizes the commands necessary to recompile all the codes.
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Table A.3.2.I1. Commands for Recompilation of VAX Source Files

FORT
LIB/CREATE

FORT

LINK/EXEC=AUTOMESH

FORT

LINK/EXEC=LATTICE

FORT

LINK/EXEC=PANDIRA

FORT

LINK/EXEC=POISSON

LIBR/CREATE

FORT

LINK/EXEC=MIRT

FORT

LINK/EXEC=FORCE

FORT

LINK/EXEC=SFO1

FORT

LINK/EXEC=SUPERFISH

FORT

LINK/EXEC=TEKPLOT

LIBSO
POILIB LIBSO

AUTSO
AUTSO

LATSO
LATSO,
POILIB/LIB

PANSO
PANSO,
POILIB/LIB

POISO
POISO,
POILIB/LIB

MIRLIB POISO,
LIBSO

MIRSO
MIRSO,
MIRLIB/LIB

FORSO
FORSO,
POILIB/LIB

SF1S0
SF1S0,
POILIB/LIB

FISSO
FISSO,
POILIB/LIB

TEKSO
TEKSO,
POILIB/LIB,

USER$OLB:PLOT10/LIB
(This assunes access to PLOT 10.)

for POILIB

for AUTOMESH
for LATTICE
for PANDIRA
for POISSON

-2

for MIRLIB

for MIRT

for FORCE

for SFO1

for SUPERFISH

for TEKPLOT
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A.3.2.2 The CRAY system.

The codes are available as source files and executable files on the CFS and are
listed in Table A.3.2.11I. Executable files are for CRAY1 — CRAY1S machines.
The user must recompile source files if running on CRAY XMP’s.

Table A.3.2.II1. CRAY Files for the POISSON/SUPERFISH Codes

Source Files Executable Files
Directory ‘ Directory
/lacc/poicodes/cray/src /lacc/poicodes/cray/xeq
AUTSO AUTOMESH
LATSO - LATTICE
FISSO FISH
FORSO* FORCE®
LIBSO
MIRSO MIRT
MIRLIB®
PANSO PANDIRA
POISO POISSON
SF1SO SFO1
TEKSO TEKPLOT
POILIB*

At the present time, FORSO is not on the CFS.
bMIRLIB is the binary version of POISO. 1{ is needed for MIRT only
°POILIB is the binary version of LIBSO.

There also exists a directory called /lacc/poicodes/cray/xmp, which contains
examples of input and output files for several magnet and rf-cavity problems.

To obtain an executable program, e.g., AUTOMESH, type:

mass get dir=/lacc/poicodes/cray/xeq automesh"

To execute the program, type:

automesh




6 PART A CHAPTER 3 SECTION 2 December 3, 1986

The program will ask for the name of an input file that the user has created. Cre-
ation of the input file is described in Sections B.3 and C.3 below. To obtain a source
program, e.g., AUTSO, type:

/lacc/poicodes/cray/src autso

The first lines of the source files are the compile instructions needed for the XEQ
utility. Compilation can be done with the single command:

Xeq autso

AUTOMESH is a self-contained program. All other programs use common routines
from file LIBSO (the source file) or POILIB (the binary file). To compile one of
these programs, e.g., LATTICE, type either

/lacc/poicodes/cray/src latso poilib
xeq latso

or

/lacc/poicodes/cray/src latso libso
xeq libso
xeq latso

The program MIRT uses an additional common file — POISO (the source file) or
MIRLIB (the binary file). To compile MIRT, type either

/lacc/poicodes/cray/src mirso poilib mirlib
xeq mirso

or

/lacc/poicodes/cray/src mirso poiso libso
xeq_libso
xeq poiso
xeq mirso
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History of the
POISSON/SUPERFISH Codes.

The POISSON/SUPERFISII group of codes really consists of two sets of codes,
one for the design of magnets and another set for the design of rf cavities. These
codes have heen developed over a period of 15 years. In the late sixties, Jim Spoerl at
Lawrence Berkeley Lahoratory (LBL) began modifying a diffusion calculation code
written by Alan Winslow at Lawrence Livermore National Laboratary (LLNL).
The result was the TRIM codes (MESII and FFIELD) capable of solving mathemat-
ical models of two-dimensional magnets, including the effects of finite permeability.
MESH constructed an irregular triangular mesh to fit the geometry of the magnet.
FIELD solved Poisson’s equation for the potential function over the mesh.

Ron Holsinger, Klaus Halbach and other associates at LBL found the codes
useful but in need of improvements. They made mmajor changes in MESH and intro-
duced the use of conformal transformations. In view of the extensive changes, they
decided to rename the codes LATTICE, TEKPLO'T, and POISSON. LATTICE is
like MESH; TEKPLOT, which was split from MESH, draws plots of either the mesh
or the field lines; and POISSON is like FIELD. Holsinger continued to develop these
codes for two years while he was at the Swiss Institute for Nuclear Research (SIN)
and the European Center for Nuclear Research (CEERN). Another version of the
magnet codes (LATTCR, POICR, TRIPCR and FORCCR) were created by C.
Iselin while Holsinger was at CERN.

By 1975, when Holsinger arrived at Los Alamos, he had compleled five programs:
LATTICE, POISSON, TEKPLOT, MIRT, and FORCE. MIRT was an optimization
program that iteratively changed the shape of pole faces and current distributions
to obtain the field distribution specified by the user. FORCE was created to calcu-
late the magnetic forces and torques on thé iron and current-carrying coils of the
magnet.

While at Los Alamos, Holsinger, in collaboration with Halbach, wrote three more

programs: AUTOMESH, PANDIRA, and SUPERFISH. For many problems the in-

1
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put data preparation for LATTICE is very tedious because one must supply both
physical and logical coordinates along the boundaries. AUTOMESH eliminates the
need for the user to define the logical coordinates and most of the physical co-
ordinates. PANDIRA was written in response to difficulties encountered in using
POISSON to solve problems involving permanent magnets for which the algorithm
used in POISSON (successive point over-relaxation) diverges badly. PANDIRA uses
the so-called “direct method” that works well for linear problems. Only a few iter-
ations are required to make the reluctivity self-consistent with the solution for the
potential.

At the urging of Don Swenson and Klaus Halbach, Holsinger wrote the rf cavity
code SUPERFISH using the techniques developed for the magnet codes. SUPER-
FISH has many features in common with a program called MESSYMESH, which
was created at the Midwest Universities Research Association (MURA) during the
early sixties.

SUPERFISH not only calculates the fields but also determines the eigenfrequen-
cies of the cavity. To solve rf cavity design problems, one uses AUTOMESI and
LATTICE to describe the geometry, SUPERFISH to find the field and frequency,
and TEKPELOT to display the fields in the cavity. One additional program called
SFO! has been written to calculate auxiliary quantities from the output of SU-
PERFISH. These quantities include transit time factors, power losses on the walls,
and frequency shifts caused by perturbation of the cavity walls. SI"O1 was written
for Drift Tube Linac (D'TL) design. Other SUPERFISH post processor codes have
been written for special purposes but are not included in the code group at present.

Originally the Los Alamos version of the codes were written for the CDC6600
computers. In 1977, when Holsinger left Los Alamos, he converted all the codes to
run on the VAX/750%. He continued to update and maintain the programs until
1982. At that time, he transferred the maintenance and distribution responsibility
to Los Alamos.

The codes have had tremendous popularity since the early seventies, and this
has resulted in a proliferation of versions of the codes. The documentation for
these codes was adequate but incomplete. Until recently, Los Alamos has had very
limited resources for documentation, maintenance, distribution, and consultation
with users. In October of 1983, The Department of Energy (DOE-HENP) provided
financial support with which we have been able to undertake the writing of a com-
prehensive manual and the standardization of codes. With continuing DOE support
we have completed this manual, established users’ groups to guide improvements of
the codes, and set up a system for distributing updated versions of the codes and
documentation.
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Chapter B.1
Summary of the Basic Physics

Mathematically, the Poisson group of computer codes solves Maxwell’s static
equations (MSE’s) in integral form .and in two dimensions. When the MSE’s are
taken together with the boundary conditions, they are equivalent to a generalized
form of Poisson’s equation in two dimensions.

The first two chapters of Part B are a primer for the Poisson Group Codes.
They contain a summary of the basic equations and the run sequence for a simple
magnel. If you follow the steps for finding the field for this simple magnet, you
will know how to run the codes for other cases. The codes have a large nummber of
options which are explained in Chapters B.3 through B.9. Chapter B.12 contains
three examples which illustrate some of these options. The rest of the chapters
contain reference material that you will find useful if you run into problems or if
you want to understand what the codes are doing in more detail.

B.1.1 Maxwell’s static equations.

Maxwell’s static equations (MSE) are derived from Maxwell’s equations under
the assumption that all fields are independent of time. They can be divided into
three types:

Ampere’s Law Type Equations:

fH-dl:/J-da—»VxH:J, (B.1.1.1)
][E-d1=0—>'\7xE=o,  (B.L12)

Gauss’s Law Type Equations:
fB-da:O-»V-B:O, (B.1.1.3)
f[_)-daz/pdv—»V-D=p, (B.1.1.4)

3
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Material Type Equations:

Isotropic materials

H = +(| B )B/ o, (B.1.1.5)
D =¢,k(| E|)E, (B.1.1.6)
Anisotropic materials
=
H =7 -B/p,, (B.1.1.7)
D =¢, k. ‘E, (B.1.1.8)
Anisotropic, permanent magnet (electret) material
H =7 -B/p, — H., (B.1.1.9)
= ’ g
D=¢ % -E—D,, (B.1.1.10)

where H and E are the magnetic and electric field, B and D are the magnetic
induction and the displacement fields, J and p are the electric current and charge
densities, and -y is called the reluctivity. (It is the reciprocal of the relative perme-
ability x,,.) The quantity k. is the dielectric constant. For anisotropic materials
both ¥ and K. are tensors, i.e., the magnetic field and magnetic induction are not in
the same direction, for example. For permanent magnet (electret) materials there
are magnetic and displacement fields that remain even when B and E are zero.
Historically these are the coercive forces, H, and D.. In the Ampere’s law formu-
las, da is an element of area times a unit vector perpendicular to that area, and
dl is an element of path length times a unit vector tangent to the closed contour
surrounding the area. In the Gauss’s law formula, dv is the volume enclosed by the
closed surface of the integral on the left side of the equation. The constants ., and
€, depend on the system of physical units (meters, kilograms, seconds, Coulombs,
for example) used to measure the field quantities.

One goes from the MSE’s to the generalized Poisson equation by assuming that

B=VxA, (B.1.1.11)

which follows from Eq. (B.1.1.3). For two-dimensional, cartesian geometry one can

show that A
A=A, ¢, (B.1.1.12)

and A
J=1J.¢, (B.1.1.13)
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where €, is a unit vector in the z-direction. From this and Eq. (B.1.1.1) it follows
that

2 ) D2 Ao + 55 [ Ba) Dt = oo
(B.1.1.14)

which is the generalized Poisson equation in cartesian coordinates.

For magnet configurations having cylindrical symmetry one can use cylindrical
coordinates (r, 6, z). It is shown in Chapter B.13 that when

A = Ag & (B.1.1.15)

and
J=Jses (B.1.1.16)

then
9 10 8 8 .
o [’Y(| B |);‘5;(T‘Ao)] + 3 [7(I B |)52"Ae] = oo (B.1.1.17)

in cylindrical coordinates. The codes find the vector potential in either carte-
sian coordinates or cylindrical coordinates. The generalized Poisson equations for
anisotropic and permanent magnet materials are more complicated and can be found
in Chapter B.13.

Problems involving anisotropic material can only be solved using the code
PANDIRA. POISSON treats only isotropic materials. PANDIRA will treat both
isotropic and anisotropic materials. Anisotropy is described in terms of the reluc-
tivilies v along an easy axis and v, along a hard axis. PANDIRA allows two
geometries for the easy axis. In the first geometry, the easy axis is independent
of position in the material. In the second geometry, the direction of the easy axis
changes along the circumference of a circle whose center need not coincide with the
origin of coordinates. There are no natural anisotropic materials of this type, but
one can artificially approximate such materials by assembling a mumber of wedge-
shaped permanent magunets. We will only describe the first geometry here; the
second geometry is described in Section B.13.1.

Figure B.1.1.1 illustrates the direction of the easy axis relative to the axes of
the larger problem. The easy axis makes an angle ¢ B with respect to the horizontal

axis of the coordinate system. The reluctivity tensor Yisa symmetric tensor whose
cartesian components are:

= ‘y“cosz(pE + y18inlpg, (B.1.1.18)
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Y
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(-39 %e
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Figure B.1.1.1: Definition of coordinate axes for anisotropic malerials.

1 .
Yoy = -2-(7" — v1)sin2¢E, (B.1.1.19)

Yoy = ‘Y||siﬂ2<PE + v1cos’pE. (B.1.1.20)

When the anisotropic material is also permanent magnet material, the coercive force
H. is also parallel to the easy axis; its components are

H., = H.cospg, (B.1.1.21)

and
H., = H sinpg. (B.1.1.22)

Because of the parallelism between the equations for the electric and magnetic
fields, it is easy to see how one equation-solver can be used for both magnetostatic
and electrostatic problems. If we let the electric feld be given as the gradient of
the scalar potential V,

E=-VY, (B.1.1.23)

then it can be shown that the corresponding generalized Poisson equation for elec-
trostatics in cartesian coordinates is

1s) g _, a ) _Q_ A
éz[fie(lEl)ég"]+5§[he(|El)ay‘] — olen (B.1.1.24)

which is of the same form as the magnetostatic equation, Eq. (B.1.1.14). The
electrostatic equation in cylindrical coordinates is

13 o P 8 1
ror [""8“ B DE.V] * 5 [’*e(l E|)5;} ] = p/<o, (B.1.1.25)
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which is slightly different than the corresponding magnetostatic equation,
Eq. (B.1.1.17). The codes do distinguish between magnetostatic and elzctrostatic
problems for cylindrical coordinates.

Boundary conditions must be supplied to give a unique solution to the equa-
tions. Poisson’s equation is an elliptic partial differential equation. ‘This means that
the most general allowed boundary conditions take the form

aAy + b3A,/On = ¢ (B.1.1.26)

where A, is for instance the value of the z-component of the vector potential eval-
uated on the boundary and 84,/8n is the derivative of the potential in a direction
normal to the boundary curve, evaluated on the boundary. The quantities a, b and
¢ are known functions evaluated on the houndary. The Poisson group codes do not
allow this type of generality. On any segment of the houndary, the quantities a and
b ave either zero or one. The quantity c is always zero when a is zero. That is,
only two types of boundary segments are allowed. These are referred to as Dirichlet
boundaries and Neumann boundaries, which are defined as follows:

Dirichlet
Ay=c (B.1.1.27)

Neumann

8Ay/0n = 0. (B.1.1.28)

An easy mnemonic is to remember that “normal” derivative is “Ncwmnann.” The
only known way to assign the proper boundary conditious for a problem is by
“physical intuition.” You must have some qualitative idea how the field is going to
behave at the boundary. Because of the lack of generality buili into the codes, there
are some magnetic field problems that cannot be solved with these codes. Many
problems can be solved only approximately.

B.1.2 Basic Algorithms for finding the potential.

The code POISSON sets up a linear equation for the potential at each point
on a topologically regular, triangular mesh. For a picture of such a mesh, see Fig.
B.2.7 below. By topologically regular we mean that the mesh points can be put into
one-to-one correspondence with points on a mesh generated by equilateral triangles,
which we will call the logical mesh since the points in this mesh can be numbered
in a “logical” manner. The topologically regular mesh, which is a distortion of
the logical mesh, is called the physical mesh. Each point on the logical mesh has
six equidistant nearest neighbors. See Fig. B.1.2.1. The correspondence hetween
the physical mesh and the logical mesh allows one to identify the corresponding six
neighbors on the physical mmesh. If we call the potential at the center of the hexagon
Ag, and call the potentials at. the nearest neighbor mesh points A4;, for: = 1 to 6,
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Triangle 2

Figure B.1.2.1: Correspondence between points on the logical mesh and the
physical mesh for the six nearest neighbors. The contour shown in the phys-
ical mesh is the contour used in Ampere’s law, Eq. (B.1.1.1).

then Ampere’s Law, when discretized, can be shown, see Appendix B.13.6, to give
the equality

Sy wi A+ 80 Jias
fo = Tz Wi+ G Ty Jia (B.1.2.1)

i=1 Wi

where a; is the area for each triangle enclosedl by the contour integral and the w;’s
are linear functions of the reluctivities v;’s. For instance it can be shown that

wy = % (] B [)eot(61) +72(] B |)cot(6)] (B.1.2.2)

where the angles 6; and 8, are shown in Fig. B.1.2.1. Such an equation can be set
up at each mesh point. The result is a set of “linear” equations with the values
of the polential at each mesh point being the unknowns. This set of equations is
solved by a numerical procedure called successive substitution with overrelaxation.
This procedure is described in Section B.13.6. These equations are nonlinear, since
the reluctivities v; are functions of the A;. The 4;’s are allowed to change during
the solution process so that the final solution is self-consistent.

Having obtained a solution for the potential over the mesh, the codes will cal-
culate auxiliary quantities such as the magnetic induction B and its derivatives.
These calculations are discussed in the next subseclion.

B.1.3 Calculation of auxiliary quantities.

In principle one could obtain the fields by numerical differentiation of the po-
tentials, but this would not be very accurate. Derivatives of the fields, for example
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0B. /8y, would be even more inaccurate. POISSON gets around this limitation by
analytically taking the derivatives of the potential expressed as a series of the form

> (@nttn + bavy) (B.1.3.1)

where the quantities ,, and v, are polynomial solutions of Laplace’s equation in
either cartesian or cylindrical coordinates. The subscript n is the order of the
polynomial. Table B.1.3.I gives a short list of these polynomials for cartesian coor-
dinates. '

Table B.1.3.I Harmonic Polynomials
n Uy vp
1 =z y
2 x2—4° 2zy
3 z®—-3zy? 32%y-—4°

Magnet designers will recognize these as dipole, quadrupole, and sextupole magnetic
potential functions. The coefficients in the multipole expansion defined by Eq.
(B.1.3.1) are determined by the symmetry of the problem and by a least-square
fitting procedure using the first 18 neighboring points to a given point. The details
are described in Section B.13.2. The derivatives of the potential are easily expressed
in terms of the a,’s, b,’s and the harmonic polynomials.

In addition to calculating the field and its derivatives, POISSON also calculates
the energy in the field. The program FORCE is the postprocessor to POISSON that
calculates the forces and torques on current-carrying coils and blocks of magnetic

(iron) materials. Once again, the procedures used to calculate these quantities are
described in Section B.13.2.

B.1.4 Physical units used in the Poisson group
codes.

Maxwell’s static equations Eqs. (B.1.1) through (B.1.10) have been written in
the form suggestive of rationalized MKS units, but the units really depend on the
values of ¢, and y,. The codes, on the other hand, do assume certain default units.
These units are given in Table B.1.4.L
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Table B.1.4.1 Default System of Units

Quantity Units

Length centimeters

Current amperes

Induction B gauss

Field H amperes/cm

Potential A gauss-cin

Derivatives of B gauss/cm

Force amp-cm-gauss = 10 %newtons

Stored energy (cartesian)  joules/meter
Stored energy (cylindrical) joules

Lo 0.4 m gauss-cm/amp*
Potential V volts

Field E volts/cm

Velocity of light c 2.997925 x 10" cm/sec
Charge coulombs

*11, = 4m x 107° volts/(amp-cm) is also used in the codes. One can calculate
€0 = 1/(1oc?) = 8.8542 x 1071¢ coul /(volt-cm).

As the reader can see, this is a modified rationalized MKS system; meters are
replaced by centimeters, and Tesla are replaced by gauss. The user can change
the units to some extent by making use of the conversion parameter in the input
to AUTOMESH or LATTICE. These codes will accept length input in any units
the user desires (inches, feet, meters, furlongs, ...). This conversion parameter is
known as CON(9). For example, it CON(9) = 2.54, then LATTICE expects input
in inches; if CON(9) = 100, LATTICE expects meters.

B.1.5 Trimming the poletips with MIRT.

The POISSON postprocessor called MIRT is an optimization program that al-
lows the user to trim the field in a dipole magnet. It can also be used to change the
shapes of current-carrying coils, and to change the value of currents to meet user-
defined field specifications. We will only describe the poletip modification capability
here. The basic procedure is to: 1. Run POISSON with a preliminary estimate of
the current in the coil and a simple flat poletip; 2. Specify the desired field values at
points in the air gap of the magnet; 3. Specify points on the poletip boundary that
can be moved to reshape the poletip; and then 4. Let MIRT change the magnitude
of current in coils and the shape of the poletip to give the desired field distribu-
tion in the gap. MIRT uses the output of POISSON and an input file containing
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Figure: B.1.5.1: Cross section of H-shaped dipole magnet.

I

Figure B.1.5.2: Field distribution of dipole magnet; only one ¢uarter
of,the magnet is shown. The poletip has been trimmed using MIRT.

the specified fields and poletip boundaries to make the required changes. Figures
B.1.5.1 and B.1.5.2 shows an example of a poletip after a typical MIRT optimization.

The change in the poletip boundary is made by adding or subtracting “bumps”
to the boundary. The purpose of this subsection is to describe the shape of the
bumps. There are five shapes: triangular, trapezoidal, three interval, left-sided
two interval, and right-sided two interval. These bumps can be either positive or
negalive, that is, can add or take away iron from the poletip. The triangular and
two interval bumps are specified by three points on the magnet boundary and the
other two bumps require four points. Figure B.1.5.3 shows the labeling of the points
defining the bumps.

The solid line is the original boundary and the dotted lines illustrate a typical
distortion of the boundary.

A bump is determined by one parameter, which we will call u. The formulas for
the shape functions describing the two and three interval bumps are as follows,
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g B te g 8 EE 1 Bg
§ E = §§ § 3 E E 22 § g 2 5 g =
. - e b—dj—b-dyddy]  Pdgd—dy—q b —dyd
SR S N
" o y N L . - . :
TRIANGULAR 3-INTRRVAL V{zFT s RIGHT SIDE™S
BUMP BUNP 2-INTERVAL 2-INTERVAL
BUMP BUMP

Figure B.1.5.3: Nomenclature for the five types of bumps used to trim the
poletips in MIRT. Bumps can overlap and be positive or negative. The
solid line is the original boundary and the dotted lines illustrate typical
distortions. A left-sided two interval bump is specified by letting the left
end and left apex points be the same. The right-sided two-interval bump
is specified by letting the right apex and right end points be the same.

(1.12122 ) 0S€B<d1
y=719yo—{ u—axz—0b)? , i<z <d;+d;
ag(z —dy —ds — d3)? i+d<z<d+dr+ds
(B.L5.1)
B _{u-—a.zazz , 0<z<d, , dg=0
Y= a;;_(w—dz—-ds)z 3 d2§w<d2+d3
(B.1.5.2)
_ _{alzz:z , 0<z<d;
Y= \u—ap(e—di—dy)? , i<z<di+dy , dz=0
(B.1.5.3)

where the a’s and b’s are complicated functions of the length of intervals between
points and are determined by matching the sections of the functions and their
slopes at the apex points. (Note: the left-sided two-interval bump is incorrectly
programmed in the code. It will be corrected soon.)

indentBumps may overlap and hence one can achieve rather complicated poletip
shapes. The number of bumps that can be used at one time depends on the number
of points in the airgap at which the field is being specified. The optimization
is based on a least squares procedure and therefore the most meaningful results
are obtained when the number of points to be fitted is larger than the number of
parameters being adjusted.



Chapter B.2

SIMPLE EXAMPLE .
H-SHAPED DIPOLE MAGNET

B.2.1 Run on the Los Alamos CRAY Computer

This section contains the input necessary to calculate the magnetic field distri-
bution in the vertical cross section of a long dipole magnet used in circular particle
accelerators. Because the dipole is long, the calculation of the field far from the
ends of the magnet is essentially a two dimensional problem. The magnet cross
section has fourfold symmetry and therefore it is only necessary to describe one-
fourth of the magnet. The first thing to do is make a diagram of the magnet cross
section and assign (x, y) coordinates to the ends of straight line segments defining
the boundaries between different materials as shown in Figure B.2.1.1.

0,,13.) 122..13.)
Reglon 2
iron
y(om)
(5.5.6.) (15..6.)
(6.,5.5) (145,55
Region 3
coil
(5.5.2.4)
(0122 pr—————r74.)
Region t air,
(0.,0.) (6..0.) x(cm) (14.5,0.)(15.0.) (22..0.)

Figure B.2.1.1: Upper right quadrant of the cross section of an H-shaped dipole
magnet showing iron, coil, and air regions and the boundary segments between
them; (x, y) coordinates are assigned to the endpoints of line segments separating
regions.
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h-magnet test, uniform mesh 4/23/85 rtitle line; starts in col Zl
$reg nreg=3,dx=.45,xmax=22.,ymax=13.,npoint=5$

$po
$po
$po
$po
$po

x= 0.0,y= 0.08%
x=22.0,y= 0.0$
x=22.0,y=13.0%
x= 0.0,y=13.08%
x= 0.0,y= 0.0$

nreg: number of regions; dx: horizontal mesh size
xmax,ymax: dimensions of Fig. B.2.1.1
npoint: number of $po lines

$reg mat=2, npoint=10$ [an region; mat=2 means material is iron

$po
$po
$po
$po
$po
$po
$po
$po
$po
$po

x= 0.0,y= 2.0$

x= 5.1,y= 2.0$
x= 6.5,y= 2.4%
x= 5.5,y= 6.0%
x=15.0,y= 6.0%
x=165.0,y= 0.0$

x=22.0,y= 0.0%
x=22.0,y=13.08$
x= 0.0,y=13.0%$
x= 0.0,y= 2.0%

$reg mat=1,cur=-25455.791, npoint=5% lgrd reg.; mat=1 plus cur=(amps) means coil reg.

$po
$po
$po
$po
$po

x= 6.0,y= 0.0$
x=14.5,y= 0.0$
x=14.5,y= 5.5$
x= 6.0,y= 5.5%
x= 6.0,y= 0.0%$

Figure B.2.1.2: The input file hmagl for AUTOMESH. The first line is a title. Each
region is described by a region line starting with the symbol $reg. The region line
is followed with several point lines ($po) defining points on the boundary segments.
FORTRAN namelist format is used. The title must begin in column 2. Text in
boxes is comment information.

These coordinates are next used to create the input file for AUTOMESH. The

program AUTOMESH constructs a triangular mesh of points over all physical re-
gions. The program LATTICE, which runs after AUTOMESH, deforms that mesh
to make lines in the mesh coincide with the boundary segments. Figure B.2.1.2
shows the AUTOMESH input file corresponding to Figure. B.2.1.1.

automesh [Executes AUTOMESH; program requests name of input filel

? type input file name
? hmagi

region no. 1

ok

region no. 2
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ok
region no. 3
ok

stop

At completion AUTOMES generates 2 files:

1. TAPE73: Input for LATTICE, 2. OUTAUT: Output listing from AUTOMES
automes ctes time .456 seconds

cpu= .175 sys= .037 i/o+memory= .244

all done

Figure B.2.1.3: Terminal session with AUTOMESH on the CRAY. Underlined
words are those entered by the user.

Figure B.2.1.3 shows the terminal output when AUTOMESH is executed on
the CRAY. Henceforth any words underlined in examples of terminal sessions are
understood to be words typed by the user. Other text is generated by the program.

The next step is to execute the program LATTICE. An interactive session on the
CRAY is shown in Figure B.2.1.4.

lattice LExecute LATTICE with input file TAPE73 gencrated by AUTOMES]
7type input file name '

? tape73

beginning of lattice execution

dump 0 will be set up for poisson

h-magnet test, uniform mesh 4/23/85

?type input values for con(?)

? %6 0 *46 6 8

Changes to problem constants in array CON( )
CON(6)=0 specifies internal permeability table
CON(46)=6 specifies syrumetry type for h-magnet
elapsed time = 0.7 sec.

iteration converged

elapsed time = 1.0 sgec.

generation completed

dump number 0 has been written on tape35

stop |2 output files generated: TAPE35 and OUTLAT]

lattice ctss time 1.457 seconds
cpu= .954 i/o= .440 men= .062

all done

Figure B.2.1.4: Interactive session with program LATTICE.

The user can change program constants contained in the array CON( ). The
format for entering changes is described in Sec. B.3.1. The list of all CON’s that
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can be changed is contained in Sec. B.13.7. This detail is not important for our
exawple. - It is sufficient to note that CON’s can be changed at this point. In the
above example, CON(6) = 0 tells the program to use the permeability table for iron
as stored in the program itself. There are options that let the user specify his own
table. By specifying the symmetry type CON(46)=8, the user is making full use of
the symmetry of the problem in finding the solution, hence is saving time.

Upon completion, LATTICE generates two output files: TAPE35 and OUTLAT.
TAPE35 is a binary file used as input to TEKPLOT', POISSON and/or PANDIRA.
The file TAPE35 can have several binary records written to it. The record coming
from LATTICE is labeled “dump0.” The output from POISSON can added records
labeled “dumpl”?, “dump2”, etc. This will be described below. The file OUTLAT
is a summary of input and output generated by LATTICE. Unless the program is
generating unreasonable input to POISSON, there is seldom any reason to look at
this file.

The usual way to verify that AUTOMESH and LATTICE have executed prop-
erly is to run TEKPLOT, which is a program that plots the input geometry and
the mesh generated by LATTICE. Figure B.2.1.5 shows an interaclive session with
TEKPLOT in which one generates Figures B.2.1.6 and B.2.1.7 shown below.

tekplot lExecutes TEKPLOT DProgram; requests input datil
7type input data- num, itri, nphi, inap, nswxy,
?7 s |s means skip in FREE format; hence use default values‘

input data
num= 0 itri= 0 nphi= 0 inap= 0 nswxy= 0
plotting prob. name = h-mag test, uniform mesh 4/23/85

?7type input data- xmin, xmax, ymin, ymax, rPlol: limits on x and yj
?7 s [Skip; hence use default valueil

input data

xmin=0.000 xmax= 22.000 ymin=0.000 ymax= 13.000

7type go or no

? go |After “go™, screen clears clears and TEKPLOT generates Fig. B.2.1.6

7type input data-num, itr, nphi, inap, nswxy, [<CR> clears screen & gives this prompt

? 01s |¥ri=1 means plot the mesh

input data

num=0 itri= 1 nphi=0 inap= 0 nswxy= 0
plotting prob. name = h-magnet test, uniform mesh 4/23/85
7type input data- xmin, xmax, ymin, ymax,

T s
input data
xmin=0.000 xmax= 22.000 ymin=0.000 ymax= 13.000

7type go or no

[If “no”, will go back to correct input; “go” clears screen and generates Fig. B.2.1.7.

7 g
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7type input data-~ num, itri, nphi, inap, nswxy, <CR> gives this prompt—|

? -1s Lnum:-l means dump number -1, hence quit; must type “s”]
tekplot c¢tss time  .824 seconds

cpu= .054 i/fo= .711 mem= .059

all done

Figure B.2.1.5: Interactive session with TEKPLOT. By choosing the default values
for the parameter itri, one gets a plot of the magnet geometry without the mesh.
On the second time around, we choose itri=1, which gives a plot of the mesh. Num
stands for dump number, hence num=>0 meais get the information from the lattice
dump. The program is terminated by letting num=-1 on the third go-around.

o Prob. sheasgast test. wnifors seeh 423/5S Geles @
Figure B.2.1.6: Plot from TEKPLOT of the magnet geometry. This is a verification

of the input data to AUTOMESH for the problem “h-magnet test, uniform mesh
4/23/85.”
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¢V¢VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'A'AVAVAVAVAVAVAVAVAVAVAVAVA AVAVAVAVAVAVAV¢° Y VAQAQ‘
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prod. sh-asgret tast, unifore mssh 4/20/85 Getes @

Figure B.2.1.7: Plot from TEKPLOT of the mesh generated by LATTICE for the
problem “h-magnet test, uniform mesh 4/23/85.”
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The mesh looks good. We are now ready to run POISSON. Figure B.2.1.8 shows
the interactive session.

poisson
7type ‘‘tty’’ or input file name [PiOISSON can execute from file or terming
7 oy
7type input value for num [mun is dump number on TAPE!EI
? 0 ITn this case only dump 0 is availabkﬂ

beginning of poisson execution from dump number 0
prob. name = h-magnet test, uniform mesh 4/23/85
7type input values for con(?) rMake changes in CON’s using FREE format

? s Fs:skip;make no chang&l

elapsed time =1.1 sec.
0 cycle amin amax residual-air eta-air rhoair xjfact
gmax residual-iron eta—iron rhofe

o] o] 0.0000e+00 0.0000e+00  1.0000e+00 1.0000 1.8000 1.0000

4.00006-03 1.0000e+00 1.0000 1.0000
o] 50 rhoair optimized 0.9903 1.9558 lambda = 9.9976e-01
(o] 50 -4.7296e+04 0.00006+400 5.73490-02 0.9903 1,9558 1.0000

3.902680-03 3.4407e-02 1.0039 1.0000
o 100 rhoair optimized 0.9717 1.9578 lembda = 9 .99780-01
o 100 -1.0012e+0S 0.0000e+00  2.5360e-02 0.9717 1.9578 1.0000

2.08346-02 2.09080-02 0.9834 1.0000
o 200 rhoair optimized 0.8960 1.9478 lambda =1 .00030+00
0 200 -1.1958e+05 0.0000e+00 1.8887¢-04 0.8960 1.9478 1.0000

4.8352¢~-02 7.9338e-05 0.8900 1.0000
0 370 -1.19396+05 0.0000e4+00  3.7301e-07 0.9367 1.9478 1.0000

4.63920-02 1.61356-07. 0.9328 1.0000

solution converged in 370 iterations
elapsed time =5.1 sec.

dump number 1 has been written on tape35. IPOISSON writes binary recorﬂ

?type input value for num Program loops back to start
? -1

-1 stops program. Could have continued from dump 1 if wanted
to change some CON’s and run again.

stop
poisson ctss time 5.664 seconds
cpu= 4.166 ifo= 1.014 mem= .485

all done

Figure B.2.1.8: Interactive session with POISSON on the CRAY.

POISSON produces two output files TAPE35(dump1) and OUTPOL. Data for
plotting the field distribution is contained on TAPE35(dump!) and can be viewed by
running TEKPLOT again. Figure B.2.1.9 is the interactive session with TEKPLOT
which produces the plot shown in Figure B.2.1.10.
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tekplot |Executes TEKPLOT|
?type input data-num, itr, nphi, inap, nswxy
?7 10208 ’num—i means dumpl; nphi=20 is number of potential lines plotte*|
input data
num= 1 itri= 0 nphi= 20 inap= 0 nswxy= 0
plotting prob. name = h-magnet test, uniform mesh 4/23/85 cycle = 370
?type input data- xmin, xmax, ymin, ymax,

T s
input data
xmin=0.000 xmax= 22.000 ymin=0.000 ymax= 13.000

‘7type go or no
U “no”, will go back to correct input; “go” clears screen and generates Figure B.2.1. 101
7 go

?7type input data- num, itri, nphi, inap, nswxy, I( ‘arriage return gives this prompt]

?7 -i8 lnum——l means dump number -1, hence quit; must type “s ”]
tekplot ctss time 1.480 seconds
cpu=  .797 i/o= .611 mem=  .073

alﬂl done

Figure B.2.1.9: Interactive session with TEKPLOT for generation of field plot.

—
G«

prod. =h-magnet test, unifors meah 4/23/85 cyclo = 379

Figure B.2.1.10: Plot of magnetic field lines for problem “h-magnet test, uniform
mesh 4/23/85 cycle = 370.” This plot normally appears on the screen of your
terminal if you have graphics capability.
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The file OUTPOI contains a summary of the input data and a table of the field
components and their gradients. We show lines 188 to 228 from that file in Figure
B.2.1.11. '

B.2.2 Execution on Los Alamos Computers

The POISSON group codes are on both the CRAY’s and on the MP-Division
VAX computers. The-procedure for running these programs is slightly different in
the two cases. Figure B.2.2.1 lists the commands to run the above test case on the
CRAY’s. It is assumed that the user knows how to sign on to the CRAY.

mass get dir=/lacc/poicodes/cray 7/exq automesh lattice tekplot poisson

mass get dir=/lacc/ p01codes /cray /xmp  hmag] oauthl olathl opoihl
automesh

fred outpm

Figure B.2.2.1: Series of commands for running test problem on the LANL € 'RAY’s.
The first line gets the run files from the common file systemn. The second line re-
trieves the AUTOMESH iuput-file hinag. The other files on this line are output files
from AUTOMESH, LATTICE and POISSON. They may be useful for comparing
your results with ours. Fred is an editor for looking at OUTPOL

FRED ATOO$DISK: [AT6HKSIHMAG1.COM

using FREDLAST switch settings r,dit-o,r.opening information linel
$1$dua3: [AT6HKSTHMAG1.COM;7 14 lines

*T* I’I‘ells FRED to type all the lines in the file HMAGI C OMI

1 $COPY ATOO$DISK: [ATGHKS]HHAGI AUT []
2 $FRED HMAGI AUT

3 T* ‘I'ype the entire AUTOMEqH input file IMAG1.AUT]
4 END Leave edltorl

5 $Run ATOO$DISK: [AT6HKS]AUTOMESH

6 HMAG1.AUT

7 $RUN ATOO$DISK: [AT6HKS]ILATTICE

8 TAPET3 | 'Tells LATTICE to use TAPET3 as inpnt |

9 %6 0 %46 6 s | Change of CON’s in LATTICE]|

10 $RUN ATOOSDISK: [AT6HKS]POISSON

11 TTY |'Tells POISSON that input is from the t-erminaﬂ

120 dump number expected by POISSON |
13 S Skip changes in the CON array |
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14 -1 [dump number = -1 terminates the POISSON run
$ Iiis the VAX/VMS system prompt]

Figure B.2.2.2: A listing of the command file HMAG1.COM using the FRED editor.

When running on the MP VAX/VMS machines, all executable files are under
the directory ATOO$DISK:[AT6HKS]. The test problem uses a command file called
HMAG1.COM to execute AUTOMESH, LATTICE and POISSON; TEKPLOT is
used interactively to generate the various plots. At completion the output files
OUTAUT.LIS, OUTLAT.LIS and OUTPOLLIS may be compared with the cor-
responding output files OAUTHL.LIS, OLATHI1.LIS and OPOII1.LIS, which are
stored in directory ATO0$DISK:[ATGLIKS]. The step by step procedure is shown in
Figure B.2.2.2.

B.2.3 Executing on Systems Outside of Los Alamos

The magnetic tape containing the POISSON Group Codes sent. ontside nsers
contains the above test problem input and output files. The files will have difterent
names depending on whether the user receives the CRAY version or the VAX/VMS
version. Figure B.2.3.1 list the file names that should be on the magnetic tape.

VAX/VMS CRAY

HMAGL.COM  --~--
HMAG1.AUT  HMAGH
OAUTHi.LIS 0OAUTH1
OLATH1.LIS OLATH1
OPOIH1.LIS OPOIH1

Figure B.2.3.1: List of input and output files included with POISSON Group Codes.



Chapter B.3

POISSON Input to LATTICE and
AUTOMESH

Before the code AUTOMESII, the only way to enter data describing the physical
geometry of the problem was through LATTICE. Although most users will use AU-
TOMESH to enter inpnt, it is worthwhile understanding the structure of LATTICE
input so that the structure of AUTOMESH makes sense. Furthermore there may
he occasions when the user wishes to modify the oulput of AUTOMESH, which
becomes the input to LATTICE. In this case, the user needs an understanding of
the input to LAT'TICE.

B.3.1 Format-free Input Routine
FREE (I,RAYI,NI,...,RAYI,NI)

The authors of the Poisson Group programs developed their own format-free
input routine to make it easier to enter data into all programs except AUTOMESIL.
The input into AUTOMESH is via the standard FORTRAN NAMELIST method.

The other Poisson Group programs expect most of the input to be in a format
that can be read by one of the following CALL statements:

CALL FREE(1,RAY1,N1)
CALL FREE(2,RAY1,N1,RAY2,N2)
CALL FREE(3,RAYi,N1,RAY2,N2,RAY3,N3),

where RAY1, RAY2, and RAY3 are arrays of length at least equal to NI, N2, and
N3 respectively. In some cases the array length is variable. The CALL statements
and dimensions are part of the program and hence not under the user’s control,
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except for arrays of variable length. Section B.3.2 spells out in detail which of the
three CALL statements are being used to enter data and what freedom the user
has.

-

‘The FREE format uses special characters to shorten input and to save array
space. These characters and their functions are described helow, and an example
is given which uses all of them. When the forms in the left-hand column below are
used for input, FREE interprets them as explained on the right. The case (upper
or lower) for the letters R, S, and C may be important on some computers.

*I X This notation meaus store the number X, in the location (I) of the current
array. If there are numbers following X, they are stored in locations (1+1),
(I+2), ete.

XRN This notation means store the number X, in N successive locations in the
current array. A blank hetween X and R is optional. (Think of RN as
being shorthand for “repeat N times.”)

S This symbol means skip the rest of the input to the current array and go
to the next array, or end the read if the current array is the last array in
the CALL FREE statement.

C This symbol means count the number of values read into the current. array
and save the nmumber as N1, N2 or N3 as appropriate. 1t also acts like S
above. The purpose of this is t¢ read in arrays of variable length.

Numbers may be either integers or floating point numbers. The latter can be
in simple decimal format + XX.XX or in scientific format + X.XXXE + XX. The
exponent must contain a plus or a minns sign. The plus sign in front of the mantissa
is optional. The only other non-numeric characters allowed in the input field are
the blank and the comma. Either the blank or the comma can be used to separate
input values. Comments may follow the last S or C or required numbers on any
input line.

The example below illustrates all the above features. A and B are dimensioned
arrays, and K is a single variable.

Calling sequence: N = 100; CALL FREE(3,A,5,B,N,K,1)

input line: -3,4. +5.3E-2 R2 S %20 .1R10 C 13 THIS IS AN EXAMPLE.
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This input produces the array values:

A(l) =-3

A(2) = 4.0
A(3) = 0.053
A(4) = 0.053

A(5) = unchanged

B(1) thru B(19) = unchanged
B(20) thru B(29) = 0.1

N =10

K=13

CHAPTER 3 SECTION1 3

Oue final important note. The FREE entry format requires all floaling point
numbers to have a decimal point. For example, ANGLE = 90 degrees must be
entered as “90.” in order to he recognized correctly. Leaving out the decimal point

is a common beginner’s mistake.
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B.3.2 POISSON/PANDIRA Inputs to LATTICE

Logically the user would begin by making an inpul file to AUTOMESH, but
to understand the reasoning behind AUTOMESH it is important to understand
the structure of the input file to LAT'TICE. The input file for LATTICE is called
TAPET73 for historical reasouns.

Read Read

Title —»1 $REG’s
Write Stop
TAPE73

Figure B.3.2.1: Flow Diagram for Read statements in LATTICE for POISSON and
PANDIRA.

The structure of the read statements in LATTICE is shown in Fig. B.3.2.1. The
first data line can have anything in columns 2 through 80. If the first column is
non-blank, then this data set is for a SUPERFISH problem. If the first column is
blank, then this data set is for a POISSON or PANDIRA problem. The characters
in columns 2 through 65 are stored and used in printouts for run identification.
Because of the smaller word size on the VAX as compared with the CRAY, only
columns 2 through 33 are available to the user for run identification when ruuning

on the VAX.

The reason that LATTICE distinguishes between SUPERIISH and POISSON
runs is because LATTICE initializes the elements of the CON and C arrays with
their default values. Somne of the CON’s and C’s have different meanings for SU-
PERFISH as compared to POISSON or PANDIRA, and therefore the default values
are different.
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The next line (or several lines if needed) is reserved for making changes in the de-
fault values of the CON’s, (elcments in the CON array). Ouly one CON absolutely
must be changed; the user must tell the program the number of regions, NREG =
CON(2). NREG is the upper limit of the DO-loop for the next read statements.

There are several other CON’s that should be examined at this point. Many of
these can only be changed in LATTICE if they are to have any effect at all on the
problem. A list and brief description are given in Table B.3.2.1.

Other CON’s can be changed from their default values at this time even though
they have no effect in LATTICE. The changes will carry through to the output file
TAPE35 and le available to the other programs when needed.

The format for entering the changes in the CON’s is the special free format
written for this program and described in Sec. B.3.1. The following example will
illustrate the power of this format. Suppose we want to change CON(2), CON(9),
and CON(21) through CON(24). The input line might read as follows:

*2 10 *92.54*2111008S

The * occurs before the number of the element to he changed. When several ele-
ments in a row are to be changed, only the first one need be indicated by a star.
The final notation S means skip the rest of the elements in the array. This same
free format is used to enter elements into the C and B arrays that come next.
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Number

Table B.3.2.I CON’s that can only be changed in LATTICE

Name

POISSON

Default

Description

CON(2)

CON(9)

CON(21)
CON(22)
CON(23)
CON(24)

CON(32)

CON(37)

NREG

CONV

NBSUP
NBSLO
NBSRT
NBSLF

IPRINT

MAP

None

1.0

OO - O

Number of Regions in the problem geometry. Presently,
NREG mnust be < 31.

Conversion factor for the units of length in the problem.
CONYV = 1.0 for centimeters; CONV = 0.1 for milli-
meters; CONV = 2.54 for inches; etc.

Indicator for boundary conditions on the UPper,
LOwer, RighT, and LeFt boundaries of the rectangu-
lar region defining the problem. For magnet problems
a default value of 0 indicales a Dirichlet boundary
condition, which means magnetic field lines are
parallel to the boundary lines; a default value of 1
indicates Neumann boundary conditions, which mean
magnetic field lines are perpendicular to the houndary
line.

An indicator for print options. TPRINT = 0 gives no
printout; IPRINT = —1 causes LATTICE to write
the (X, Y) coordinates of mesh points to QUTLAT
on the CRAY or to OUTLAT.LIS on the VAX. This
parameter can be changed again in POISSON or
PANDIRA and produces other print options in
those programs. It is not often that this write to
OUTLAT is of much use, but the option exists.

A parameter in the conformal transformation

W = Z **MAP/(MAP*RZERO#+(MAP-1). RZERO

is CON(125). LATTICE needs this value to calculate

the current density in the transformed geometry.

MAP # 1 - the current density is adjusted to

conform to the transformed geometry
in all closed regious.

MAP = 1 - no current density adjustment.

Note: Tf the user does not want any current density
adjustment (the correct density for the trans-
formed geometry has been input), MAP
should not be changed until execution of
POISSON/PANDIRA.
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Table B.3.2.I (cont.) CON’s that can only be changed in LATTICE

Nwmber

CON(70)

CON(79)

CON(81)

CON(84)

CON(123)

CON(124)

CON(125)

Name

ICAL

RHOXY

NOTE

EPSO

TNEGC

TPOSC

POISSON
Default

0

10~%

0.0

.0.0

Description

Indicator for the type of formula to use in calculat-
ing the current associated with a mesh point.
ICAL = 0 means use the standard formula;

ICAL = 1 mcans use the angle formula. The latter
formula gives more accurate fields ncar coil boun-
daries.

The starting over-relaxation factor for the irregular
mesh generation. It is seldomn that the user will want
to change this.

A flag for determining the order in which the mesh
points are relaxed.

NOTE = 0 gives the order: air points, interface points,
then iron points. [Caution: For PANDIRA runs

NOTE = 0 must be used.]

NOTE = 1 gives the order: (air + interface) points
then iron points.

The convergence criterion for mesh generation.
There is seldom a reason to change this number,
but if LAT'TICE has trouble converging, increasing
EPSO may help.

A parameter used in conformal transformation.
Input the total negative current in original geometry.
LATTICE stores the negative transformed

currents.

A parameter used in conformal transformation.
Input the total positive ciuwrent in original geometry
LATTICE stores the positive transformed

currents.

The scaling factor in the conformal transforination..
See CON(3) above. Normally RZERO is the aperture
radius.
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There are six elements in the C-array for each region; they are called “region
constants”. The first of these, C(1), is an arbitrary region identification number.
These numbers need not be in nwmerical order.

The second region constant, C:(2), is a material code that tells the program

b b
whether the region being defined is air or a material with magnetic or dieléctric
properties. The constant C(2) can take on 12 values, which are sununarized in Ta-

ble B.3.2.15.

Table B.3.2.I1. Material Codes for a Given Region.

C(2) Material Property

N e e L T T
0 All points inside this region are omitted from the problem.

1 Air or current carrying coil (K, = ke = 1)

V)

Iron using permeability table internal to POISSON or PANDIRA, or a
constant reluctivity (dielectric constant) y(x.) when CON( 6) = -1

Iron (dielectric) with external input table no.1, or a second constant y(x.)
Iron (diclectric) with external input table no.2, or a third counstant vy(x.)
Iron (dielectric) with external input table no.3, or a fourth constaut y(x.)
Permanent magnet (electret)with straight line B(11) (D(E)) function
(PANDIRA only)

7 through 11 are the samne as 6

U W

When C(2) = 0 for a region, no mesh is set 1p in this region. The treatment of
the boundary points of such a region are determined by the region constant C(6)
discussed below.

POISSON and PANDIRA have one internal table of permeability vs. the magni-
tude of the magnetic field H. By using options C(2) = 3,4,5, the user can set up three
other tables. How these tables are entered is described in Chapter B.5. When doing
problems with permanent magnetic materials, which requires using PANDIRA, one
can enter up to 6 other permeability functions. These eutries also are described in
Chapter B.5.

The third region constant, C(3), for magnet problems is the total current in
amperes at a point, along a line, or in an area. If the region consists of a point, then
the current through the point is called a cwrrent filament. If the region is a line,
then the current through the line is called a current sheet. It is assumed that the
current is uniformly distributed along the line. Likewise when the region is an area,
the current is distributed uniformly over the area. The fourth regional constant
C(4) provides an alternative way of entering currents. (See below.) In electrostatic
problems C(3) is the fixed electrical potential at the point or on the line. When this
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region is an area, the whole area is at the constant potential C(3).

The fourth region constant, (!(4), is the current density (amps/length?®) through
_ two-dimensional regions. For electrostatic problems it is the charge density in units
of Coulombs/length?.

The fifth region constant, ('(5), is an integer indicating the type of triangle to
be used in defining the logical mesh for the region. There are three choices:

C(5) = 0, equal weight triangles (the default)
C(5) = 1, isosceles triangles
C(5) = 2, right triangles.

Equal weight and isosceles triangles are geometrically the same in a strictly uni-
form mesh. The difference comes in the relaxation process by which the logical
mesh is deformed into the physical mesh. The distinction between the logical and
physical mesh is discussed helow wlhen we discuss input to the B-array. The default
is probably best choice.

The sixth region constant, C'(6), is called a special boundary indicator. This con-
stant is nsed for two purposes. It is uscd to indicate special fixed potential points,
and it is used to indicate the boundary condition on a boundary of the problem
that does not coincide with the extreme rectangular logical boundary of the prob-
lem. When it is used for the latter purpose, it can have a value of 0 or 1. C(6)
= 1 indicates a Neumann boundary condition and C(6) = 0 indicates a Dirichlet
boundary conditon. The default values for C!(6) are C(6) = 0 for the first region and
C(6) = 1 for all other regions. This latter default is suitable for all regions interior
to the problem area.

When C(6) is used for the purpose of indicating fixed potential points in elec-
trostatic problems, it takes on the value -1, and the special fixed potential value is
entered as C(3), as described above. Note that setting up constant potentials (mag-
netic or electrostatic) can also be handled in POISSON. See subsection B.5.3.4.

The B-array requires a list of logical and physical coordinates for the bound-
ary of each region. The first stage of any problem using LATTICE is to set up
a physical picture of the geometry and assign physical coordinates (z,y) to points
on the boundaries of the various regions. The second stage is to superimpose a
regular triangular mesh on the whole area. Each mesh point can be assigned logical
coordinates (K, L) as illustrated in Fig. B.3.2.2. One can now associate logical
coordinates (K, L) with plysical coordinates (x,y) by matching the physical point
with the closest logical point. LATTICE will use this association to distort the
logical mesh into the so-called physical mesh, consisting of irregular triangles as
illustrated in Iig. B.3.2.3. The tediousness of constructing the logical mesh and
making the association of coordinates is the main reason AUTOMESH was created.
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Since LATTICE connects points on bonndaries with straight lines, one need only
specify points at the ends of long straight segments, but approximating a circular
arc with straight lines requires many points.

Once again the special free format is used to entler the values in the B array. The
order of the input is K(1), L(1), X(1), Y(!), K(2), L(2), X(2), (Y2), etc. The origin
of coordinates in the logical mesh is (1,1), not (0,0). This input list is terminated
with the free format character C, which stands for “Count the number of input

values.”

As indicated in Fig. B.3.2.1, the data groups for the C and B arrays are repeated
for each region. The first region defines the largest rectangular region containing
the problem and its boundary values miust contain the largest K and L values in the
mesh. The data for the second region redefines, or overwrites, the region constants
for all mesh points belonging to that region. Data for each following region over-
writes previously defined values in the same way. For example, suppose one wishes
to define a coil region inside of an air region. If the coil region were given first in
the input data and then the air region, the coil region would be overwritlen and
this coil would not exist in the problem.

Usually each region is closed, i.e., the data for the first and last boundary points
of the region are identical. Ilowever, it is possible to specify data for a “point re-
gion” or a “line region”. The purpose of this specification would be to define the
physical coordinates of specific points, and perhaps also the total current at a point
(a current filament) or a special fixed potential value at that point for an electro-
static problem. For point and line regions, the input values of C(2) and C(5) are
not used in the program. Figure B.3.2.5 is an example of how the regional data
is entered for the geometry shown in I'ig. B.2.3.4. The logical mesh numnbers were
taken from a mesh slightly finer than that shown in Fig. B.3.2.2.
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Figure B.3.2.3: The corresponding physical (relaxed) mesh for H-shaped magnet.
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(22,13)
(0,13)
1 (RON)
(0,6) R
(con)
3
(0’2)"POLEYIP
2 (AR) 4 (SPECIAL PONT)
< |
(0,0) (6,0) (22,0)

Figure B.3.2.4: Example of input geometry to LATTICE for H-shaped magnet.

H-MAGNET TEST, UNIFORM MESH 4/23/85
*2 3 %21 0100 *9 1.0000 SKIP
11 0.0000 0.0000 0 O REGION
1 1 0.0000 0.0000
50 i 22.0000 0.0000
§0 34 22,0000 13.0000
1 34 0.0000 13.0000

1 1 0.0000 0.0000 COUN
2 2 0.0000 0.0000 O 1 REGION

1 6 0.0000 2.0000
13 6 5.1000 2.0000
13 7 5.5000 2.4000
14 8 5.5000 2.8000
13 9 6.5000 3.2000
14 10 5.5000 3.6000
13 11 5.5000 4.0000
14 12 5.5000 4.4000
13 13 5.5000 4.8000
14 14 5.5000 5.2000
i3 15 5.5000 5.6000
14 16 5.5000 6.0000
35 16 15.0000 6.0000
34 15 15.0000 5.6000
35 14 15.0000 5.2000
34 13 15.0000 4.8000
35 12 15.0000 4.4000
34 11 15.0000 4.0000
35 10 15.0000 3.6000
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34 9 15.0000 3.2000
36 8 15.0000 2.8000
34 7 15.0000 2.4000
36 6 15.0000 2.0000
34 5 15.0000 1.6000
35 4 15.0000 1.2000
34 3 15.0000 0.8000
35 2 15.0000 0.4000
34 1 15.0000 0.0000
50 1 22.0000 0.0000
50 34 22.0000 13.0000
1 34 0.0000 13.0000
i 6 0.0000 2.0000 COUN
3 1 -2b455.7910 0.0000 O 1 REGION
14 1 6.0000 0.0000
33 1 14.5000 0.0000
34 2 14.5000 0.3929
33 3 14.5000 0.7857
34 4 14.5000 1.1786
33 & 14.5000 1.5714
34 6 14.5000 1.9643
33 7 14.5000 2.3571
34 8 14.5000 2.7500
33 9 14.5000 3.1429
34 10 14.5000 3.5357
33 11 14.5000 3.9286
34 12 14.5000 4.3214
33 13 14.5000 4.7143 -
34 14 14.5000 5.1071
33 156 14.5000 5.5000
14 15 6.0000 5.5000
15 14 6.0000 5.1071
14 13 6.0000 4.7143
i5 12 6.0000 4.3214
14 11 6.0000 3.9286
15 10+ 6.0000 3.5357
14 9 6.0000 3.1429
i5 8 6.0000 2.7500
14 7 6.0000 2.3571
15 6 6.0000 1.9643
14 6 6.0000 1.5714
i5 4 6.0000 1.1786
14 3 6.0000 0.7857
15 2 6.0000 0.3929
14 1 6.0000 0.0000 COUN

Figure B.3.2.5: An example of a TAPET73 file (input to LATTICE) for the Il-shaped
magnel shown in Fig. B.3.2.4.
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B.3.3 POISSON/PANDIRA Input to AUTOMESH

AUTOMESH prepares an input file, called TAPE73, for LATTTCE. It constructs
the logical mesh from triangles whose size and shape are specified by the user and
from the physical region boundaries. It assigns logical (K, L) coordinates and phys-
ical (X, Y) coordinates to points on the boundaries of the region. Extra line regions
can be added to the problem where requested. These lines form houndaries for
changing the size of the triangles. AUTOMESH scts only six of the CONs to default
values. AUTOMESH automatically assigns boundary conditions to the problem by
selting CON(21) through CON(24). If these boundary conditions are not appro-
priate, they can be changed in LATTICE when that code asks for CON’s changes
or they can be changed directly by editing the file TAPE73 which is produced by
AUTOMESII. In addition to the boundary conditions already meutioned, it sets
C'ON(2) = NREG and CON(9) = CONV. The default for CON(9) is 1, that is, the
length unit is centimeters; this value can be overwritten by including CONYV in the
REG namelist (see below).

The inpnt to AUTOMESI is the same for either SUPERFISIT runs or POISSON/
PANDIRA runs with two exceptions. The first exception is the first data line,
which is the title for the problem. If colunn 1 is blank, AUTOMESH assigus
POISSON/PANDIRA defaults to some variables; if columu 1 is not blank, the pro-
gram assigns SUPERFISII defaults. The second exception occurs when the user
elects to use cylindrical coordinates by later setting CON(19) = ICYLIN = 1. For
POISSON/PANDIRA (X, Y) corresponds to (R, Z); for SUPERFISH it is opposile,
namely, (X, Y) corresponds to (Z, R). Mathematically this may be confusing, but for
most physical problems it is the natural choice. If the user is not satisfied with this
convention, he can change it to some extent by setting NSWXY = 1 in TEKPLO'T.
Of course, this only changes the plots, not the expected inputs to AUTOMESH.

Read Read
Title [ $REG’s

Write Stop
TAPE73

Figure B.3.3.1: Flow chart for read statements in AUTOMESH.
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The first line of input to AUTOMESH is the title card. Positions 2 through
80 can be anything. Column 1 should be hlank as mentioned above. The next 8
computer words (columns 2 through 65 on the CRAY, columns 2 through 33 on the
VAX) are used for output identification.

Following the first line, AUTOMESII expects one or more groups of data. Bach
gronp consists of one REG NAMELIST input followed by one or more PO NAMELIST
inputs. The first REG NAMELIST must include a value for NREG; NREG is the
the number of REG NAMELISTS expected. The READ structure is show in Fig.
B.3.3.1. :

NAMELIST is the standard FORTRAN inpnt routine. Each such input starts
with a blank in column 1 followed by $“name” where “name” is the name of the
input. Here “name” is either REG or PO. Any item in the group may be entered in
any order separated by commas. If there is any question about NAMELIST, see a
FORTRAN manual. The following is a typical NAMELIST entry for the namelist
REG:

$REG NREG=5,DX=0.08,XMAX=3.5,YMAX=2.85,IBOUND=1,NPOINT=8%
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B.3.3.1 The REG NAMELIST.

Twenty-nine quantities can be entered in this NAMELIST for each region of the
problem. Most quantities entered for the first region are used for all succeeding
regions until changed by a subsequent REC input. This is called “successive region
data overwrite”. Certain quantities must be entered, while others have meaningful
default values. The following is a list in alphabetical order describing the quantities
as used by POISSON and PANDIRA. Some can only be entered in the first REG
NAMELIST and must not be changed in subsequent regions. These are marked by
¢ before the variable.

Table B.3.3.I Region Namelist Variables.

Name Default Description

¢ CONV 1.0 Conversion factor for length units. 1If CONV = 1.0, units
are centimeters. To use other units, set CONV to the num-
ber of centimeters per unit desired. CONV is the same as
CON(9) in the inpul to LATTICE and should be entered
for the first region only.

CUR 0.0 The total current in the region in amperes, or the fixed
potential value on the boundary of the region for electro-
static problems. This is the coustant C(3) in Sec. B.3.2,
Input for LATTICE.

DEN 0.0 The current density in the region for magnet problems;
the charge density for electrostatic problems. Units are
amps/length® or Coulombs/ length?® for areas or amps/
length or Coulonibs/length for line regions. DEN is C(4)
in Sec. B.3.2, Input for LATTICE.

$ DX none  The requested width of triangles in the mesh for the first
region. 1t must not be changed for subsequent regions.

¢ DY (x DX) The requested height of triangles in the mesh for the first
region. If DY is not specified the default value is either
V3% DX/2 i ITRI = 0, or 1, or DY = DX if ITRI=2
(right triangle option). It must not e changed for subse-
quent regions. ’

IBOUND -2 A special region boundary indicator. See discussion under
the sixth region constaut C(6) in the Input for LATTICE.
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Table B.3.3.I (cont’d.) Region Namelist Variables.
Name Default Description

IPRINT 0 If IPRINT = 1, a special diagnostic printout to OUTAUT
is provided by the subroutine LOGIC. 1f IPRINT # 0 the
mesh coordinates of mesh points are printed out to OUTAUT.
If IPRINT' = 0, there are no printouts. (JPRINT is not
CON(32), but a local AUTOMESII variable.)

IREG (n) An arbitrary number identifving the region. The default
value is 1 for the first entered REG NAMELIST and is
incremented by 1 for each succeeding REG NAMELIST.

¢ ITRI 0 The type of triangle to he used for the mesh in the region.
ITRIL = 0 means equal weight; I'TRL = 1 meauns isosceles;
and ITRI = 2 means right. The distinction between equal
weight and isosceles is the way that the rclaxation is done
from the logical mesh to the physical mesh.

O KMAX  none* Used Lo refine the mesh in a user-defined rectangle of the

¢ KREG1 none* problem area. When these values are entered, they asso-

O KREG2 none* ciate a logical mesh number with a physical position.

¢ LMAX  noue* Thus, KMAX corresponds to XMAX, LMAX corresponds

¢ LREG1L none* 1o YMAX, KREGI to XREGI, etc. This allows the user

¢ LREG2  none* {o force a smaller mesh step in a given region. For exam-
ple, suppose XREG1 = 10.0, XREG2 = 20.0. KRE(1
= 10, KREG2 = 110. This gives (KREGL ~ 1) = 9 mesh
steps in the X-direction of length 10.0/9 = 1.111 up to
the location X = XREG = 10, giving a very coarse mesh.
From X = 10.0 to X = 20.0 there will be (KREG2 -
KREG1) = 100 mesh steps of length DX = 10/100 = 0.1,
giving a finer mesh. The size of the mesh beyond X = 20.0
will depend on the difference hetween KMAX and KREG2,
and between XMAX and XREG2. The same principle
applies to the Y-direction. The values of these variables
are global and hence should be entered for the first region
and not changed in_subsequent regions.

*If these values are not entered, the code assigns proper values (see under

XREG1, XREG2, etc., below).
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Table B.3.3.I (cont’d.) Region Namelist Variables.

Name

Default

Description

¢ LINX

¢ LINY

MAT

NPOINT

¢ NREG

0

0

none

noiue

A special indicator for vertical line regions.

LINX = 0 produces vertical line regions at the locations
where mesh size changes occur (XREG! and XREG2).
LINX = 1 produces no vertical line regions at the locations
where mesh size changes occur. This parameter was intro-
duced into the code in April of 1986. LINX = 1 can help
LATTICE converge under some circumstances.

A special indicator for horizontal line regions. It works
the same way as LINX above, but for horizontal line
regions at locations where mesh size changes occur

(YRECG1 and YREG2).

The material code for the region. MAT = 0 means that
all points in the region are to be omitted {rom the problem
and requires the use of the special boundary indicator

_ IBOUND. The other possible values of this parameter are:

MAT = 1, air or vacuum (Kn = 1, Ke = 1).

= 2, iron with the internal permeability table, or
constant reluctivity (dielectric constant) v (k)
when CON( 6) = -1.

= 3, iron (dielectric) properties from
user-defined ‘Table 1, or a second constant y(xe)

= 4, iron (dielectric) properties {rom
user-defined Table 2, or a third constant vy(x.)

= 5, iron (dielectric) properties fromn :
user-defined Table 3, or a fourth constant y(x.)

= 6 through 11, iron (dielectric) properties for
permanent magnets (electrets) with straiglit
line B(H) (D(E)) functions (PANDIRA ONLY).

The number of segment endpoints to be entered in the
PO NAMELIST that follows this REG NAMELIST.

The number of sets of REG NAMELIST data to be en-
tered for this run. This must be entered in the first REG
set and should not be changed in subsequent REG sets.
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Table B.3.3.I (cont’d.) Region Namelist Variables.

Default

Description

¢ XMAX

¢ XMIN

¢ XREG1

¢ XREG2

¢ YMAX

¢ YMIN

none

0.0

XMAX

XMAX

none

0.0

Maximuwn physical X value in the problem. For
3-dimensional problems with cylindrical symmetry where the
coordinates are denoted (r, ¢ = 0, z) XMAX is the maximum
value of 7.

Minimum physical X value in the problem. For
3-dimensional problems with cylindrical symiuetry where the
coordinates are denoted (r, ¢ = 0, z) XMIN is the minimum
value of 7. When XMIN # 0 the user should consider enter-
ing values of XORG = CON(38) in POISSON, PANDIRA or
MIRT when asked for CON changes. See Subsection B.5.3.6.

A line region is added at XRECG1. If KREC1 is not set,
the width of the triangles will approximately double to the
right of XREGL. If KRECI is set, the triangle width will
be determined as described under KMAX, etc. above.

A line region is added at XREG2. If KREG2 is not set,
the width of the triangles will approximately double to
the right of XREG2. If KREG2 is set, the triangle width
will be determined as described under KMAX, etc., above.

Maximum physical Y value in the problem. For
3-dimensional problems with cylindrical symnetiry where the
coordinates are denoted (r, ¢ = 0, z) YMAX is the maximum
value of z.

Minimum physical Y value in the problem. For
3-dimensional problems with cylindrical symmetry where the
coordinates are denoted (r, ¢ = 0, z) YMIN is the minimum
value of z. When YMIN # 0 the user should consider enter-
ing values of YORG = CON(39) in POISSON, PANDIRA or
MIRT when asked for CON changes. See Subsection B.5.3.6.
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Table B.3.3.I (cont’d) Region Namelist Variables.

Name Default

Description

o YREGL YMAX

O YREG2 YMAX

A line region is added at YREGL. If LREG]1 is not set, the
height of the triangles will approximately double above
YREGL. If LREG! is set, the triangle height will be deter-
mined as described under KMAX, etc., above.

A line region is added at YREG2. If LREG2 is not set, the
height of the triangles will approximately double above
YREG2. I LREG?2 is set, the triangle height will be deter-
mined as described under KMAX, above.
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Chapter B.4
OUTPUT FROM LATTICE

The function of LATTICE is to find the physical mesh on which the problem is
to be solved and to write the necessary mesh and problem information onto a file

called TAPE35. LATTICE also produces an output file called OUTLAT.

The information contained in OUTLAT is usually not needed but may sometimes
be helpful if something goes wrong in the solution process. QUTLA'L contaius, for
each region, the region material number, the total current, the current density, the
region boundary indicator, IBOUND, and a list of the region logical and physical
bouudary points. This is followed by a history of the mesh relaxation interation,
which consists of the x-residual, 7., p,, y-residual, 7, and p,. The quantities 7, and
7y are the @ and y rates of couvergence of the relaxation process. The quantities p,
and p, are the over-relaxation factors.

After the iteration history, a table is printed giving the area of each region and
the current density in each region. This is followed by a printout of the problem
constants, that is, the CON array. Those CON’s that have been changed in the
input to LATTICE are flagged.

In addition, any error messages generated by running LAT'TICE are also recorded
in this file. Finally, if CON(32) = IPRINT = -1, LAT'TICE prints a map of the &
and y vectors, that is, it gives the coordinates of each mesh point. Figure B.4.1 il-
lustrates an OUTLAT file.
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beginning of lattice execution

dump 0 will be set up for poisson

h-magnet test, uniform mesh 4/23/85

region number = 1 material = 1 total current =0.0000
current density =0.0000 O-zoning

region boundary indicator= 0

k 1 b4 y
1 1 0.00000 0.00000
50 1 22.00000 0.00000
50 34 22.00000 13.00000
i1 3¢ 0.00000 13.00000
1 1 0.00000 0.00000

relaxation parameters, 1433 unknown points.

elapsed time =0.5 sec.

cycle residx etax rhox residy etay rhoy
i 1.37830-02 1.0000 1.6000 8.6575e-04 1.0000 1.6000
2 1.82200-02 0.6577 1.6000 1.1829e-03 0.65869 1.6000
3 1.20900-03 0.6636 1.6000 8.0609e-04 0.6815 1.6000
4 8.12280-03 0.6718 1.6000 B5.5710e-04 0.6911 1.6000
5 §.45556-03 0.6716 1.6000 3.9792e-04 0.7143 1.6000
6 3.67850-03 0.6743 1.6000 2.8638e-04 0.7197 1.6000
7 2.53020-03 0.6878 1.6000 2.1345e-04 0.7454 1.6000
42 1.40310-05 0.8287 1.7574 2.2786e-06 0.8412 1.7496
43 1.1584e-05 0.8256 1.7574 1.9094e-06 0.8380 1.7496

44  9.66450-06 0.8343 1.7574 1.60230-06 0.8392 1.7496
iteration converged

elapsed time =0.9 sec.
generation completed.

calculated current densities and areas

region current densities area

number (amps/cm**2) (cm**2)
1 0.0000 21.3300
2 0.0000 217.9200

3 -544.5089 46.7500
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dump number O has been written on tape35.
input or default value
problem constants and variables

con( ) = »h-magnet test, uniform mesh 4/23/85

(2) = 3,nreg
con( 6) = 0,mode
con( 7) = 1,000e+00,stack
(8) = 1.000e+15,bdes
(9) = 1.000e+00,conv

( 10) = 4.000e-03,fixgam
(18) = 0,nperm
(113) = 0.000e+00,angle
(114) = 0.0000+00,rnorm
(118) = 0.000e+00,anglz
(123) = 0.000e+00,tnegc
(124) = 0.000e+00, tposc
(125) = 1.000e+00,rzero

solution

problem constants and variables

(3) = 34,1max
(4) = 50, kmax
(8) = 52,imax
(11) = 363,nair
(12) = 1163,nfe
(13) = 58,ninter
(91) = 0,numdmp
(106) = 1.000e+00,etaair
(107) = 1.000e+00,etafe
(109) = 1872,itot
(118) = 10000,maxdim
(119) = 5000,nwdim

Figure B.4.1 Sections of the file OUTLAT for the problem

“hinagnet, test uniform mesh”.

s e~ o o e ap—



Chapter B.5

Input for POISSON and
PANDIRA

B.5.1 Introduction

The structure of the input data for POISSON and PANDIRA is the same. Data
may be entered either from a data file or directly from the terminal (TTY). After
the code has asked for and received the name of the input source, the flow of data
input is as shown in Figure B.5.1.1. The data is entered using the special free for-
mat described in section B.3.1.

From the diagram one can see that there are five basic read statements: 1. Dump
number, 2. Changes in the CON array, 3. Permeability information, 4. Fixed po-
tential values, and 5. Current filament data. Each of these will be discussed in a
subsection helow.

B.5.2 Dump numbers

The first line of input data contains only one mumber, NUM, which is the nuber
of the TAPE35 dump to be read and processed. Dump 0 is written by LATTICE
and Dumps numbered greater than zero are written by POISSON or PANDIRA.
There are two main uses of the dump feature with NUM>0. The first is to continue
a run that has not converged, and the second is to calculate and/or printout sone
auxiliary quantities that had not been done in the original run. For example,
suppose that POISSON has run the maximum munber of cycles (say 400) without
converging. The code will automatically write “DUMP1” on TAPE35 and quit.
The user may change the maximum number of cycles (to 850 say) and specify the
dump number as NUM=1. The code will continue the problem where it left off and
run an additional 450 iterations. After converging or after reaching the 850 limit, it
will write “DUMP2” on TAPE35. If it did not converge, the user can increase the
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Figure B.5.1.1:  Flow Diagram showing

Inputs to POISSON or PANDIRA.
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maximum number of cycles and run again. The maximum limit on the number of
cycles in POISSON is 100,000.

The maximum number in PANDIRA is 20. Suppose the problem converged
after 850 cycles, but you decide later to do an harmonic analysis on the field. Yon
can start with DUMP2, enter CON values needed for the harmonic analysis and
produce DUMP3, which will contain the required analysis. This will take much less
time than running the cycles all over again.

B.5.3 Changes in the CON array

There are a large number of options that can be exercised by changing the values
in the CON array. We have divided this section into 10 subsections.

B.5.3.1 Control of input.

Input of permeability data is controlled by CON’s (6)=MODE, (7)=STACK,
(10)=FIXGAM, and (18)=NPERM as discussed in Sec. 13.5.4 below. CON(20)
controls the number of special fixed potential values to be read in as discussed in
Sec. B.5.5 below. CON(49) controls the number of current filaments to be read in
as discussed in Sec. B.5.6 below.

B.5.3.2 Symmetry Options.

CON(19)=ICYLIN controls the choice of cartesian or cylindrical symmetry;
CON(46)=ITYPE provides a way to make maximum use of the rotation and reflec-
tion symmetry of the magnet.

If ICYLIN = 0 (the default), the problem is assumed to have cartesian symme-
try, that is, (z,y) coordinates and all functions independent of z. If ICYLIN = 1,
the problem is assumed to have cylindrical symmetry, that is, (r, z) coordinates and
all functions independent of the angle ¢. In TEKPLOT outputs, = is the horizontal
axis.

There are 9 standard rotation-reflection symmetry types (ITYPE ) for cartesian
systems, 3 standard types for cylindrical systems, and a way to construct special
ITYPE-codes for symmetries not included in ihe standard types. Table B.5.3.1
shows the standard ITYPE options.
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Table B.5.3.I. Standard Synunetry Options for Magnets

ITYPE Description

CARTESIAN SYMMETRY (ICYLIN=0)
No Symumetry
Midplane symmetry*
Elliptical aperture quadrupole*
Symunetrical quadrupoles*
Skew elliptical aperture quads (x-axis is a ficld line)
Symmetrical “H” magnet or elliptical aperture sextupole*
Symuuetrical sextupole*
Elliptical aperture octupole*
Symmetrical octupole*
CYLINDRICAL SYMMETRY (ICYLIN=1)
1 No symuetry .
2 Midplane symmetry
(field lines are L to r-axis for magnet problems;
lines of constant potential are L to r-axis for electrostatic problems.)
3 Midplane symmetry
(r-axis is a line of constant scalar potential for electro-
static problems; does not apply to vector problems.)

-~ S U W N

o 0

*Pield lines are perpendicular to the x-axis.

For a detailed description of these symmetry types, see Sec. B.13.2.

In general almost any symmetry desired may he specified by constructing ITYPE
as a three digit code word. To understand how to construct this code, one must
understand how the code constructs the vector and scaler potentials. These po-
tentials are considered to be the real and imaginary parts of a complex functlion
F(z = z + iy) that is given by the expression

o0
F(z) = A(z,y) +iV(z,y) = > enlz — 20)" (B.5.1)

n=1
POISSON computes the ficlds and gradients by taking the appropriate derivatives
of F(z). The symmetry of F(z) determines which of the coefficients ¢, are nonzero,
pure real, or pure imaginary. There are two distinct types of symmetries: 1. reflec-
tion, and 2. rotation. Reflection symmetries determine whetlher the coeflicients ¢,
are real, imaginary, or complex. Rotational symmetries imply that various terms

in F'(z) vanish.

Reflection symmetry implies one of two conditions on the median plane (x-
axis). Either V = 0., dA/dn = 0 (a constant scalar potential boundary) or
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A = 0., dV/dn = 0 (a constant vector potential boundary) where dA/dn means
the derivative in the direction normal to the x-axis. The units digit of CON(46) =
ITYPE encodes this information. If ITYPE = htu, then:

u = 0 means A = 0. and ¢, is pure imaginary, By(z,0) = 0,
u = 1 means V = 0. and ¢, is real, B,(z,0) =0
u = 2 means no symmetry and hence c, is complex.

There are two types of rotation symmetry. When the coordinate axes are rotated
by an angle 27 /n, either the potentials and fields are identical or are identical but
with opposite signs. the tens and hundreds digits of ITYPE encode the rotation
symmetry. For example, suppose the magnet is a symmetric quadrupole and has
dA/dn = 0 on the median plane. Such a magnet has odd parity. Only one-eighth
of the magnet need be described in AUTOMESH. It can be shown that the only
nonzero coeflicients ¢, in the summation are those for n = 2, 6, 10,.... To describe
this sequence the lowest order term: (n = 2) and the interval (An = 4) need to be
given. This is encoded by letting the tens-digit be 4 and the hundreds-digit by 2.
In summary then, since the symmetric quadrupole has reflection symmetry which
makes the scalar potential V' vanish, ITYPE would be 241, which is equivalent
to the standard magnet type ITYPE = 4 in Table B.5.3.] above. Other special
symmetry types are constructed similarly. For a more complete discussion, see Sec.

B.13.2.

B.5.3.3 Electrostatic option.

The theory of electrostatics and magnetostatics is almost identical. See Sec.
B.13.1. It is merely a matter of interpretation of the output. Relative reluctivity
(1/relative permeability) is replaced by relative permittivity; the vector potential is
replaced by the scalar potential. There is only one parameter that must be changed
to switch between magnetostatics and electrostatics. One must set CON(66) =
XJFACT = 0. The default value of XJFACT is 1. Furthermore, XJFACT has

another use which will be described in Sec. B.5.3.4 below.

B.5.3.4 Fixed field option.

Many {imes one wishes to specify the field at a given point, e.g., at the center
of the gap, and somehow determine the value of the current in the coil that will
produce that field. This can be done in POISSON by specifying four parameters as
summarized in Table B.5.3.11.
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Table B.5.3.II. Parameters for Fixed Field Option

Parameter Default Definition

CON(8)=BDES 1.0E15 Absolute value of the fixed field. If BDES is not
equal to its default value, XJFACT=CON(66) will
be adjusted so that the field is BDES within a
tolerance XJTOL=CON(67).

CON(40)=KBZERO 1 The (K,L) coordinates specifying the location of
CON(41)=LBZERO 1 BDES for adjusting the current factor.

CON(66)=XJFACT 1.0  The factor by which all current and current
densities will be scaled in POISSON and
PANDIRA. When used in this way, the default
value is adequate for input. The program will
adjust its value and print it out at the end. (As
noted above, XJFACT = 0 indicates an elec-
trostatic problem with no currents.)

CON(67)=XJTOL  1.0E-4 The tolerance on the determination of XJFACT
from BDES.

The correct current is XJFACT times the initial guess for the current entered in
the regional data back in AUTOMESH or LATTICE.

B.5.3.5 Permanent magnet potential initialization.

When solving permanent magnet problems with no currents (PANDIRA
problem), the vector potential must be initialized by setting CON(101) = IPERM = 1
and defining a line region. The program automatically knows that IPERM is the
“initializing” current in that line region. The value of IPERM is not important, so
long as it is not zero. The location of the line region is also not too important.

B.5.3.6 Field calculation optiouns.

As discussed in Sec. B.5.3.2 above, the vector and scaler potentials are assumed
to be the real and imaginary parts of a complex potential F(z) that is expanded
as a power series in the variable (z — z). The location of zo can be specified by
entering new values for CON(38) = XORG and CON(39) = YORG. The default
value of these parameters is zero. Note that for cylindrical symmetry, XORG = 0.0
is required.

The user can exercise some control over the accuracy of the calculation of the
coefficients ¢, by determining whether to use first nearest neighbor mesh points
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only, or to use first and second nearest neighbor points in the determination of the
coefficients. Also the weighting given to the second neighbors can be controlled.
The two parameters involved are the following:

CON(48)=ISECND =0 Use first neighbors only
=1 Use first and second neighbors (the default)

CON(47)=W2ND = 0.125 is the default weight factor for
including second neighbors.

For a further discussion of the calculation of ¢,’s, see Sec. B.13.2.

B.5.3.7 Harmonic analysis.

Once having obtained an expression for the potential and the field as power
series in the complex variable z, one can do an harmonic analysis over a region of
the field to determine the size of the dipole, quadrupole, sextupole, octupole, etc.
components in the field. The theory of this is summarized in Sec. B.13.3. There are
six parameters that control the analysis; they are defined in Table B.5.3.111 below.

Table B.5.3.II1. Definition of Parameters Controlling Harmonic
Analysis

Parameter Default Definition

CON(110)=NTERM 5 The number of harmonic coeflicients to be
obtained.

CON(111)=NPTC none The number of equidistant points on the arc of a
circle with its center at the origin, at which points
the vector potential is to be obtained by interpo-
lation. Fourier analysis of the vector potential at
these points yields the harmonic coeflicients.
NPTC should be approximately equal to the
number of mesh points adjacent to the arc.

CON(112)=RINT none The radius of the arc used for the analysis. RINT
should be less than, by at least one mesh space,
the distance to the nearest interface between the
given region and an iron or coil region. Choosing
an arc too close to a pole face will give an erron-
eous result.

g omp - ey e Ca evme g — iy — oo e —ra ——— e P S Y = =G TS e W A, v————A R & s = - s ——
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Table B.5.3.IIL. (cont.) Definition of Parameters Controlling Harmonic
Analysis

Parameter Default Definition

CON(113)=ANGLE none The angular extent in degrees of the interpolation
arc. The size of this arc depends on the symmetry
of the magnet as specified by the I'TYPE discussed
above. For a symmetric quadrupole, only one-
eighth of the problem is necessary, and hence
ANGLE = 45 degrees is appropriate.

CON(114)=RNORM none The radius of the largest circle that will fit in the
magnet aperture, or soine other norinalization
radius of your choice.

CON(115)=ANGLZ 0.0 The angle in degrees from the x-axis to where
integration arc begins

B.5.3.8 Over-relaxation factors.

The novice user probably will not want to make adjustments of the six over-
relaxation factors unless he runs into difficulties with convergence of the problem.
A discussion of the over-relaxation factors can be found in Sec. B.13.6. Table
B.5.3.1V gives brief descriptions of these factors.

Table B.5.3.IV. Definitions of the Over-Relaxation Factor Parameters

Parameter Default Definition

CON(50)=IIDL 100000 An indicator used in POISSON only to determine
the number of cycles between making quasi-
integrals of H - dl around the Dirichlet boundary. -
Making corrections to the solution matrix based
on the value of this integral sometimes speeds the
convergence, particularly for non-symmetrical “H”
magnets.

C'ON(74)=RHOPT1 1.90 (See CON(75)=RHOAIR helow.)

CON(75)=RHOAIR 1.90 The over-relaxation factor in POISSON for air and
interface points (and for iron points during a
p-finite-and-constant solution.)* This factor is
automatically optimized during the iteration
process if the initial value of RHOAIR is equal to
RHOPTI.
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Table B.5.3.IV. (cont.) Definitions of the Over-Relaxation Factor

Parameters
Parameter Default Definition
CON(77)=RHOFE 1.0  The over-relaxation factor for iron points during a

] p-finite-but-variable solution.*
CON(78)=RHOGAM .08 The under-relaxation factor for the reluctivity v
during a p-finite-but-variable solution.*

CON(80)=ISKIP 1 The number of cycles between recalculating the
~’s during a p-finite-but-variable solution.*

*See the description of CON (é):MODE in Sec. B.5.4 below for a distinction between the p-finite-
and-constant and the p-finite-but-variable cases.

B.5.3.9 Convergence criteria.

The problem is said to have couverged if the potential has changed by less then
a specified amount between tests of the convergence. There is a danger in using
such a criterion for nonlinear problems (p-finite-but-variable). The program cannot -
distinguish between slowly changing solutions and true minima. The potential is
tested for convergence both in air regions and in the iron regions separately. One can
set a separate convergence criterion for each region. The number of over-relaxation
cycles between convergence tests can also be controlled. Table B.5.3.V defines the
three parameters that control the convergence tests.

Table B.5.3.V. Definition of Parameters Controlling Convergence

Parameter Default Definition

CON(85)=EPSILA 5.0E-7 The number controling the convergence criterion
‘ for the potential solution in air and at interface
points (and for iron points during a p-finite-and-
constant solution).

CON(86)=EPSILI 5.0E-7 The number controling the convergence criterion
for the potential solution of iron points during a
p-finite-but-variable solution.

CON(87)=IVERG 10  The number of cycles between making the con-
vergence tests during the iteration process. The
default value of 10 should not be altered when

using the option to optimize the over-relaxation
_factor RIIOAIR=CON(75).
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B.5.3.10 Output control.

One can choose or choose not to priut ont the (z,y) coordinates of the mesh
points, to write a TAPE35 dump, and to calculaté and print out the potentials
and fields over a specified region of the mesh. One can also decide how frequently
one prints out information on the iteration cycles. In some versions of the code
one can check the remaining time in the run and write out a dump to TAPE35
5.0 seconds before the time limit. This latter feature does not work on the CRAY
version because the CRAY automatically creates continuation files when a problem
is terminated because of a time limit. Table B.5.3.VI. describes the parameters
used in output control.

Table B.5.3.VI. Definition of Parameters used in Output Control

Parameter Default Definition

CON(29)=LIMTIM 0 The indicator to check the remaining time in the
run. Execution will be terminated 5.0 seconds
before the time limit and a TAPE35 dump will be
written. Set LIMTIM=1 to exercise this option.
(Note: This option does not work for the CRAY
version of the code.)

CON(30)=MAXCY 100000* The maximum number of iteration cycles. Most
problems converge in a few hundred to a few
thousand cycles for POISSON runs, and about 10
to 20 cycles for PANDIRA runs. It seldom makes
sense to change this parameter, but if hitting a
machine time limit, then set MAXCY to a lower
number to get a dump.

CON(31)=IPRFQ 0 The cycle print frequency during iteration. The
default value of 0 indicates that the iteration
information will be printed only on the first and

last cycles. Input values of [PRFQ must be integer
multiples of IVERG in Table B.5.3.V above.

CON(32)=IPRINT 0 The mesh and field print option parameter
PRINT=-1: Print (z,y) coordinates of mesh points
from LATTICE.

PRINT=0: No mesh and no field prints.

PRINT=1: Print the vector potential array when

CON(6)=MODE=0.

PRINT= 2: Print |B| in iron triangles.

PRINT= 4: Print the (B, By) components in iron
. triangles.
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Table B.5.3.VI. (cont.) Definition of Parameters used in Output
Control

Parameter Default Definition

Any combination of these options may be specified
by a addition of IPRINT values. For example,
IPRINT=T prints the vector potential, | B |, and
the components.

CON(34)=INACT -1 An indicator to allow the user to interact with
the iteration during POISSON or PANDIRA
H INACT > 1, the calculation is stopped at
intervals and the user is asked to type: “GO”,
“NO”, or “IN”. If “GO?”, iteration continues;
if “NO”, iteration stops and final results are

written; if “IN”, user is asked for new values
of CON’s.

CON(35)=NODMP 0 The parameter controlling TAPE35 dump:
NODMP=0: Write dump at end of run
NODMP=1: Do not write dump

CON(42)=KMIN 1 The (K,I.) limits of the region in which the
CON(43)=KTOP KMAX fields and gradients are to be calculated and
CON(44)=LMIN 1 printed. This print is independent of IPRINT.
CON(45)=LTOP 1 It prints fields only in non-iron regions even if
KTOP and LTOP would include iron. An alter-
native way of defining the region is given below.

CON(54)=XMIN 0.0  The (z,y) limits of the region in which the fields
CON(55)=XMAX 0.0 and gradients are to be calculated and printed.
CON(56)=YMIN 0.0 Az and Ay in this grid are specified by
CON(57)=YMAX 0.0 CON(43)=KTOP and CON(45)=LTOP in

the following way:

Az = (XMAX—-XMIN)/(KTOP-1)

Ay = (YMAX~YMIN)/(LTOP-1)

*This is set to 20 for PANDIRA problems.

e e v e, e o e o ooy - - . v vt
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B.5.4 Entering Permeability Data

B.5.4.1 Introduction.

Basically there are four types of permeability inputs: 1. p-infinite, 2. p-finite-
and-fixed, 3. p-finite-but-variable, and 4. anisotropic-g. Although we have labeled
the types by p, the code uses the reluctivity v defihed in general by the relation

H =7 (|BJ) - B/po + H. (B.5.1)

The corresponding relation in electrostatics is

D = ¢ % (|E|) - E + D.. (B.5.2)

For permanent magnets 5y can be a tensor and |H| is called the coercive force. This
is consistent with the modern poiut of view that(B,E) are the primary quantities
and (H,D) are derived from malerial properties. Henceforth it will be understood
that the phrase dielectric constant k. can be substituted for the word reluctivity v
everywhere in the discussion.

In addition to the reluctivity the user has control of the stacking or fill factor
for the material. The iron in most electromagnets is laminated hence part of the
material in the iron region is not ferromagnetic. This is taken into account in the
code by assigning a stacking factor between zero and one.

When there is more than one type of material (or stacking factor), the user
must assign an identification number called MATER to the material. This number
is compared with the regional number MAT in assigning properties to regions.

The next four subsections discuss the four types of input. The subsection after
that will summarize the allowed input and give a flow diagram for the read state-
ments.

B.5.4.2 p-infinite case.

This is the default case and corresponds to CON(6) = —2. No other parameters
are required. This input gives a good approximation to the field in the air region
near soft iron if the field is less than about 500 gauss. It may be a useful first
approximation at higher fields when used in the design of synchrotron magnets that
start at low fields and go to higher fields.

B.5.4.3 p-finite-and-constant case.
If CON(6) = MODE = —1, the code expects to read in from 1 to 4 values of
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v and stacking factor depending on the value of CON(18) = NPERM. The combi-
nation MODE = —1 and NPERM = -1, —2, -3, or —4 signals the p-finite-and-
constant case. Furthermore there is another way to enter data for the case of one
fixed -y material by using just the CON’s, namely, CON(6)=-—1, CON(7)=STACK,
CON(10)=FIXGAM, and CON(18)=NPERM=0.

B.5.4.4 p-finite-but-variable case.

When g is variable, it must be defined by a table. The code has one internal
table corresponding to a very low carbon steel. The table is always printed out in
the file OUTPOL This case is signaled by MODE = 0. The code allows the use of
the internal table plus up to 3 externally read in tables, depending on the value of
NPERM =0, 1, 2, or 3.

There is also an option that allows the user to have the internal table with up
to 4 different stacking factors. This is signaled by MODE = 0 and NPERM = —1,
-2, =3, or —4. Furthermore there is another way to enter data for the case of the

internal table with one stacking factor. This is done using jusi the CON’S, namely,
CON(6)=0, CON(7)=STACK, and NPERM = 0.

The table values defining the permeability may be entered in one of 3 forms:
(B,7v), (B, ), or (B, H) as specified by the parameter MTYPE, which is read in
along with MATER and STACK. M'TYPE = 1 implies (B, ), which is the default;
MTYPE = 2 implies (B, p); and MTYPE = 3 implies (B, H). Each table can con-
tain up to 50 points. If there are less than 50 points, the table must be terminated
by “s”. If MLTYPE < 0, the material is a permanent magnet material.

B.5.4.5 Anisotropic 1 and permanent magnet materials.

This section applies only to PANDIRA input. Anisotropic materials are char-
acterized by an easy axis and a hard axis perpendicular to it. The values of
are different along the two axes. The easy axis may be p-finite-but-variable (table
required), while the hard axis must be p-finite-and-constant. Permanent magnet
materials are usually anisotropic with the easy axis characterized by a p-finite-and-
constant relation, and a nonzero coercive force H.. The code distinguishes between
these cases by the value of the two parameters MTYPE and MATER. MTYPE =
—1, =2, or —3 and MATER = 3, 4, or 5 implies anisotropic material; MTYPE < 0
and MATER > 5 implies permanent magnet material.

Definition of an anisotropic material requires up to 5 parameters, 4 identifying
the easy axis and one defining the reluctivity along the hard axis. These are defined
in Table B.5.4.1 below.
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Table B.5.4.1. Definition of Anisotropic Parameters®

Parameter Definition

ANIN(1)=ANISO  The direction in degrees of the easy axis relative to
the horizontal axis. See Fig. B.5.4.1.

ANIN(2)=GAMPER Relative reluctivity v perpendicular to the easy
axis.

ANIN(3)=XO0A The center of a circular arc for the easy axis

ANIN(4)=YOA direction. This optional data is used along with
PHAXIS when the easy axis cannot be defined by
ANISO above. See I'ig. B.5.4.2.

ANIN(5)=PHAXIS The angle in degrees hetween the radial vector R
and the easy axis. See Iig. B.5.4.2. PIIAXIS is
usually zero or 90 degrees.

aThese parameters must be entered in this order using the free format defined in Sec. B.3.1

Figure B.5.4.1: Definition of angle g5 = ANISO

Most anisotropic materials only require the first two parameters in this table.
There are no natural materials where the easy axis direction changes with location
in the material, but materials which approximate this-behavior can be constructed
with slabs of permanent magnet material, for which this option was created. 1f
MATER < 5, the easy axis permeability is specified by a table. If MATER > 6 but
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< 11, then the material is a permanent magnet and the easy axis is specified by
two parameters (HCEPT, BCEPT) entered using the free format. IICEPT is the
H-axis intercept in oersteds of the linear B-H relation; it is a negative number with
the value of H.. BCEPT is the B-axis intercept in gauss; it is called the residual
induction B,. This is illustrated in Fig. B.5.4.3. For permanent magnet problems
with no electric currents remember to set CON(101) = IPERM = 1. (See Subsec.

B.5.3.5 above.)

B.5.4.6 Summary of permeability Input.

There are a lot of options for entering permeability data. Figure B.5.1.1 above
shows how CON(6)=MODE controls input. Figure B.5.4.4 shows schematically
what happens when CON(6)=0 or —1, depending on the value of CON(18)=NPERM.
(The coding is actually more complicated than this.) Table B.5.4.11 illustrates which
parameters control which options. The [INPERM]| can always be less than the value
used in the table, for example, 2 instead of 3 on line 3.c of the table. The variable

“s” means stacking factor.
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Figure B.5.4.2: Definition parameters XOA, YOA, and ¢4 = PHAXIS when the
easy axis direction varies over a circular arc.
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Figure B.5.4.3: Definition of parameters for permanent magnet materials:
BCEPT=8,, HCEPT=1, and GAMPER=1{, /B,.

B.5.5 Input of fixed potential points.

The ability to require that the potential be fixed at some point, along some
line, or in some region can be very useful, especially in electrostatic problems.
When CON(20)=INPUTA is greater than zero, that is, is equal to the number
of fixed potential points, the code expects a list of points with their associated
fixed potentials. The form of each line is “K L POT” where (K, L) are the log-
ical coordinates of the point and POT is the fixed potential value, that is, the
vector potential for magnetic problems and the scalar potential in volts for elec-
trostatic problems. (To get (K, L) from (X, Y) set CON(32) = -1 in LATTICE
and look in OUTLAT.) Please note that, if the above options are used with POIS-
SON/PANDIRA programs received PRIOR to 9/28/86, for cylindrical coordinates
(ICYLIN = CON(19) = 1), the POT values input must = r* potential. For pro-
grams after 9/28/86, input just the potential values for both cylindrical or Cartesian
coordinates.
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B.5.6 Input for current filaments.

The main use of this feature is to include small trim windings in magnet prob-
lems. When CON(49)=NFIL is greater than zero, thal is, is equal to the number
of lines of current filament data to be entered, the code expects a list of points and
corresponding current values. The form of each line is “K L CFIL” where (K, L)
are the logical coordinates of the point and CFIL is the current in amperes.

TO NEXT READ
READ: @
- MATER
STACK
MTYPE
ERROR
&
8,51 = & N
< MATER D? i 2 mvy
52,<6 >0
READ:
ANlN(J)®
READ : (S50 POINTS) ®
7 vs. B Table IfFIMTYPEl= 1
4 vs. B Toble INIMTYPEl= 2
H vs. B Table i IMTYPEl= 3
* Ordy 2EMATERSS are dliowsd (Read can be terminated by “s"
it < 50 polnts)
THE VALUE OF MTYPE IS USED TO
CONVERT THE TABLES TO STANDARD
TYPE, NAMELY ¥ vs. B

Fig. B.5.4.4: Flow diagram for entering permeability data when MODE=0 or —1.



Chapter B.6

Output of POISSON and
PANDIRA

The information put out by POISSON and PANDIRA is almost identical, the
principle difference being in the print of the iteration history. Because the two codes
solve problems by different methiods, different information on the iteration cycles is
printed out.

Both codes write solution information to TAPE35 that can he used to plot flux
lines via TEKPLO'T. Both codes write information to output files as well as to the
terminal. Examples of terminal output can be found in examples in Chap. B.12
below. The major portion of the information is written to the files OUTPOI for
POISSON and OUTPAN for PANDIRA.

The material in these output files is of three types: 1. information used to solve
the problem, 2. information on the iteration history, and 3. information on the
solution. Information used to solve the problem includes a list of the CON values
at the beginning of the run, and tables of B?,, i1, and H as a function of B for the
various magnetic materials appearing in the problem. The internal ~ vs B table is
printed out no matter whether it is used of not. Stacking factors are also priuted out.
The iteration history is a recapitulation of the terminal output, which is described
in the examples of Chap. B.12 below. The amount and type of solution information
is controlled by CON(32)=IPRINT as described in the previous section. Figure
B.6.1 shows a portion of a potential map for the quadrupole problem discussed in
Chap. B.3. The abscissa is the logical coordinate K and the ordinate is the logical
coordinate L. Each logical point (K, L) has associated with it two values of the
potential 4 (V for electrostatic problems). These are distinguished on the map by
“u” and “I.” The value A4, is the potential found in the upper triangle associated
with the point and the value 4, is the potential in the lower triangle. Figure B.6.2
shows the relation between the point (K, L) and its upper and lower triangles. The
association shown in the figure is unique in the sense that each triangle is associated
with one and only one point in the mesh. Maps of |B|, B,, and B, are printed in a
similar format.
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R
(X, L)
upper
triangle
c:::
lower
triangle

Fig. B.6.2: Bach point (K, L) in the logical mesh has associated with it an upper
and lower triangle.

In addition to these maps, the user may have the code print tables that assign
values of potential and derived field quantities as a function of physical coordinates.
The values are obtaiued by a least-squares interpolation scheme. The tables also
give residuals (afit) for the physical point (z,y). The quantity afit is a measure
of how well the polynomal fit to the potential matches the values of the potential at
the (K, L) point. The polynomial is used to calculate the derivatives of the potential.
The user can select the region covered in these tables by using CON’s 42 through 45
or CON’s 54 through 57 as described in Subsec. B.5.3.10 above. Figure B.6.3 shows
a part of one of these tables.

When harmonic analysis is requested, by entering values for CON’s 111 through
115, the code prints the results of the analysis in the output file. Figure B.6.4
shows an example table. The first portion is a table giving the coordinates and
interpolated vector-potential values used in the analysis. The next section gives the
real and imaginary parts of the coeflicients in the expansion of the vector potential
in harmonic polynomials. The absolute value of the coefficients is also printed. The
third section of the harmonic analysis gives the real, imaginary and absolute values of
the coefficients for the magnetic field expansion in harmonic polynomials. There is a
direct correspondence between the harmonic polynomials and the multipole content
of the field. For a more complete discussion see Sec. B.13.3.

Finally, for problems with special fixed vector potential points, there is a table
giving the total current required to keep the potential fixed at these points.
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1least aquares edit of problem. cycla 9

Sysm qua symmstry typs

Ostored energy = -8.0983s-09 joules / mster or radian
xjfact= 1.000000

0 Xk 1 a{vector) x Y bx(gauss) _by(gauss) bt (gauss) dby/dy(ganss/cm) dby/dy(gauss/em)  afit
. 0 1 1 0.000000e+00 0.00000 0.00000 0.000 0.000 0.000 0.0000e+00 -2.7678e+03 2.3¢-01
. 0 2 1 6.154877e+00 0.21269 0.00000 0.000 -589.686 589.685 0.0000e+00 -2.7469e+03 -1.1e400
: 0 3 4 2.401422e¢+02 0.42637 0.00000 0.000 -1168.687 1168.687 0.0000e+00 -2.74430+03 ~2.3e-01
0 4 1 5.5931740+02 0.638006 0.00000 0.000 -1747.267 1747 .257 0.00008+00 -2.74610+03 3.6e-01
‘ 0 6 1 0.9203652e+02 0.85076 0.00000 0.000 -2330.916 2330.915 0.0000e+00 -2.7633¢+03 9.50-02
0 6 1 1.5604690+03 1.06343 0.00000 0.000 -2016.366 2016.366 0.0000e+00 -2.7476¢+03 -2.80-02
0 7 { 2.232639e+03 1.27612 0.00000 0.000 -3408.9686 3408.966 0.0000e+00 -2.7400¢+03 -3.4e-02
, 0 8 1 8.038830e+03 1.48881 0.00000 0.000 ~-4081.762 4081.762 0.0000e+00 ~2.73860+03 ~5.30~03
S 0 9 1 3.968023e+03 1.70149 0.00000 0.000 -3664.016 4064.016 0.0000e+00 ~-2.7369¢+03 2.20-02
) ’ 0 10 1  5.022777e+03 1.01418 0.00000 0.000 -5246.626 6245.626 0.0000e+00 ~2.7336e+03 4.4¢-02
1, 0 11 1 6.200222¢+03 2.12687 0.00000 0.000 ~-5826.148 5826.148 0.00008+00 ~2.7274e403 6.1e-02
0 12 1 7.6500948e+03 2.33966 0.00000 0.000 -6404.762 . 6404.762 0.0000e+00 ~2.7160¢+03 7.3e-02
. 0 13 1 8.924402e+03 2.56224 0.00000 0.000 -6979.966 6079.965 0.0000e+00 ~2.69620+03 7.9¢-02
) 0 14 1 1.046961e+04 2.76493 0.00000 0.000 ~7649.193 7649.193 0.0000e+00 -2.6682¢+03 7.4e-02
0 16 i 1.2134860+04 2.97761 0.00000 0.000 -8107.770 8107.770 0.0000e+00 -2.5016e+03 5.6¢-02
. 0 16 1 1.3917050+04 3.18030 0.00000 0.000 - -8647.202 8647.202 0.0000e+00 -2.4716e+03 2.0e-02
0 17 1 1.5810660+04 3.40299 0.00000 0.000 -9162.279 9162.279 0.00008+00 -2.2578¢+03 -3.65e-02
' 0 18 1 1.780585e+04 3.61667 0.00000 0.000 ~9597.004 9697.004 0.0000e+00 -1.88040+403 ~9.7¢-02
0 19 1 1.9885700+04 3.82836 0.00000 0.000 ~9940.965 9040.966 0.0000e+00 -1.2074¢+03 -1.2e-01
0 20 1 2.202366e+04 4.04104 0.00000 0.000 -10132.469 10132.469 0.0000e+00 ~4.69030+02 ~T7.7¢-02
o 21 1 2.418186e+04 4.26373 0.00000 0.000 ~10126.693 10126.693 0.0000e+00 65.2699e+02 2.7¢-02
0 22 1 2.631667e+04 4.46642 0.00000 0.000 -9913.908 9913.908 0.0000e+00 1.4403+03 1.1e-01
! 0 23 1  2.838703e+04 4.67910 0.00000 0.000 -9632.436 9632.436 0.0000e+00 2.08180+03 1.2e-01
0 24 1 3.036432e+04 4.89179 0.00000 0.000 -9049.896 9049.806 0.0000e+00 2.3942e403 7.1e-02
o 0 256 1 3.223408e+04 5.10448 0.00000 0.000 -8630.271 8630.271 0.0000e+00 2.46330+03 2.90-02
~ 0 26 1 3.309330e+04 5.31716 0.00000 0.000 -8016.602 8016.602 0.0000e+00 2.3687e+03 1.90-02
’ 0o a7 1 3.6564657e+04 5.52085 0.00000 0.000 ~75626.496 7626.4986 0.0000e+00 2.22670+403 4.4e~02
o 28 1 3.719717e+04 5.74264 0.00000 0.000 -7068.718 7068.718 0.00000+00 2.07930+03 1.20-01
o 29 i 3.8654488+04 65.96622 ©¢.00000 0.000 -6638.765 6638.765 0.0000e+00 1.96240+03 2.1e-01
N 0 30 1 4.002263e+04 6.16791 0.00000 0.000 -6229.769 6229.769 0.00006+00 1.8802e+03 2.60-01
! 0o 31 1 4.1305560+04 6.38060 0.00000 0.000 ~6834.180 5834.180 0.00000+00 1.8386e+03 3.4e-01
) 0 32 1 4.2606060+04 8.59328 0.00000 0.000 -6467.264 b4567.264 0.0000e+00 1.72270+03 -4.60-01
' . 0 33 1 4.362857e+04 6.80597 0.00000 0.000 -5116.341 5116.341 0.00000+00 1.6341e+03 -9.80-01
0 34 1 4.4684140+04 7.01866 0.00000 0.000 -4807.112 4807.112 0.0000e+00 1.4090e+03 ~4.6e-01
(4] 36 1 4.5676010+04 7.23134 0.00000 0.000 -4621.072 4621.072 0.00000+00 1.3083e+03 -1.9e-01
(V] 36 1 4.6608670+04 7.44403 0.00000 0.000 -4249.166 4249.165 0.00000+00 1.26470+03 -9.6e-03
0 kY4 1 4.7483920+04 7.65627 0.00000 0.000 -3980.541 3980.541 0.0000¢+00 1.26060+03 1.3e-01
0 38 b 4.8302060+04 7.86940 0.00000 0.000 -3714.201 3714.201 0.00000+00 1.2301e+03 1.1e-01

Fig. B.6.3: Portion of least squares fit table from a PANDIRA run.
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1 harmonic analysis.
0 integration radius = 1.86000.
0 table for integrated points.

0 n angle X coord y coord k£ 1f vec.pot.
1 0.0000 1.8600 0.0000 10 1 4.74254e+03
2 4.5000 1.8543 0.1459 10 2 4.68423e+03
3 9.0000 1.8371 0.2910 10 2 4.510710+03
4 13.5000 1.8086 0.4342 9 3 4.22621e403
5 18.0000 1.7690 0.5748 10 4 3.83765e+03
6 22.5000 1.7184 0.7118 9 5 3.35455e+03
7 27.0000 1.6573 0.8444 9 6 2.78877e+03
8 31.5000 1.6859 0.9718 9 6 2.15424e+03
9 36.0000 1.5048 1.0933 8 7 1.46655e+03
10 40.5000 1.4144 1.2080 8 7 7.42774e+02
11 45.0000 1.3162 1.3152 | 8 8 3.54835e-01

itable for vector potential coefficients
Onormalization radius = 2.92000

0 a(x,y) = re( sum (an + 1 bn) * (z/r) **n )

0 n an bn abs(cn)

0 2 1.1690e+04 0.0000e+00 1.1690e+04

0 6 ~1.2643e+01 0.0000e+00 1.2543e+01

() 10 9.3097e+00 0.0000e+00 9.3097e+00

0 14 -5.7175e+01 0.0000e+00 5.7175e+01

0 18 2.4653e+02 0.0000e+00 2.4653e+02

itable for field coefficients
Onormalization radius = 2.92000

0 (bx - by) = 1 = sum n*(an + 1 bn)/r = (z/r)**(n-1)
0 n n(an)/r n(bn)/x abs(n(cn)/r)
(V] 2 8.0070e+03 0.0000e+00 8.0070e+03
0 6 -2.5774e+01 0.0000e+00 2.5774e+01
0 10 3.1882e+01 0.0000e+00 3.1882e+01
0 14 -2.7413e+02 0.0000e+00 2.7413e+02
0 i8 1.5197e+03 0.0000e+00 1.5197e+03

Figure B.6.4: Example of the harmonic analysis information written to the
output file.




Chapter B.7
Input and Output for TEKPLOT

B.7.1 Input to TEKPLOT

TEKPLOT will plot the physical boundaries and mesh resulting from a LAT-
TICE output, It will also plot the equipotentials from POISSON, PANDIRA, and
MIRT output. More than one plot can be made in the same run by repeating the
first two input data groups. The structure of the input is shown in Fig. B.7.1.1.

ol STOP
NPHI
INAP
NSWXY]
READ:
XMIN
YMIN
s
A

READ:
AMIN
AMAX RUN

4

—
-

Figure B.7.1.1. Flow diagram for Read Statements in TEKPLOT.

1
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This program uses the special free formal described in Sec. B.3.1. The meaning
of the parameters is given in Table B.7.1.1.

Table B.7.1.I Input Parameters to TEKPLOT.

Name Default Description

NUM 0  The TAPE35 “dump” number on which the (X,Y) coordinates of
the mesh, and (if NUM > 0) the field values have been written.

ITRI 0  An indicator to specify whether the triangular mesh is to'be
plotted or only the physical boundary lines of regions.
ITRI = 0 means do not. plot the triangular mesh;
ITRI = 1 meaus plot the triangular mesh.

NPHI 0  The number of equipotential lines to be plotted. The program
does not plot lines for the smallest and largest potential values,
one of which is usually just a point. For magnetostatic problems
in two dimensions, the equipotential lines for the vector potential
are magnetic fields in cartesian geometry. In cylindrical geometry
the program plots “flux surfaces,” which are r * A(r, z) = constant.
For most problems a good number for NPHI is between 20 and 50.

INAP 0  An indicator for an additional Read statement.
INAP = 0 means do not read AMIN and AMAX,
= 1 means read (on the next data line) the minimum
and maximum values (AMIN and AMAX) of the equipotential
lines to be plotted. The values plotted are
(AMAX — A),(AMAX —2%A),...,(AMIN + A),
where A is (AMAX - AMIN)/(NPHI + 1).

NSWXY 0% An indicator allowing an interchange of the X and Y axes
NSWXY = 0 means no interchange;
NSWXY = 1 means interchange.

XMIN XMIN The limits of the plot, which may be any part of the problem

XMAX XMAX rectangle. The variables XMIN, XMAX, YMIN and YMAX

YMIN  YMIN should not be confused with variables of the same name that

YMAX YMAX are entered in AUTOMESH and determine the size of the
problem rectangle, however, if allowed to default, they will
take on the values defined in AUTOMESH.

“Qr last input value.
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tekplot

7type input data- num, itri, nphi, inap, nsuxy,

? s

input data

num= 0 itri= 0 nphi= 0 inap= 0 nswxy= 0

plotting prob. name = full size cavity cycle = 0

7type input data- xmin, xmax, ymin, ymax
7?7 80. 125. 0. 25.
input data

xmin= 80.000 xmax= 125.000 ymin= 0.000 ymax= 25.000

?7type go or no
? g

Figure B.7.1.2: An example of interactive input to TEKPLOT.

After making the plot, TEKPLOT waits for a carriage return hefore prompting
the user for more input. Upon receiving the carriage return, TEKPLO'T asks for a
dump number with accompanyirig input. To terminate the run the user enters -18
for the dump number. '

An example of TEKPLOT input is given in Fig. B.7.1.2.

B.7.2 Output of TEKPLOT

In addition to providing the plots described above, TEKPLOT also makes an
output file named OUTTEK, which contains a list of the contour values that were
plotted. TEKPLOT will only plot closed regions.

B.7.3 System-dependent Plot Routines in TEKPLOT

TEKPLOT uses PLOT10 commands . If PLOT10 is not available at the user’s
installation, then the user will have to go into the FORTRAN code and substitute
commands from his own graphics system. The calls to PLOT10 and their functions
are listed at the beginning of the source code to facilitate substitutions.

o




Chapter B.8
Input and Output for FORCE

Presently the version of FORCE that we have is not compatible with the stan-
dard versions of POISSON, PANDIRA, and TEKPLOT. In the near future we will

have it working, and at that time we will send out the docunentation for FORCE
and a worked example.




Chapter B.9

Input and Output for MIRT

B.9.1 Introduction

MIRT is a nonlinear optimization program that uses POISSON as a function
generator. It optimizes a set of parameters defining a magnet by minimizing a
weighted sum of squares of the deviations between the desired and the actual per-
formance of a magnet, subject to restraining conditions. If {p;,72 =1,..n} is a set
of parameters, and {s;,i = 1,...,m > n} is a set of performance numbers desired,
for example, values of the magnetic field at given locations, then the sum to be
minimized is

m l
S =3 wi(s: — )" + ) vilpi — p)’* (B.9.1.1)
i=1 i=1

where the w;’s are weights chosen either so that each term in the sum is approx-
imately the same size, or in some other user-defined fashion. Choosing weights
v; and estimated values of {&,i =1,..,Il< n! for some parameters, applies what
are called soft restraints. The numbers s; are calculated by POISSON. Hard re-
straints can also be applied. Hard restraints fix some values {r;,7 = 1,...,h < n} of
performance numbers absolutely. In order to minimize S, one must calculate the
change of s;’s as a function of the p;’s. This is contained in the “coefficient matrix”

]\’Iij = ds,-/dpj (B.9.1.2)
which will be referred to later.

The principle use of MIRT is to trim the poleface of dipole magnets to produce a
more uniform field in the midplane of the gap. MIRT has also been used to optimize
a quadrupole magnet. However, to do so, the quadrupole was first transformed into
a dipole through a conformal transformation. The dipole is then optimized and
then transformed back to a quadrupole using the inverse conformal transformation.
This use of conformal transformations is described in Sec. B.13.4.

Optimization means least squares minimization of the difference between the

1
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field distribution desired by the user and the ficld produced by a given set of magnet
parameters. The parameters that can be changed to produce the optimization are:
1. the poleface profile, 2. the curreut and current density in the coils, and 3. the coil
position. The parameters describing the poleface profile have been discussed in Sec.
B.1.6. The next section describes the input necessary to control the optimization,
to define the optimal field, and to specify the magnet parameters to be adjusted.
The final section describes the output produced by the code. A detailed example is
given in Sec. B.12.4 below. (Note: Sec. B.12.4 has not been written yet.)

B.9.2 Input to MIRT

The input data for MIRT can be divided into seven groups. The first group
is the variables controlling the overall optimization. These variables are called the
“optimization constants.” Most of them have default values that the user will
seldom have need to change. The second group defines the “fitted points.” Each
fitted point is defined by a field value, a location, and a weight to he used in the
least squares minimization. The third group specifies the parameters that will he
adjusted to achieve the minimization of diflerences hetween the optimum field and
the actual field. The fourth group is the set of numbers required to implement the
soft restraints on the parameters. The fifth group controls the regeneration of the
mesh when bumps are applied to polefaces and coils. The sixth group contains input
for the coefficient matrix, if it has been saved from a previous run. The seventh
group is identical to the normal POISSON inputl data as described in Chap. B.5
above. These seven groups are discussed in seven subsections below. All input is
entered using the special free format discussed in Sec. B.3.1.

B.9.2.1 Optimization constants.

Nonlinear optimization requires special care. Predictions of desired parameter
changes based on the linear coeflicient matrix M;; may not be valid. The program
takes the following precautions. The change AT; made by the program is the change
suggested by the least squares process, multiplied by a relaxation parameter RLX.
The relaxation parameter is modified from iteration to iteration depending on how
nonlinear the problem is. The degree of nonlinearity is tested after every iteration
with the help of a test sumination

m ! h
Tlaat — Zwi(séast _ §i)2 + Zvi(pfiaat _ Bi)z + Zui(réaat _ L’)z . (B.9.2.1)
=1 =1 =1
where the u;’s are chosen so that the contribution from the r;’s is comparable to
that from the s;’s. The change in 1" after each step

AT = Tlest _ ereviows (B.9.2.2)

is compared with the change AT};, that would be expected if the problem were
linear. It can be shown that the change ATj;, depends on the coefficient matrix
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and on the relaxation parameter RLX. See Sec. B.13.6. According to the value of a
function

' TEST = (AT/ATy, - 1), (B.9.2.3)
adjustment of RLX is made. This adjustment will he described below.

The program stops when one of three conditions is fulfilled: 1. S given by
Eq.(B.9.1.1) or T given by Eq.(B.,9.2.1) is less than the optimization parameter
SRSUM described below, 2. RLX is greater than 1/4 and the difference hetween
the last calculated values of either S or T is less than the optimization parameter

PCNT, or 3. the recommended value of RLX is less than the optimization parameter
RLXS.

Table B.9.2.1 gives the meaning and default values of these optimization parameters,
which are stored in an array called PCON.

Table B.9.2.1. Definition of the PCON array.

Constant Default’ Definition

PCON(1)=LOOP 0 If LOOP >0, It is the maximum number of
cycles allowed.
=0, The code runs POISSON once.
<0, The code only produces the coef-
ficient matrix discussed below.

PCON(2)=MATRIX 0 If MATRIX= 1, Save the coefficient matrix.
= 2, Read in the coeff. matrix.
= 3, Read and save coefl. matrix.
The coeff. matrix is saved on

file TAPE20.

PCON(3)=IPUNCH 0 If IPUNCH > 0, Save the coordinates of the final
optimized poleface boundary on
the file TAPEI1O.

PCON(4)=MPRINT 1 If MPRINT= 1, Write the coefl. matrix to the
file OUTMIR.
# 1, Do not write coefl. matrix.

PCON(5)=MUSE 1 The number of solutions with
each coefficient matrix. The
coefficient matrix can be used
for several iterations if desired.
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Table B.9.2.1. (continued) Definition of the PCON array.

Constant

Default

Definition

PCON(6)=RLX

PCON(7)=RLXS

PCON(8)=TEST1

PCON(9)=SRSUM

PCON(10)=PCNT

PCON(11)=FEMAX

0.5

1/128

0.1

1.E-20

0.1

0.5

The starting relaxation factor for the para-
meters.

The minimum value that RLX may assume.
The optimization will be terminated if a smaller
relaxation factor is recommended.

A parameter. that determines the options for
changing RLX. The code calculates an auxiliary
quantity TEST and compares (See Eq. B.9.2.3)
it with TEST1 before changing RLX. If S is the
sum of the weighted squares of differences at
the fitted points, then TEST is the ratio of the
improvement in T to the “as if” linear improve-
ment in 7' minus 1.0. The prescription for

changing RLX is as follows:
If |TEST| > 4.xTEST1, halve RLX and if

TEST >0., proceed; but if TEST<O0, reject the
previous solution.

If 4 ¥TEST1> |TEST| >2.#TESTI, halve RLX
and proceed.

If 2+ TEST1> |TEST| > TEST1, proceed.

If {TEST| <TEST1, double RLX and proceed.

The optimization has converged when S, the
sum of the weighted squares of differences, is
less than SRSUM.

An alternative convergence criterion. When
RLX > 0.25 and |S — AFS| < AFS#PCNT,
where AFS is the anticipated final sum, then
the code also considers the optimization
complete.

The maximum height or depth of bumps added
to the poleface must be less than FEMAX times
the starting half gap between the pole faces.
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The first constant, LOOP, is usually the only one that has to be changed from
its default value. A typical value for LOOP is 10.

B.9.2.2 Fitted points data.

There are three types of data entered here: 1. the number of points, 2. the
fields and weights, and 3. the coordinates of the points. The first line of data
consists of two numbers, NAIR and NIRN. NAIR is the number of “mu-infinite”
fitted points; NIRN is the number of “mu-finite” fitled points. From these numbers
the code calculates the number NFIT = NAIR + NIRN. The intention of having
two types of data points is to allow one to optimize a given magnet simultaneously
for both low field and high field operation. This is useful for instance in the design
of dipole and quadrupole magnets for synchrotrons. At low fields, the permeability
of the iron is essentially constant and nearly infinite. At high fields, the effect of
the variability of the permeability is important. The importance of this type of
optimization is illustrated in reference B.14.2.

Table B.9.2.II sumimarizes the second type of data, which defines the field and
its weights.

Table B.9.2.11. Data defining the field at fitted points.

Variable Definition

FFIT(I)  The desired value of the selected field quantity at point I. ITFIT selects
the field quantity.

WFIT(I) The weight factor at point I. This number depends on the type of points.
If some points are fields and others are field gradients, then the weights
must compensate for the difference in physical units as well as the intrin-
sic relative importance of the points. If WFIT < 0, the code treats the
point as having a hard restraint. The code must fit this point exactly.

ITFIT(I) This integer selects the type of quantity that can be fixed as follows:
ITFIT =1, fit B, in gauss at point L

fit B, for cylindrical problems.
= 2, fit B, in gauss at point .
fit B, for cylindrical problems.
= 3, fit dB,/dz (gauss/cmn) at point L
fit dB,/dr cylindrical problems.
=4, fit K = (1/By)dBy/dz (1/cm).
fit n = (r/B.)dB./dr for cylindrical problems.
=5, fit By/B, at point L.
fit B./B, at point I. Where B, is field at the center
of the gap.
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Table B.9.2.11. (continued) Data defining the field at fitted points.

Variable Definition

= —1 fit the n = 1 (dipole) harmonic coeff.
= -2 fit the n = 2 (quad. ) harmonic coeff.
= —3 fit the n = 3 (sext. ) harmonic coeff.
= —4 fit the n = 4 (octu. ) harmonic coeff.
= —5 fit the n = 5 (decu. } harmonic coeff.

The numbers FFIT, WFIT, and ITFIT are repeated in sequence until NFFIT sets
have been entered.

The third type of data is the coordinates of the fitted points, which are given
by the variables XFIT(I) and YFIT(l). If the points fall on a line parallel to the
horizontal axis, then one need not enter all the coordinates. Successive values of
XFIT will be incremented by the distance between the first two values of XFIT and
the first value of YFIT will be used for all points.

When entering data for a mixture of mu-infinite and mu-finite points, the NAIR
mu-infinite points are entered first and in a block, I = 1 to NAIR.

B.9.2.3 Fitting parameters.

There are two tasks that must he performed to define the parameters to be used
in the optimization. These are the following. Firstly, if the shape of a poleface
or a boundary of a coil is to be changed, one must define the original poleface or
current boundary. Secondly, one must define number and type of parameters being
used, that is, total current, currents in specific regions, current filaments, or bumps
on polefaces. Auxiliary information, like the location of the current region or the
apex of the bump, along with limits on the size of current changes or bump heights,
must be defined to keep the optimization process from going astray. The following
paragraphs will describe the input parameters and options available for each of these
two tasks.

Definition of interface or boundary to be optimized. The interface or
boundary is described by giving the logical (K, L) coordinates of all points on the
interface or boundary that are going to be affected by the parameters. For example,
consider putting a bump on the edge of the poleface for a dipole magnet. If the
poleface is 20 cm wide and you want the buinp somewhere on the outer 5 cm of
the poleface, than you must give the logical coordinates of the points on the outer
5 cm of the poleface. Another example is the location of a current region. Suppose
that you want to move the coil up or down. The upper and lower boundaries of
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the coil must be specified along with a few points on the sides of the coils that
might be effected by the movement. If you want to change the total current or the
current density in a given region, then one does not have to specify an interface
or a boundary. The same is true of changing the current in a current filament or
the value of the electrostatic potential on a given surface in the case when one has
specified that the potential on the surface be held constant. The program does
not allow one to change the locatlion of current filaments or surfaces of constant
potential.

Two lines of input are required. The first requires one nnmber, NPOLE, which
is the number of points on the optimization boundary. If NPOLE is zero, the second
line is not needed. The second line is the list of logical coordinates from I = 1 to
NPOLE. The format is KPOLE(1), KPOLE(2),..., KPOLE(NIPOLE), LPOLE(1),
LPOLE(2),..., LPOLE(NPOLE). If the points do not lic on a vertical line, then
one can use a shortcut by entering “KPOLE(1) S” for the first array. The code
will fill the rest of the array with the numbers KPOLE(1)+1, KPOLE(1)+2,...,
KPOLE(1)4+NPOLE~1. The boundary points may now be addressed by the index
I = 1 to NPOLE instead of their logical coordinates. This will be important in
defining the parameters.

Number, type, location, limits, and perturbation factors of the pa-
rameters. The first line of input for this task is the number of parameters NPAR.
If NPAR is negative, the code expects to receive “soft restraint” data, which will
be discussed below. The next NPAR lines of dala contain three types of numbers
associated with the arrays JTYPE, IND, and FAR. Figure B.9.2.1 schematically
shows the relationship between the read statements used to fill these arrays

READ NPAR

DO J=1,NPAR

READ JTYPE(J)
DO K=1,40
READ IND(K,J)
NEXT K
DO K=1,5
READ FAR(K,J)
NEXT K

NEXT J

Fig. B.9.2.1: Schematic representation of the input to parameters JTYPE,
IND, and FAR using BASIC language loops.

The meaning of the elements in the index array IND depends on the value of
JTYPE. Basically IND has to do with the location of the bump, current region, or
current filament being considered. The array FAR defines a rotated coordinate sys-
tem, the limits on the allowed parameter variation, and the “perturbation factors”,
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which will be defined later.

Table B.9.2.I1I gives the definitions of IND when JTYPE = 0, that is, when
currents are being varied. This is complicated because the current may be the total
current, the current density in a region, or the current in a set of current filameunts.
Furthermore, in some cases, the current in one region may be the return current for
a current in another region, hence the two currents must be equal.

Table B.9.2.IJII The meanings of IND when JTYPE(J) = 0.

THE TOTAL CURRENT (XJFACT) IS THE PARAMETER
Leave the array IND unchanged by skipping over this input.

THE INDIVIDUAL REGION CURRENT IS A PARAMETER
IND(1,J) = the region numnber entered in AUTOMESH or LATTICE
IND(2,J) = minus the region number if it is the return current.

THE CURRENT IN SET OF FILAMENTS IS THE PARAMETER
IND(1,J) = K coordinate of the Ist filament
IND(2,J) = L coordinate of the 1st filament
IND(3,J) = K coordinate of the 2nd filament
IND(4,J) = L coordinate of the 2nd filament

IND(2N—1,J) = K coordinate of the Nth filament
IND(2N,J) = L coordinate of the Nth filament
IND(2N+1,J) = —K coordinate of the 1st return filament
IND(2N+-2,J) = —L coordinate of the 1st return filament

IND(4N-1,J) = —K coordinate of the Nth return filament
IND(4N,J) = —L coordinate of the Nth return filament

If there are no regions or filaments with return current, then of course there are no
negative coordinates.

There are basically two types of bumps that can be put on polefaces: linear
bumps and smooth bumps. The linear bump looks like a trapezoid (or a triangle
when the left apex and right apex are the same point). The smooth bump is a
quadratic spline and has three variations, which we have called the three interval,
left side two interval, and right side two interval. See Fig. B.9.2.2. The shape of
the bump is determined by the location of the apex points and the end points.
The height of the bump is the parameter used in the optimization. The array IND
contains the apex and end point locations.

Coil boundaries can be moved by bump mechanism also. For coils only linear
bumps are allowed. To move a coil upward for example, one would use a negative
rectangular bump on the bottom and positive rectangular bump on the top having
the same width as the coil. One could then use the “soft restraint” parameters to
make the height parameters of the two bumps nearly the same. As with polefaces,
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the height is the parameter, and the apex and end-point information is put into the
array IND.
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Figure B.9.2.2: Definition or types of bumps.

In those POISSON solutions where the potential on a given surface has been
constrained to remain constant (See Sec. B.5.5), one can use MIRT to vary that
potential value to optimize the field at some other location. The potential is the
parameter and the points on the surface are stored in the array IND.

Table B.9.2.IV summarizes the values of JTYPE for the above types of opti-
mization, and Table B.9.2.V gives the meaning of IND for these cases.

Table B.9.2.IV Allowed Values of JTYPE(J).

JTYPE(J) ' Defintion
0 A current is the parameter, See Table B.9.2.111
1 Poletip linear bump height is the parameter
2 Poletip smooth bump height is the parameter
3 Cloil linear bump height is the parameter
4,5 (Not used at present.)
6 The constant potential is the parameter

negative When JTYPE(J) is negative, the code expects a two-digit

number. The leftmost digit of JTYPE is called ITYPE(J).

Normally ITYPE(J) is given its default value:

ITYPE=1!, The parameter effects only the p-infinite
fitted points; this is the default when
NIRN = 0.

ITYPE=2, The parameter effects only the p-finite fitted points;
this is the default when NAIR =0.

ITYPE=3, The parameter effects both the p-infinite and
p-finite points; this is the default when both
NAIR and NIRN are nonzero.

Negative JTYPE allows the user to change ITYPE from

its default value. The rightmost digit of JTYPE sets

the parameter type as above.
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The location of apex points, end points, and points on surfaces of constant poten-
tial are specified by giving the index I in the coordinate pair (KPOLE(I),LPOLE(1))
as discussed above in describing the optimization boundary.

Table B.9.2.V Interpertation of IND(K,J)
for JTYPE(J) > 0

Type Meaning of IND(K,J)

Triangular Bump® IND(1.J) = left end point
(JTYPE =1or3) IND(2,J) = apex"
IND(3,J) = right end point

Trapezoidal Bump IND(1,J) = left end point

(JL'YPE = 1or 3) IND(2,J) = left apex
IND(3,J) = right apex
IND(4,J) = right end point

3 Interval Bump IND(1,3) = left end point

(JTYPE = 2) IND(2,J) = left apex
IND(3,J) = right apex
IND(4,J) = right end point

2 Interval left IND(1,J) = left end point
side bump IND(2,7) = left end point
(JTYPE = 2) IND(3,]) = apex

IND{4,J) = right end point
2 Interval right IND(1,]) = left end point
side bump IND(2,1) = apex
(JTYPE =2) . IND({(3,J) = right end point

IND(4,J) = right end point

Constant Potential Skip the input. The code knows that the indices
Surface (KPOLE, LPOLE) for the surface are to be
(JTYPE = 6) loaded into the IND array.

¢ Note that linear triangular bumps may be “leftsided” and “rightsided” by making the apex and
one edge point the same. This is useful at the edge of a poletip.

The next set of entries on the same line with JTYPE and IND go into the FAR
array. Table B.9.2.V1 describes the five enteries into the FAR array.

Table B.9.2.VI Definition of the Constants in the FAR Array.

Constant Default Definition

FAR(1)=PHI(J) 0.0 The angle in degrees of rotation to the (z’,y’)
coordinate system for bump parameter J.
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Table B.9.2.VI (continued) Definition of the Constants in the FAR
Array.

Constant Default Definition

FAR(2)=CUMIN(J) none "The minimum allowed value of the total cur-
rent, current density in a region, or current in a
filament when JTYPE=0; the minimum bump
height (usually a negative number) at the pole-
face or coil houndary when JTYPE = 1, 2, or 3;
or the minimumn allowed potential when JTYPE
= 6.

FAR(3)=CUMAX(J) none The maximum allowed value of the total cur-
rent, current density in a region, or current in a
filament when JTYPE=0; the maximum bump
height (usually a positive number) at poleface
or coil boundary when the JTYPE = 1, 2, or 3;
or the maximum allowed potential when
JTYDPE = 6.

FAR(4)=FUAIR(J) .002 The mu-iufinite perturbation factor for para-
meter J. If FUAIR < 0, then FUAIR is a
perturbation amplitude; if FUAIR > 0, then
the perturbation amplitude is FUAIR times the
half gap .at the bumyp apexes.

FAR(5)=FUIRN(J) .002 The mu-finite perturbation factor for parameter
J. (Comments under FUAIR(J) above are true
for FUIRN(J) also.)

Initially bumps were viewed as iron added or subtracted to the poleface of a
dipole magnet. In this case the apex stands vertically on a horizontal surface.
When a bump is to be put on a surface that is not horizontal, it is necessary to
rotate the coordinate system of the surface so that the bump is vertical in the new
(z',y') system. To put bumps on non-horizontal surfaces, one should specify the
rolation angle PIHI(J) that carries the standard coordinate system (z,y) into the
new rotated system.

The casual user will not want to change the perturbation factors FAR(4) and
FAR(5) without acquiring an understanding of the least-squares procedure used
to optimize the parameters. The perturbation factors are used in the calculation
of the coefficient matrix, which is a derivative of the fitted points with respect
to the parameters. These derivatives are calculated numerically by making small
perturbations of the parameters and calculating the change of the fitted points. The
perturbation factors determine the size of the perturbations used to calculate the
derivatives. For more information see Sec. B.13.6, ou numerical methods.
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B.9.2.4 Input for soft restraints.

When not using soft restraints, just put an “S” on this line and proceed to the
next data group. The program is currently set up for up to 10 soft restraints. Three
types of numbers are required: 1. the index of the parameters to be restrained, 2.
the desired values of the parameters, and 3. the weight factors used in the soft
restraint. In Eq. (B.9.1.1.1), these are like the symbols “:”, “p,”, and “v;.” The
meanings are not exactly the same because the summation is sequential from 1 to
[ in Eq. B.9.1.1.1, but the soft parameter indices need not be sequential. Table

B.9.2.VII sumimarizes the required input.

Table B.9.2.VII Sununary of Input for Soft Restraints

Array ] Meaning

JSOFT(I) The array index J of the parameter to be restrained
SOFIT(I) The desired value of the restrained parameter

WOFIT(I) The weight factor for the restrained parameter

The code expects to read in 10 values of JSOFT, followed by 10 values of SOFIT,
and followed by 10 values of WOFIT in the free format described in Sec. B.3.1.

B.9.2.5 Input for regeneration of the lattice.

After introducing bumps on polefaces or coils, it is necessary to regenerate the
lattice so that the sides of the triangular mesh conform as closely as possible to the
physical houndaries of the material. One must specify the number, type, and logical
limits of the regions to be regenerated. The first line contains NGEN, the number
of regeneration regions. The regeneration regions must enclose all mesh points that
will be moved by “bump” parameters. The regeneration regions must not enclose
any mesh points in coil regions, unless a bump is being put on a coil. This first line
is followed by “NGEN” lines containing six numbers. Table B.9.2.V11I describes
the numbers required.

B.9.2.6 Input data for the coefficient matrix.

This data set is optional. It allows the user to use the coefficient matrix from a
previous run if it has been saved. See parameter PCON(2) in Table B.9.2.1 above.
If PCON(2) = 2, the coeflicient matrix is read in automatically at this point in the
input stream. :



December 11, 1986 PART B CHAPTER 9 SECTION2 13

Table B.9.2.VIII Input to the Regeneration Array NAR
for each value of M = 1,...,NGEN

Variable Default Definition

NAR(1)=MINK(M) none  The regeneration region is a rectangle for
which MINK is the minimum value of the
logical coordinate K.

NAR(2)=MAXK(M) none  Maximum value of the logical coordinate K for
the regeneration region.

NAR(3)=MINL(M) none Minimum value of the logical coordinate L for
the regeneration region.

NAR(4)=MAXL(M) none  Maximum value of the logical coordinate L for
the regeneration region

NAR(5)=ITRI(M) 0 The type of triangles to use in the regenerated
region.

ITRI = 0, equal weight triangles
ITRI = 1, isosceles triangles
ITRI = 2, right triangles

NAR(6)=MTYPE(M) ITYPE =1, p-infinite only regeneration region.
= 2, p-finite only regeneration region.
= 3, p-infinite and p-finite regeneration
region.
The default is the same as ITYPE in Table
B.9.IV above.

B.9.2.7 Input data for POISSON.

Since POISSON is used to generate the fitted points, the user must supply the
required input for POISSON as defined in Chap. B.5 above. A minimun of three
lines is required. The first two data lines have exactly the same meaning as in a
normal POISSON run, namely, the “dump” number and any desired changes in the
default CON values. The third data line terminates the MIRT run (“dump” = —1).
If this third line contains the dump number of the just obtained solution, then one
can follow with a fourth line containing some changed CON values. This will cause
MIRT to run again with these new CON’s. In any case, the final data line must set
the dump number to —1 to terminate the run.
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B.9.3 Output from MIRT.

MIRT directs output to both the terminal and to an output file called OUTMIR.
The terminal output is described in the example given in Sec. B.12.4. It is an
abbreviated version of the information given in OUTMIR, which will be described
here. The output can be broken into four parts: a sunmary of the input, an initial
POISSON run with analysis by MIRT, the main MIRT iteration cycle starting with
a calculation of the coefficient matrix and ending with the convergence test, and
finally a POISSON run giving the final optimized solution for the field. Each of
these parts will be described below and illustrated with output from a simple H-
shaped dipole magnet problem having two parameters, the total current and one
smooth bumnp.

B.9.3.1 Summary of the input data.

This part begins with a list of CON’S, which are divided into input or defanlt
values and solution values. The later group contains parameters which can be
changed by the code, although there are some which do not change. The distinction
is not clear cut. The permeability data from TAPE35 is printed next. This is
followed by a printout of the input data to MIRT, namely, the PCON array, the list
of points to be fitted, the filting parameters, the regeneration region data, and the
optimization boundary data. Figure B.9.3.1 shows an example of the output. Note
that the current version of the code lists a parameter calledd PCON(12) = SOFACT,
which has no value. This should be ignored. It will be deleted or given a value in
future versions of the program.

problem constants for optimization

(1) loop =5. max. no. of optimization cycles

(2) matrix = 0

(3) ipunch = 0

(4) mprint = 2

(5) muse = 1. no. of solutions with each coeff. matrix

(6) rix = 0.5000000. starting relaxation factor

(7) rlxs = 0.0078125. minimum relaxation factor

(8) testi = 0.1000000. relaxation factor test

(9) srsum = 0.100e-19. min. sum (wt. sqr. of delta quantities 0(10) pcnt = 0.1000000
(11) femax = 0.500. factor for parameter limits

(12) sofact=
no. of fitted points = 11

specified values of by,mu=inf. at y = 0.000 weight factors kfit 1fit
by,mu=inf.( 1) = 1.6000e+04 at x = 0.000 1.0000e+00 1 b
by,mu=inf.( 2) = 1.6000e+04 at x = 0.500 1.0000e+00 2 1
by,mu=inf.( 3) = 1.6000e+04 at x = 1.000 1.0000e+00 3 1
by,mu=inf.( 4) = 1.6000et+04 at x = 1.500 1.0000e+00 5 i
by,mu=inf.( 56} = 1.6000e+04 at x = 2.000 1.0000e+00 6 i
by,mu=inf.( 6) = 1.6000e+04 at x = 2.5600 1.0000e+00 7 1
by,mu=inf.( 7) = 1.6000e+04 at x = 0.000 1.0000e+00 1 4
by,mu=inf.( 8) = 1.6000e+04 at x = 0.500 1.0000e+00 3 4
by,mu=inf.{( 9) = 1 x = 1.000 1.0000e+00 4 4

.6000e+04 at
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specified values of by.mu=inf. at y = 0.000 weight factors kfit 1fit
by,mu=inf.( 10) = 1.6000e+04 at x = 1.500 1.0000e+00 5 4
by,mu=inf.( 11) = 1.6000e+04 at x = 2.000 1.0000e+00 6 4

Figure B.9.3.1: Printout from OUTMIR of input data to MIRT for au II-shaped

magnet containing infinitely permeable iron.

The fitted points are divided into sets with fixed values of Y. The fitting parameters
are described by “type”, that is, TYPE = 0 means a current, TYPE =1, 2, or 3
is a bump, and TYPE = 6 is a constant potential. An example is shown in Fig.
B.9.3.2 for two parameters.

no. of parameters = 2
1. type O current (xjfact = 1.00000) - mu=infinit

mu=i prt £f. = 2.000e-03
mu=f prt £. = 0.000e+00 min. change = -5.000e-01
cum. change = 0.000e+00 max. change = 5.000e-01
2. type 2 iron bump - smooth - y direct. phi = 0.00 - mu=infinit
left n= 1 k= 9 1=7zx-=3.4000y = 2.0000
left apex n= 2 k=10 1 =7 x = 3.8250 y = 2.0000
right apex n 5 k=13 1=7 x=5.1000 y = 2.0000
right n= 6 k=14 1 =28 x = 5.5000y = 2.4000
mu=i prt £. = 2.000e-03
mu=f prt £. = 0.000e+00
min. change = -1.000e+00
cum. change = 0.000e+00 max. change = 1.000e+00

Figure B.9.3.2: Printout from OUTMIR of parameter data eniered into MIRT
for an H-shaped magnet.

The core of the magnet is taken to be infinitely permeable iron. The phrase
at the left (mu=i prt £.=2.000-e3) refers to FAR(4) = FUAIR = .002 as defined
in Table B.9.2.V1 above. The phrases “min change” and “max change” refer to
FAR(2) and FAR(3). The phrase “cum. change” is an empty format.at this point
but will have meaning when the parameters are changed during the iteration cycles
of MIRT. Under the heading of bump parameter, the phrase “phi = 0” means that
the bump is on a horizontal surface, hence PHI=FAR(1) indicates that no rotated
coordinate system is needed.

The next output summarizes the regeneration region data and the location of
the original optimization boundaries, as shown for example in Fig. B.9.3.3 In this
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example, the notation “2%” schematically shows the endpoints and apex points of
the bump defined by parameter 2. If there had been more than one bump, then
there would be a set of “3%”’s, “4%”’s, elc. One set for each bump. Note also that
NPOLE = 6 for this example.

If the user had requested (PCON(2)=2) the use of a previously saved coeflicient
matrix or had entered soft restraint data, this input data would appear in OUTMIR
after the regeneration data. This ends the summary of the input data.

B.9.3.2 Imitial POISSON run with MIRT analysis.

MIRT calls POISSON for an evaluation of the least squares summation, which
is to be minimized. The next entry in OUTMIR is a summary of the POISSON
interation history as shown in Fig. B.9.3.4. The format may be a little confusing
because it is folded in on itself to save space. Table B.9.3.1 gives the meanings of
the numbers listed.

no. of regeneration regions

=1
1. mink = 8 maxk = 15 minl =

3 maxl =9 itri =0 mgen =1

optimization

boundary... n k 1 x y
2% 1 9 7 3.4000 2.0000
2% 2 10 7 3.8250 2.0000
3 11 7 4.2500 2.0000
4 12 7 4.6750 2.0000
2% 5 13 7 5.1000 2.0000
*2 6 14 8 §5.5000 2.4000

Figure B.9.3.3: Printout from OUTMIR showing the regeneration region and opti-
mization boundary data.

elapsed time = 0.2 sec.

cycle amin amax residual~-air eta-air rhoair xjfact
gmax residual-iron eta-iron rhofe

0 0.00000+00 0.0000e+00 1.0000e+00 1.0000 1.9580 1.0000
4.0000e-03 1.0000e+00 1.0000 1.0000

330 -1.1933e+05 0.0000e+00 4.5818e-07 0.9336 1.9580 1.0000
4.71336-02 2.3388e-02 0.9251 1.0000

poisson converged in 330 iterations
elapsed time = 1.7 sec.
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Figure B.9.3.4: Printout from OUTMIR of the iteration history as POISSON
solves Poisson’s equation for the vector potential.

Table B.9.3.1. Defintions of the Parameters from POISSON.

Variable Definition
AMIN Minimum value of the vector (scaler) polential over the mesh.
AMAX- Maximum value of the vector (scaler) potential over the mesh.

Residual-air CON(88), a parameter used to lest the convergence of
POISSON. If this parameter is less than 5.0e-07, the solution
has converged for the air and interface points.

Eia-air CON(106), a measure of the rate of convergence of the
solution during the current cycle. It is used to calculate
Rhoair = CON(75).

Rhoair CON(75), the overrelaxation factor for air and interface
points. This parameter is automatically optimized during the

interation if the intitial value of Rhoair is set equal to the
value of CON(74)=RHOPT1.

XJFACT C'ON(66), the factor by which all current and current densi-
ties (but not current filaments) will be scaled. XJFACT = 0
indicates the use of a scalar potential for electrostatic
problems. '

Gmax The maximum value of gamma, the inverse of the relative
permeability over the mesh.

Residual-iron CON(89), residual of iron points; used in testing convergence
of the POISSON solution.

Eta-iron CON(107), the rate of convergence of the solution at iron
points during the current cycle.

Rhofe CON(77), the overrelaxation factor for iron points in prob-
lems with finite but variable permeability.

This is followed by a table of fields and their derivatives at mesh points. It will
be recalled that these fields are obtained by a least squares fitting process. The last
column of the table is “afit”. The ratio of “afit” to “a” is a measure of the goodness
of fit by the edit polynomials used to approximate the field.

The next output gives a graph and table summary of the deviations of the
specified (given in the input) aud the achieved (calculated from POISSON) values
of the fitted points. An example is given in Fig. B.9.3.5. The last line of this output
is the sum of the weighted squares that is to be minimized.
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percent -5.493e+00 -7.105e-13
1.51212e+04 1.60000e+04
by.mu=inf. at y-0.000 3iiiiiiiiiiiddiiiiiididiididdiiddiddiiiiadiiaddidiiisdididaddadd

0.000 x * (o]

0.500 x * 0

1.000 x * 0

1.500 x * 0

2.000 x * 0o

2.500 x* o)

by.mu=inf. at y=1.000 iiiiiiiiiiiiiiiiididiadiiiidddddiiddiaiiiidaddidiadassigds

0.000 x * o]

0.500 x b o)

1.000 x * 0 .

1.500 x * (o]

2.000 x . [
iiiiidddiiiiidddidddsdddddididdididdiddiadiddiidiiiadiidid
1.512126+04 1.600000+04

poercent -5.4936+00 -7.105e-13

* represents the achieved value
0 represents the specified value
+ represents both the achieved value and the specified value if they lie together

delta by,mu=inf. at y = 0.000 by ,mu=inf. pexcent deviation
delta by,mu=inf.( 1) = 7.943e+02 at x = 0.000 15205.72115 -4.984
delta by,mu=inf.( 2) = 7.960e+02 at x = 0.500 15203.99429 -4.,975
delta by,mu=inf.( 3) = 8.017e+02 at x = 1.000 15198.25744 ~5.011
delta by,mu=inf.( 4) = 8.136e+02 at x 1.500 15186.39542 -5.085
delta by,mu=inf.( 5) = 8.361e+02 at x = 2.000 15163.86665 -5.226
delta by,mu=inf.( 6) = 8.788e+02 at x = 2.500 15121.17478 -5.493

delta by,mu=inf. at y = 1.000 by,m=inf. percent deviation
delta by, mu=inf.( 7) = 7.884e+02 at x = 0.000 15211.64494 -4.927
delta by,mu=inf.( 8) = 7.891e+02 at x = 0.500 15210.91492 -4.932
delta by,mu=inf.( 9) = 7.914e+02 at x = 1.000 15208 .58767 -4.946
delta by,mu=inf.(10) = 7.958e+02 at x = .1.500 15204.16690 -4.974
delta by,mu=inf.(i1) = 8.031e+02 at x = 2.000 15196.86214 -5.020

sum no. O (wt.sqr.of delta quantities) = 7.190e+08

Figure B.9.3.5: Printout from OUTMIR of the specified and achieved values of the
points to be fitled.

B.9.3.3 The MIRT iteration cycle.

MIRT now begins its first iteration cycle by calculating the coeflicient maltrix
using the perturbation factors, (“Perturb. a.” for mu-infinite specified points and
“Perturh. {” for mu-finite points.) There is a POISSON run for each parameter.
Fig. B.9.3.6 shows the output for the example we have been carrying along.

elapsed time = 2.0 sec.
calculating coefficient matrix

1. type O current (xjfact = 1.00200) - mu=infinit perturb. a. = 2.000e-03
perturb. f£. = 2.000e-03

poisson converged in 160 iterations
2. type 2 iron bump -~ smooth -y direct. phi = 0.00 - mu=infinit perturb. =a. "= 4.000e-03
left n= 1k=9 1= 7 x = 3.4000 y= 2.0000 perturb. f. = 2.000e-03
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left apex n = 2k =10 1 =7 x = 3.8250 y= 1.9984
vight apex n = 5k =13 1 =7 x =6.1000 y= 1.9985
right n= 6k=14 1=8 x=5.5000 y= 2.4000

poisson converged in 130 iterations
elapsed time = 3.5 sec.
coefficient matrix no. 1

1 2
1 1.039e+04 -5.309e+02
2 1.03%9e+04 -5.0850+02
3 1.037¢404 -4.671e+02
4 1.03404+04 -3.946e+02
5 1.0280404 ~2,142e402
[} 1.0190+04 1.4320+402
7 1.042e¢+04 -5.432e+02
8 1.042¢+04 -5.467e+02
9 1.041e+04 -5,495e+02
10 1.038e+04 -5,497e+02
11 1.034e+04 ~-5.345e+02

Figure B.9.3.6: Printout from OUTMIR of the calculation for the coefficient matrix
in the case of two paraneters and 11 fitted points.

MIRT now uses the coeflicient matrix to calculate changes in the parameters.
The new parameters are displayed in the standard format used to display parameters
as illustrated in Fig. B.9.3.7, which also shows the iteration history of a POISSON
run using these parameters. MIRT then displays the new shape of the optimization
boundary and the difference between the specified and achieved values of the fitted
points. In addition MIRT also displays the new least squares summation and other
terms needed to calculate a new relaxation factor. The anticipated final sum is
compared with the actual sum to determine if convergence has occurred. In the
example being used, convergence did not ocenr after the first iteration and hence
MIRT starts a new iteration cycle starting with a recalculation of the coefficient
matrix and ending with a convergence test.

The example we are following converged after three iterations. The important
sununations at the end of the third cycle are shown in Fig. B.9.3.8. Note that the
anticipated least squares sum is very close to “swm no. (3).”

optimized solution no. 1, relaxation factor = 0.500000

1. type O current (xjfact = 1.04213) - mu=infinit

solution a. = 4.213e-02 min. change = -5.000e-01
cum. change = 4.2130-02 max. change = 5.000e-01
2. type 2 iron bump - smooth -y direct. phi = 0.00 - mu=infinit perturb. a. = 4.000e-03
left n= 1k=9 1=7 x=3.4000 y= 2.0000 perturb. f. = 2,000e~03
left apex n = 2k=10 1 =7 x=3.8250 y= 1.9896
right apex n= 5k =13 1 =7 x = 5.1000 y= 1.9709
right n= 6k=14 1 =8 x=5.5000 y= 2.4000

solution a. = 7.575e-02
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min. change = —1.000e+00
cum. change = 7.5756-02 max. change = 1.000e+00

olapsed time = 3.6 sec.
cycle amin amax residual-air eta-air ‘rhoair xjfact
gmax residual-iron eta~iron rhofe
0 -1.24350+05 0.0000e+00 4.5818e-07 0.9336 1.9580 1.0421
4.7133e-02 2.3388e-07 0.9251 1.0000
230 -1.2303e+05 0.0000e+00 3.2147e¢-07 0.8062 1.9580 1.0421
5.52216-02 1.1848e-07 0.8775 1.0000

poisson converged in 230 iterations
olapsed time= 4.7 sec.

Figure B.9.3.7: Printout from OUTMIR showing the new parameters and the results
of a POISSON run using these new parameters.

optimization converged

(wt.sqr. of delta quantities)

sum no. O = 7.190e+06
sum no. 1 = ) 1.951e+06
sum no. 2 = 4.3316+03
sum no. 3 = 3:819e+02

anticipated final sum (wt.sqr.of delta quantities) = 3.785e+02
dump number 1 has been written on tape35.

Fig. B.9.3.8: Printout from OUTMIR of the least square sum and related quantities
for the final iteration of our example.

B.9.3.4 Final POISSON run.

After convergence, MIRT calls POISSON for a final run and writes the full table
of field quantities at mesh points. The first part of this final run is illustrated in
Fig. B.9.3.9
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Chapter B.10

Diagnostic and Error Messages

B.10.1 Messages from AUTOMESH

Diagnostic and Error messages printed from AUTOMESH can be broken into
three categories: 1.those starting with the word “ERROR?”, 2. those starting with
the word “TROUBLE”, and 3. two additional messages. In the sections helow, we
list the messages, briefly define the problem and give a possible solution.

The following five conventions make the explanations simpler to write.

1. CHANGE THE MESH SIZE — usually~the mesh is too coarse; user should rerun
the problem with a finer mesh; sometimes a slight mesh size change will suffice.

2. (X1,Y1)/(R1, THETA1) — the Cartesian/polar coordinates of the previous
point (from).
(X2,Y2)/(R2, THETA2) — the Cartesian/polar coordinates of the present
poiat (to).

3. R --- (printed as the value of a variable) means that this variable has been set
out of range and not supplied by the user.

4. (--) means computer prints out the value.

§. REGION (--)/0.K. — AUTOMESH has successfully found paths for all boun-
dary points in this, (--), region; if errors occur in one region, AUTOMESH
proceeds to the next.
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B.10.1.1 Messages containing “ERROR”

i. "--- ERROR --- DATA FOR THIS CIRCLE FROM (X1,Y1)/(Ri, THETAi)

6. "

TO (X2,Y2)/(R2, THETA2) IS INCONSISTENT ..."

Either one or both coordinates are not given or the two points with center
at (X0,Y0) do not lie on the same circle to a relative accuracy of 1073,
Correct the input data for the listed coordinates. The user should check
that the coordinates are given RELATIVE to (X0,Y0). Message from
subroutine DATUPS.

ERROR --- DATA FOR THIS LINE ARE INSUFFICIENT ..."
Either one or both coordinates are not given. Correct the input data for
the listed coordinates. Message from subroutine DATUPS.

ERROR --- DATA FOR THIS HYPERBOLA FROM (X1,Y1) TO (X2,Y2) IS
INCONSISTENT ..."
Either one or both coordinates are not given, R is not given, or the two

points do not lie on the same hyperbolic branch to a relative accuracy
of 1073, Message from subroutine DATUPS.

ERROR --- X/Y IS OUT XMIN, XMAX/YMIN, YMAX LIMITS ..."
The X or Y point printed is less or greater than the given minimum or

maximum value for X/Y in the first REG input line. Correct input.
Message from -DATUPS.

ERROR --- (KMAX + 2) % (LMAX + 2) = (--) IS GREATER THAN
PROGRAM DIMENSIONS OF (--) ..."

The total number of mesh points have exceeded the maximum value
dimensioned. Cut mesh size or increase parameter MXDIM and recom-
pile as directed by the complete diagnostic message. (Note: Versions
of the code received {from us before June 1986 have a different diagnos-
tic message and do not give directions for changing MXDIM.)

Message from subroutine SETXY.

ERROR --- TROUBLE IN FINDING THE PATH OF A POINT ..."“
AUTOMESH encountered trouble in both “forward” and or “backward”
pass in subroutine LOGIC. To correct, decrease mesh size near the
point and try again. Message from main program.
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B.10.1.2 Messages containing “TROUBLE”

1.

3a.

TROUBLE --- DIMENSIONS FOR THE NSEG ARRAYS, EXCEEDED NSG OF
(==) ...»

AUTOMESH has exceeded the maximum number of boundary segments
dimensioned in the program. Increase parameter NSG and recompile

as directed. Message from subroutine FISHEG. (Note: Versions of the
program received before June 1986 have no directions for increasing
NSEG. The user can only decrease the number of segments in the input.)

TROUBLE -~- NPOINT = (--), EXCEEDS DIMENSION OF (--)"

The number of PO entries for this region has exceeded the maximum
number dimensioned. To correct, decrease the number of points or in-
crease parameter NPTX and recompile as directed. (Note: Versions of
the program received before June 1986 have no directions for increasing
NPTX. The user can ouly decrease the number of points in the input.)
Message {rom main program or subroutine INSERT.

TROUBLE --- THE PROGRAM FOUND THE SAME (K, L) COORDINATES
FOR THE FIRST AND LAST POINT OF THIS CURVE ..."

The program has assigned the same mesh point in either vertical or
horizontal direction for (X;, ¥;) and (X3, ¥3). This usually means
niesh size is not fine enough.

Message is printed from subroutine LOGIC. The last line of the mes-
sage prints the phrase “FORWARD PASS” or “BACKWORD PASS.”
AUTOMESH executes subroutine LOGIC twice—first in a “forward”
search, and a second pass in a “backward” search—to find the path
of the current segment. Then the program chooses the path with the
smaller number of segments with no errors. A fatal error occurs if
BOTH directions encounter “TROUBLE.” To correct, change mesh
size.

TROUBLE --- PROGRAM DIMENSIONS 1000 FOR THE KL ARRAYS ARE
INSUFFICIENT"

The program has difficulty in finding the path for this segment and
thus has exceeded the dimension allocated for storage of the path
array. See 3a. above.

TROUBLE ~-- LOGICAL PATH IS TRAPPED AT K = (--), L = (-=)"
The program cannot find the path for this current segment. See 3a
above.
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"--~ TROUBLE .=-- TOO MANY END POINTS FOUND FOR THE LINE"
The program has trouble adding a vertical/horizontal line region.

6a. AUTOMESII could encounter a number of problems in subroutines
XLINER/YLINER while attempting to add vertical/horizontal line
regions. To correct, CHANGE MESH SIZE or in versions of the program
received after April, 1986 set LINX/LINY = 1 in the first REG entry.
(‘This latter option deletes the addition of all vertical/ horizontal line
regions at horizontal/vertical mesh change locations.)

“——— TROUBLE --- NO END POINTS FOUND FOR LINE"
The program has trouble finding a mesh point for the end point of
the added line region. See 6a. above.

“_—- TROUBLE --- ONLY ONE END POINT FOR THE LINE"
The program has trouble finding an end point for this added line
region. See 6a. above.

"-—— TROUBLE --- A POINT WITH (K = KREG) HAS X NOT = TO XREG"

"——- TROUBLE --- A POINT WITH (L = LREG) HAS Y NOT = TO YREG"
The program has difficulty adding a vertical/horizontal line region.
See 6a. above.

1}

B.10.1.3 Additional Diagnostic Messages

1.

*DIMENSION OF 2000 FOR KR, LR ..."

The program has run into difliculty and has exceeded the maximum num-
ber of points dimensioned for a region. CHANGE MESH SIZE and try again.
Message from subroutine LOGSEG.

"DIMENSION OF 3000 INSUFFICIENT FOR KG, LG ..."
The program has run into difficulty and has exceeded the total number
of points dimensioned for all regions. CHANGE MESH SIZE and try again.

Message from subroutine SAVAGE.
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B.10.2 Messages from LATTICE

LATTICE writes all of diagnostic and error messages to the output file, OUTLAT,
and some to the terminal if run is interactive. An explanation of the common ter-
minology used in these messages is listed below.

1.

2.
3.
4.

k,

[ The mesh point numbering for the horizontal and vertical coordi-
nates.

z, y The horizontal, vertical coordinates, respectively.
k', I The mesh point numbering for the second of the two points.
(--)  Means the computer prints out the value.

B.10.2.1 Messages Containing “ERROR EXIT”
1. "--- ERROR EXIT --- TWO MESH DATA POINTS WITH A DIFFERENT K, L

B.10.2.2

HAVE THE SAME X, Y COORDINATES"

followed by values of k, [, k’, I, z, and y. This message is from the
function ANGLF. The code has found the same physical coordinates
assigned 1o two different logical points. Check input data; try reducing
mesh spacing if input looks correct.

ERROR EXIT --- IN SUB. ANGLE COST = (--) AT KO = (--) LO =
(=-)"

Message from function ANGLF. The code has a cosine value greater
than 1.0 at the'logical point (KQ, LO). Check input data, try reducing
mesh spacing.

ERROR EXIT --- NWMAX EXCEEDS PROGRAM DIMENSIONS OF (--) ..."
Message from subroutine PRELIM. The storage for recalculating coup-
lings has been exceeded. This storage has dimension of 1/2 of the para-
meter MXDIM. Increase MXDIM and recompile.

Messages Containing “INPUT DATA ERROR”

1. "--- INPUT DATA ERROR --- ILLEGAL CHARACTER",

followed by a print of the input line. Message from subroutine FREE.
The code has found a character it does not recognize in the line
printed. Correct input.

2. “--- INPUT DATA ERROR --- NO MANTISSA WITH EXPONENT",

followed by a print of the input line. Message from subroutine FREE.
The code found an exponent standing alone in the line printed. Correct
the input line.
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B.10.2.3 Messages Containing “DATA ERROR?

These messages are issued whenever LATTICE encounters any errors in read-
ing the input file. Mostly, such errors occur when a user creates his own input file
for LATTICE. I the input file for LAI'TICE has been generated by a successiul
AUTOMESH run, it is unlikely there would be any errors of this type. In any case,
the errors issued are self-explanatory. The user need only correct the identified error
in the input file and rerun.

{. "-—- DATA ERROR --- THE NO. OF BOUND DATA VALUES X, L, X, V)

2. "

3. "

(--) FOR THIS REGION IS NOT A MULTIPLE OF 4"

Message from subroutine REREG. The code has found that the
coordinate data on the input file is incomplete. Correct the input
file (Usually TAPE 73). If generated by AUTOMESH, try chang-

ing mesh spacing.

DATA ERROR --- THE FIRST AND LAST POINTS OF REGION HAVE
SAME K, L BUT DIFFERENT X, Y COORDINATES"

Message from subroutine REREC. Meshing has heen done incorrect-
ly. Correct input file. 1f generated by AUTOMESH, try changing
mesh spacing.

DATA ERROR --- NEGATIVE OR ZERO L"
Message from subroutine REREG. The input file has an illegal value
for the logical coordinate L. Correct input file.

DATA ERROR --- NEGATIVE OR ZERO K"
Message from subroutine REREG. The input file has an illegal value
for the logical coordinate K. Correct input file.

DATA ERROR --- L, K AND LPRIME, KPRIME NOT ON SAME LOGICAL
LINE"

Message from subroutine REREG. There is an error in the boundary
input to LATTICE. Check input file.

DATA ERROR --- L EXCEEDS LMAX"

Message from subroutine REREG. The code has found a boundary
point in the input file with a logical L coordinate greater than the
maximum L coordinate. Correct input.
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7.

10.

11.

12.

"--- DATA ERROR --- K EXCEEDS KMAX"

Message from subroutine REREG. The code has found a boundary
point in the input file with a logical K coordinate greater than the
maximum K coordinate. Correct input.

--- DATA ERROR --- YOU HAVE EXCEEDED THE MAXIMUM NUMBER OF

REGIONS ALLOWED = (--)"
Message from subroutine REREG. Too many regions. Increase para-
meter NRGN and recompile.

--- DATA ERROR --- YOU HAVE EXCEEDED THE MAXIMUM NUMBER OF

INPUT BOUNDARY POINTS PER REGION = (--)"

Message from subroutine REREG. The storage for single region boun-
dary points has been exceeded. Increase parameter NPMX and recom-
pile.

--- DATA ERROR --- THO CONSECUTIVE DATA POINTS IN THIS REGION

HAVE SAME K, L COORDINATES"
Message from subroutine REREG. The code has found two consecutive

boundary points assigned the same logical coordinates. Correct input
data.

—--- DATA ERROR --- TWO CONSECUTIVE DATA POINTS IN THIS REGION

HAVE SAME X, Y COORDINATES"
Message from subroutine REREG. The code has found two consecutive

boundary points assigned the same physical coordinates. Correct input
data.

--~ DATA ERROR --- (KMAX+2)=x(LMAX+2) EXCEEDS PROGRAM DIMENSIONS

OF (__)n
Message from subroutine REREG. There are too many mesh points
in the problem. Increase the parameter MXDIM and recompile.

B.10.2.4 Messages Containing “TROUBLE” and “WARN-

1.

ING”

"--- TROUBLE ~-- DIMENSIONS FOR NO. OF SEGMENTS EXCEEDED NSG OF

--) ...»

Prints to OUTLAT and terminal and immediately aborts. Message from
main program; follow instructions given in the complete error message
and recompile.
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2. "--- WARNING ---THE MESH HAS NEGATIVE AND/OR ZERO AREA TRIANGLES"
LATTICE writes to the file OUTLAT, a message whenever it encoun-
ters a negalive or zero area in subroutine FILPOT, followed by the
three coordinates that make up this triangle. The program processes
the triangles of all regions before printing above message to OUTLAT
and terminating. Message from main program; follow instructions or
remeslh the problem with a different mesh spacing.

3. "--- WARNING ---THE NUMBER OF INTERIOR POINTS =0 ..."
Message from subroutine SETTLE is self-explanatory in versions
released after April 1986. For previous versions, the user has somehow
set up the problem wrong. All points are boundary points and hence
the potential is determined everywhere.

B.10.2.5 Miscellaneous Messages

i. "THE ABOVE REGION IS NOT CLOSED."
This message is output to OUTLAT from subroutine REREG and is only a
warning. User should check to see that the same values for the first and last
coordinates for this region are specified if a closed region with interior points
is desired.

2. M"ITERATION TERMINATED-—-MAXIMUM NUMBER OF CYCLES."
This message is output to OUTLAT [rom subroutine SETTLE and is only
a warning. The mesh generation did not converge to the required accuracy
after 100 iteration cycles. Run is continued with present mesh. User could
try running the problem with this mesh or CHANGE MESH SIZE and rerun.

3. "THE LAST CORRECT POINT IS K = (--), L = (-=)"
Message from subroutine REREG. This message occurs after INPUT DATA
ERROR messages numbers 3, 4, 5, 6, 7, 10, and 11. The logical coordinates
are an aid in finding the error.

4. "ITERATION CONVERGED"
Message from subroutine SETTLE. The mesh relaxation process was successful.
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B.10.3 Messages from POISSON

B.10.3.1 Messages Starting with “ERROR. EXIT”

1. "--- ERROR EXIT --- (KMAX+2)(LMAX+2) IS GREATER THAN PROGRAM
DIMENSIONS OF (---)"
Message from subroutine RDUMP. Too many points in problem.
Increase parameter MAXDIM and recompile.

2. "--- ERROR EXIT --- NWMAX EXCEEDS PROGRAM DIMENSIONS OF (===)"
Message from subroutine RDUMP. Not enough storage. Increase para-

meter MAXDIM and recompile.

3. "--- ERROR EXIT --- THE MESH HAS NEGATIVE AND/OR ZERO AREA
TRIANGLES"
Message from subroutine RDUMP. The mesh has a region where the
triangles have collapsed or where logical lines have crossed. Remesh with
a different mesh spacing.

4, "~-~-- ERROR EXIT --- MATERIAL CODE .GT.5"
Message from subroutine TABLE. The user has input CON(18)
= NPERM negative and has read in a material code greater than 5.
See instructions for use of NPERM = CON(18).

B.10.3.2 Messages Ending with “ERROR EXIT”

1. "NAME OF MATERIAL IS LESS THAN OR EQUAL TO 1, OR IS GREATER THAN 11"
- "~---ERROR EXIT---"
Message frown subroutine TABIN. POISSON can handle up to 11 different
materials. The first is reserved for air or current carrying coils. This message
means that the user has input an illegal material number during the input of
magnetic region data. Correct input.

2. "THE NUMBER OF INPUT TABLES IS GREATER THAN FOUR" "---ERROR EXIT---"
Message from subroutine TABIN. The user has tried to input too many mag-
netic property tables. Ouly 4 tables can be input (1 internal and 3 exlernal).
Correct input.

3. "GAMMA = H/B, AND B = 0.0” "---ERROR EXIT---"
Message from subroutine TABIN. The user is trying to input a MTYPE = 3
(H vs B) magnetic material table and has entered a value of B = 0. Since this
would result in a divide by zero when converting to v vs. B the run is stopped.

4. "YOU HAVE EXCEEDED THE MAXIMUM DIMENSIONS ALLOWED FOR THE GAMMA
VS B TABLES" "---ERROR EXIT---"
Message from subroutine TABIN. The number of data lines in a table of
magnetic material properties (GAMMA vs B, MU vs B, or H vs B) is greater
than 50. Edit the input table.
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B.10.3.3 Messages with “DATA ERROR”

1. "--— DATA ERROR --- ITYPE IS NEGATIVE OR ZERC"
Message from subroutine POWERS. CON(46) = ITYPE is negative
or zero which is illegal. Consult information on CON(46).

B.10.3.4 Messages with “INPUT DATA ERROR”

1. "--- INPUT DATA ERROR --- ILLEGAL CHARACTER",
followed by a print of the input line. Message {from subroutine FREE.
The code has found a character it does not recognize in the line
printed. Correct line.

9. "——— INPUT DATA ERROR --- NO MANTISSA",
followed by a print of the input line. Message from subroutine FREE.
The code has found an exponent standing alone in the line printed.
Correct input.

B.10.4 Messages from PANDIRA

B.10.4.1 Messages Starting with “ERROR EXIT”

1. "-—- ERROR EXIT --- NOTE = CON(81) = 1"
Message from main program.. CON (81)=NOTE sets the point re-
laxation order and must be 0 for PANDIRA runs. Rerun LAT'TICE
with CON(81) = 0.

9. "_-- ERROR EXIT --- (KMAX+2)(LMAX+2) IS GREATER THAN PROGRAM
DIMENSIONS OF (--")
Message from subroutine PRDUMP. Too many points in the problem.
Increase parameter MAXDIM and reconipile.

3. "——- ERROR EXIT --- NWMAX EXCEEDS PROGRAM DIMENSIONS OF CON
Message from subroutine PRDUMP. Not enough storage. Increase
parameter MAXDIM and recompile.

4., "-—- ERROR EXIT --- THE MESH HAS NEGATIVE AND/OR ZERO AREA
TRIANGLES"
Message from subroutine PRDUMP. The mesh has a region where
the triangles have collapsed or where logical lines have crossed.
Remesh with a different mesh spacing.

5. "-—- ERROR EXIT --- NO. INTERFACE CURRENT POINTS .GT. DIMENSIONED
ARRAY OF (--) ..."
Message from subroutine RHANDS. The storage in COMMON/SINS/
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is too small. Increase parameter value INMX in PANDIRA only
and recompile.

"--- ERROR EXIT --- SUM OF INTER. & IRON A’S IS ZERO."
Message from subroutine RHANDS. The code is calculating RESIDI
= CON(89) and has found that, for the present iteration, the sum of
the solution values at the iron and interface points is zero. This will
result in a divide by zero so the run is stopped. Try cutting mesh size;
check that the iron region is closed; or try running POISSON if appli-
cable.

--- ERROR EXIT --- NAMAX EXCEEDS PROGRAM DIMENSIONS OF (--)*"
Message from subroutine SWIND. Storage exceeded. Increase para-
meter MAXDIM and recompile.

"--- ERROR EXIT --- NROW = MINO(KMAX, LMAX) = (--) EXCEEDS
MATRIX DIMENSIONS OF (--)*
Message from subroutine TRIBES. The storage needed for the matrix
inversions is greater than allowed. Change the larger dimension in
COMMON/012/. Change the value of IMX in the DATA statement
in subroutine TRIBES to new value. Change the appropriate dimen-
sion in the DIMENSION statements in subroutines MATINV and
MATINP. In subroutine DINO, change the value of variable NDD
(statement with label 10). Then recompile POILIB and PANDIRA.

9. "---ERROR EXIT--- MATERIAL CODE .GT. 5"

Message from subroutine PTABLE. The user has input CON(18) =
NPERM negative and has read in a material code greater than 5. See
instructions for use of NPERM = CON(18).

B.10.4.2 Messages Ending with “ERROR EXIT”

1.

"NAME OF MATERIAL IS LESS THAN OR EQUAL TO 1, OR IS GREATER THAN
11" "---ERROR EXIT---"

Message from subroutine TABIN. PANDIRA can handle up to 11 diflerent
materials. The first is reserved for air and current carrying coils. This mes-
sage means that the user has input an illegal material nummber during the input
of magnetic region data. Correct input.

"THE NUMBER OF INPUT TABLES IS GREATER THAN 4" "---ERROR EXIT---"
Message from subroutine TABIN. The user has tried to input too many mag-
netic property tables. Only 4 tables can be input (1 internal and 3 external).
Correct input.

"GAMMA = H/B, AND B = 0.0" "---ERROR EXIT---"
Message from subroutine TABIN. The user is trying to input-a MTYPE =
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3 (H vs B) magnetic material table and has entered a value of B = 0. Since
this would result in a divide by zero when converting to v vs. B, the run is
stopped.

4. "YOU HAVE EXCEEDED THE MAXIMUM DIMENSIONS ALLOWED FOR THE GAMMA
VS B TABLES" '"---ERROR EXIT---"
Message [rom subroutine TABIN. The mumber of data lines in a table of
magnetic material properties (GAMMA vs 3, MU vs B, or H vs B) is greater
than 50. Edit the input table.

B.10.4.3 Messages with “DATA ERROR”

1. "--- DATA ERROR --- ITYPE IS NEGATIVE OR ZERQ"
Message tfrom subroutine POWIERS. CON(46) = ITYPE is negative
or zero which is illegal. Consult information on CON(46).

B.10.4.4 Messages with “INPUT DATA ERROR”

1. "--- INPUT DATA ERROR --- ILLEGAL CHARACTER"
followed by a print of the input line. Message from subroutine FREE.
The code has found a character it does not recognize in the line
printed. Correct line.

2. "--- INPUT DATA ERROR --- NO MANTISSA"
followed by a print of the input line. Message from subroutine FREE.
The code has found an exponent standing alone in the line printed.
Correct input.
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B.10.5 Messages from TEKPLOT

1.

e e g e

""~~-— INPUT DATA ERROR --- ILLEGAL CHARACTER"
Followed hy a print of the input line. Message from subroutine FREE.
The code has found a character it does not recognize in the line
printed. Correct iuput.

"--- INPUT DATA ERROR --- NO MANTISSA"
Followed by a print of the input line. Message from subroutine FREE.
The code has found an exponent standing alone in the line printed.
Correct the input line.

"NUMBER OF REGIONS ON TAPE35 = (--) LARGER THAN DIMENSION

NRGN.RUN STOPPED"
Message from subroutine TRDUMP. The number of regions to be input ex-
ceeds storage. Increase parameter NRGN and recompile.




Chapter B.11

Convergence and Accuracy

The accuracy of POISSON is difficult to assess becanse POISSON calculates
in two dimensions and assumes an infinite third dimension. Thus, the accuracy
improves as the magnet gets longer. The accuracy is also dependent on the quality
of the B vs.H iron table nsed. Several users have remarked that the internal table
used by POISSON is a little too idealistic, especially at high values of H. We
are seeking a better table to include in the program. If you have suggestions for
one, please contact us. At low values of H, hystersis effects in real iron make it
very difficult to correctly model the magnetic field. The authors of the code feel
that POISSON is always accurate to at least 5% in absolute accuracy, but is more
accurate when evaluating relative changes on the same magnet.

The less uniform the field distribution, the less accurate the solution. Conformal
transformations can be used to improve the accuracy of the solution in cases of very
non-uniform field distributions. This is described in Sec. B.13.4 below.

This chapter is not complete. In the future we hope to benchmark the corle
against some analytically solvabe problem, and to compare it with some other well-
known codes.



Chapter B.12

EXAMPLES

B.12.1 QUADRUPOLE MAGNET

This example computes the magnetic fields and harmonics for a guadrupole
magnet. By making use of symmetry, we need ouly calculate one-eighth of the
maguet. Figure B.12.1.1 shows the magnet section calculated.

IRON

AIR AIR

prob. asme = qua d a3 rux 19. 8/18/88 cycle = L 4
Figure B.12.1.1: Section ol quadrupole used in calculation.
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poisson-pandira test quad a2
$reg nreg=4, xmax=22.5228, ymax=15.92603, dx=.2100, mat=2, npoint=8 §
$po x=0.0, y=0.0 $

$po r=14.25, theta=0.0 $

$po r=19.1883, theta=0. $

$po x=19.9, y=1.4 ¢

$po x=22.4421, y=1.905 $

$po nt=2, r=22.5228, theta=45.0 $
$po r=2.92, theta=45. $

$po x=0.0, y=0.0 $

$reg mat=1, npoint=8 $

$po x=0.0, y=0.0 $

$po r=14.25, theta=0.0 $

$po x=12.59852, y=6.65882, nt=2 $
$po x=9.5, y=3.5603 §

$po x=7.02870, y=2.47058 $

$po x=4.28368, y=.99522 &

$po nt=3, r=2.92, x=2.0647518, y=2.0647518 $
$po x=0.0, y=0.0 $

$reg cur=9400., npoint =11 $

$po x=11.86, y=5.60 §

$po x=7.80, y=1.60 $
$po x=7.15, y=2.30 $
$po x=5.82, y=1.0 $
$po x=6.48, y=.32 $
$po x=7.15, y=1.0 §
$po x=7.85, y=.32 $
$po x=8.50, y=1.0 §

$po x=9.18, y=.32 $

$po x=13.18, y=4.14 $

$po x=11.86, y=5.60 $

$reg ibound=0, npoint=6, cur=0. $
$po x=0.0, y=0.0 $

$po x=2.0647518, y=2.0647518 $
$po r=22.5228, theta=45. $

$po x=22.4421, y=1.905, nt=2 $
$po x=19.9, y=1.4 $

$po x=19.1, y=0. §

Figure B.12.1.2: AUTOMESH input file for quadrupole in Fig. B.12.1.1.

The AUTOMESIT input is shown in Fig. B.12.1.2. The file nane is QTESTIN. In
the input file all lines start in column 2. In the case of the title line, we need a blank
to tell AUTOMESH that the input is for a POISSON or PANDIRA problem. All
the rest start in column 2 because they are FORTRAN NAMELIST input lines. The
first region defines the outer boundary of the problem. The REG NAM ELIST tells
AUTOMESH that there will be 4 regions (NREG=4), gives the exireme values of
x and y (XMAX and YMAX), sets the rough {riangle hase size (DX), defines the
enlire problem region to be iron using the internal table (MAT=2), and tells the

code there are 8 PO NAMELIS' s to follow (NPOINT=8).
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The second region input overwrites the first. The second REG NAMELIST
sets MAT=1 which corresponds to £, = 1 nused for both the air and coil regions.
The 8 fellowing PO NAMELIST's define the subregions. The third region input
defines the coil inside the 2nd region. llere CUR is set to 9400 amps. The 4th
region is a line region. This region is put in to get the proper boundary conditions,
IBOUND=0 (DIRICHLET) on the 45° line and outer boundary. (*UR is set to 0
hecause otherwise there wonld be a current equal to 9400 amps on the line because
the previous region value was not overwritten.

automesh

?type input file name
?qtestin

region no. 1
ok

region no. 2
ok

region no. 3
ok

region no. 4

ok

stop

automesh ctss time .797 seconds
cpu=  .482 i/o=  .28S5 mem=  .060
all done

Figure B.12.1.3: AUTOMESH ouput to terminal for guadrupole example.

After preparing the inpnt file, the next step is to run AUTOMESH. Tigure
B.12.1.3 shows the interactions with the terminal for a run made on a CRAY. The
user types Lhe executable file name AUTOMESH. The code asks for the input file
name and the users reply tells it 1o use QTESTIN. No other input is necessary and

AUTOMESH executes.

The next step is to run LATTICE. The user starts the run by typing the exe-
cutable file name LAT'TICE. Figure B.12.1.4 shows what happens at the terminal.
The code asks for an input file name and the user replies with TAPET3 which is

the tape that AUTOMESH has set up for it. LAT'TICE prints messages and the

lattice

?type input file name
? tape73

beginning of lattice execution

dump 0 will be set up for poisson
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poisson-pandira test quad a2

type input values for con (7)
?7%6 0 *32 2 %46 4 *111 11 1.86 45. 2.92 s

elapsed time= 1.7 sec.
Oiteration converged

elapsed time= 3.3 sec.
generation completed

dump number O has been written on tape35.

stop
lattice ctss time 4.231 seconds
cpu=  3.655 i/o=  .439 mem=  .137
all done

Figure B.12.1.4: User terminal instruction during LATTICE run of quadrupole ex-
ample.

problem title followed by a request for CON inputs. At this point the user inputs
seven changes. The user types:

*6 0 ¥322 *46 4 *111 11 1.86 45. 2.92 s

As it happens, none of these CCON changes are necessary for the LATTICE run,
but can he entered here for later use by POISSON. They could as well been entered
after POISSON asks for CON input. The meaning of the CON values input is as
follows:

*6 0 sets CON(6)=MODE equal to 0. This says that some iron in the problem
has finite, nonconstant permeability.

*32 2 sets CON(32)=IPRINT to 2 which will canse POISSON to write the v vs
B tables used to the file OUTPOI and also to print 2 map of | B | in the iron.

*46 4 sets CON(46)=ITYPE equal o 4 which tells the code that the problem
is a symmetrical quadrupole.

*111 11 1.86 45. 2.92 s changes CCON’s 111 thru 114. These values all give
information needed by the code to do a harmonic analysis of the quadrupole field.
CON(111)=NPTC=11 says use 1! points on a circular arc, CON(112)=RINT=
1.86 says the radius of the arc is 1.86cm., CON(113)=ANGLE=45. indicates the
length of the arc is to be 45°, and finally CON(114)=RNORM=2.92 tells the code
to use a normalization radius of 2.92cm. The final s in the CON input line tells the
code there is no more input. The code then continues execution and writes dump

G to TAPES3S.

At this point the user can use TEKPLOT to examine the mesh or to look at
the region outlines. Figure B.12.1.5 shows how the user would use TEKPLOT to
see the region outlines.
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After the execulable file name TEKPTOT is typed, the code asks for inputl for
five parameters. The reply s indicates that the user wants to use the default values
which are all zero. This will cause only the problem outline to be drawn. After
printing the problem name the code asks for limits on the region to be drawn. The
user reply, 0. 23., which says plot a square 23cmn on a side with the lower right
corner at the origin. No s is required for the input because all four values are given
and, in this case, the code knows that it should continue. Next the user replies GO.
After hitting the carriage return the code draws the outline shown in Fig. B.12.1.1,
however, without the printing in the regions. To end TEKPLOT, the user hits
the carriage return and, when the code asks for more input data, type -1s. The
terminal output is shown in Fig. B.12.1.6.

tekplot
_?Egﬁg—input data—- num, itri, nphi, inap, nswxy,

’s .

input data

num=_ 0 itri= 0 nphi= 0 inap= 0 nswxy= O
plotting prob. name = poisson-pandira test quad a2 cycle= 0

type input data- xmin, xmax, ymin, ymax,

70. 23. 0. 23.

input data
xmin=  0.000 xmax= 23,000 ymin=  0.000 ymax=  23.000

7type go or no
g0

Figure B.12.1.5: Using TEKPLOT to examine the problem boundaries.

type input data- num, itri, nphi, inap, nswxy,

7-1s

tekplot ctss time 1.084 seconds
cpu=  .216 i/o= .793 mem=  .076
all done

Figure B.12.1.6: Terminal display after carriage return.

"To run POISSON, the user types POISSON. (See Fig. B.12.1.7 for the terminal

interaction.) The code asks where it should gfet input and the user replies T'TY,
indicating it will be entered at the terminal. The code asks for a dump number and
is told 0." The code then reads dump 0 from TAPE35, writes the problem name
and asks for CON input. Since all necessary changes were made in LATTICE and
passed to POISSON through TAPE35, the user replies with an s. The code then
solves the problein, writes the selution as dump number 1 to TAPE35, and prompts

the user for another dump number. The user answers -1s to end the run.

poisson

type ‘‘tty’? or input file name
? tty
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? type input value for num

T 9
beginning of poisson execution from dump number O

prob. neme = poisson-pandira test quad a2

?type input values for con(?)

? s
elapsed time = 1.6 sec.
0 cycle amin amax residual-air eta-air rhoair xjfact
gmax residual-iron eta-iron rhofe

0 0  0.0000e+00 . 0.0000e+00 1.0000e+00 1.0000 1.9000 1.0000

4.00000-03 1.0000e+00 1.0000 1.0000
o 100 rhoair optimized 0.9975 1.9763 lambda = 9.9993e-01
(o] 100 0.00006+00 1.3931e+04 2.8722e-02 0.9975 1.9763 1.0000

9.1430e-04 1.4021e-02 1.0010  1.0000
(o} 200 rhoair optimized 0.9873 1.9871 lambda = 9.9984e-01
0 200 0.0000e+00 4.5690e+04 1.4151e-02 0.9873 1.9781 1.0000

1.2039e-02 9.7234e-03 0.9911 1.0000
(o] 400 rhoair optimized 0.9825 1.9775 1lombda =  9.9994e-01
o 400  0.0000e+00 5.77080+04 5.3831e~04 0.9825 1.9775 1.0000

6.1289¢-03 1.25620e-03 0.9931 1.0000
o 800 rhoair optimized 0.9923 1.9821 lambda = 9,9998e-01
(o} 800  0.0000e+00 5.8241e+04 3.32456-06 0.9923 1.9821 1.0000

§.07586~03 1.3139e-04 0.9947 1.0000
0 1600 rhoair optimized 0.9947 1.9863 lambda = 9.9998e-01
0 1600 0.0000e+00 5.8251e+04 3.1264e-08 0.9947 1.9883 1.0000

4,9703e~-03 1.92360e-06 0.9948 1.0000
0 1860 0.0000e+00 5.8251e+04 6.82520-09 0.9953 1.9863 1.0000

4.96910-03 4.89826-07 0.9947 1.0000

solution converged in 1860 iterations
elapsed time = 53.0 sec.
dump number 1 has been written on tape35.

type input value for num

? zis

stop

poisson ctss time 61.292 seconds

cpu= 55.365 i/e=  2.552 mem= 3.376
all done

Figure B.12.1.7: Terminal display for POISSON RUN.

During the running of the problem AUTOMESH has produced an output file
called OUTAUT, LATTICE has produced OUTLAT, and POISSON has produced
OUTPOL These files give various information on the various runs. Usually, as in
this case, OUTAU'T and OUTLAT are of little interest because they give mainly
information on the mesh. They are useful when there are difficulties with the mesh-
ing. lowever, the file OUTPOI contains information on the solution.

Tn this case the QUTPOI file contains 1376 136-character lines. OUTPOI con-
tains a list of the CON values used for the run, a table giving the magnetic charac-
{eristic used for material 2, and copy of the terminal output. Since the user asked
for it (CON(32)=2), OUTPOI also contains a printed map of the fields in the iron.
A portion of the map is shown in Fig. B.12.1.8. The portion is recognizable as
being the top right corner of the input problem geometry. The first column on the
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left gives a logical K coordinate al the intersection of a coordinate pair there are
two values. These are the magnitudes of the field in kG in the upper (u) and lower
(1) triangles associated with that (K, L) point.

The POISSON output. file contains a table giving the values of the vector po-
tential A, and related qnantities By, By, | B |,dB,/dy,dB,/dz, along the x axis of
the problem. The latter five quantities are obtained from the vector potential by a
least square fit. The goodness of the fit is indicated by the value of AFIT given in
the rightmost column of the table.

The final printout in OUTPOI gives information on the harmonic analysis. This
information is shown in Fig. B.12.1.9. The angle, (x, y) coordinates, nearest (K,
L) coordinates, and the interpolated vector potential are given for points on the
arc. Also given are tables of coefficents for the harmonic expansion of the vector
potential and the magnetic field.

TEKPLOT can be used to examine the field pattern in the quadrupole. Figure
B.12.1.10 shows the terminal interactions. The user types TEKPLOT to initiate
the run. When asked for iuput data, the reply sets NUM=1 to tell the code to use
dump 1 from TAPE35, sets I'l'RI=0 since a drawing of the mesh is not wanted,
and sets NPI11=35 to cause 35 field lines to be drawn. The final s in the input line
leaves INAP and NSWXY with their 0 default values. Next the user is asked to
enter the limits of the plotting region and replies: 0. 23. 0 or 23., defining the plot
rectangle. On receiving go, the codle plots Fig. B.12.1.11. TEKPLOT is terminated
by hitling a carriage return followed by -1s as described in connection with Fig.
B.12.1.6.

Otable for interpolated points

0 n angle x coord y coord kf 1f vec.pot.
i 0.0000 1.8600 0.0000 10 1 4.74266e+03
2 4.,5000 1.8543 0.1459 } 10 2 4.68434e+03
3 9.0000 1.8371 0.2910 10 2 4.51082e+03
4 13.5000 1.8086 0.4342 9 3 4.22631e+03
5 18.0000 1.7690 0.5748 10 4  3.83775e+03
6 22.5000 1.7184 0.7118 9 5 3.35463e+03
7 27.0000 1.6573 0.8444 9 6 2.78884e+03
8 31.5000 1.5859 0.9718 9 6 2.15430e+03
9 36.0000 1.5048 1.0933 8 7 1.46658e+03
10 40.5000 1.4144 1.2080 8 7  7.42792e+02
i1 45.0000 1.3152 1.3152 8 8  3.54844e-01

itable for vector potential coefficients

Onormalization radius = 2.92000

0 a(x,y) = re( sum (an + i bn) * (z/r)**n )

0" n an bn abs(cn)

0 2 1.1691e+04 0.0000e+00 1.1691e+04

0 6 -1.2543e+01 0.0000e+00 1.2543e+01

0 10 9.3097e+00 0.0000e+00 9.3097e+00

(0] 14 -5.7177e+01 0.0000e+00 5.7177e+01

0 i8 2.4654e+02 0.0000e+00 2.4654e+02

itable for field coefficients

Onormalization radius = 2.92000

0 (bx - i by) = i * sum n*(an + i bn)/r * (2/r)**(n-1)

0 n n(an)/r n(bn)/r abs(n(cn)/r)
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0 2 8.0072e+03 0.0000e+00 8.0072e+03
0 6 ~2.5772e+01 0.0000e+00 2.5772e+01
0 10 3.1882e+01 0.0000e+00 3.1882e+01
0 14 -2.7414e+02 0.00006+00 2.7414e+02
0 18 1.5198e+03 0.0000e+00 1.5198e+03

Figure B.12.1.9: Ilarmonic analysis in file OUTPOL

tekplot

?type input data- num, itri, nphi, inap, nswxy,

?1.0 35 8

input data
num= 1 itri= 0 nphi= 35 inap= 0  nswxy= 0

plotting prob. name = poisson-pandira test quad a2

?type input data- xmin, xmax, ymin, ymax
?70. 23. 0. 23,

input data

xmin= 0.000 xmax= 23.000 ymin= 0.000 ymax= 23.000

type go or no
?go

Figure B.12.1.10: Terminal display for TEKPLOT run to get field lines.

9
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B.12.2 POISSON Example — Electrostatic Prob-
lem

This example computes the potential distribution inside one quadrant of a coax-
ial cylinder. The inner conductor has an odd-shaped bump on it to provide some
spice to the calculation.

The AUTOMESH inpnt file COAXCYL is shown in Fig. B.12.2.1. Since this
problem will run using POISSON, the first column in the first line is blank. The
first REG NAMELIST tells the codes that there are two regions, sets the triangle
size, defines the maximum limits of the problem, and gives the number of PO cards
to be read for the first region. The first region is one quadrant of a circle.

The second REG NAMELIST card sets MAT=0 to tell the code that the points
inside the region are not in the problem. The variable CUR is set to 1000.; in an
electrostatic problem, CUR corresponds to a fixed potential on the boundary of the
region. To cause the problem to set this potential, IBOUND is set to —1. The eight
PO NAMELIST cards following dcfine the central excluded region.

coaxial cylinder --- electrostatic example

$reg nreg=2,dx=.1,dy=.1,xmax=5.,ymax=5. ,npoint=4 $
$po x=0., y=0. $

$po x=0., y=5. $

$po nt=2, r=5., theta=0. $

$po x=0., y=0. $

$reg mat=0, cur=1000., ibound=-1,npoint=8 $

$po x=0., y=0. $

$po x=0., y=2. $

W O N O WN =

10 $po nt=2, r=2., theta=60. $
11 $po r=3., theta=60. $

12 $po nt=2, r=3., theta=30. $
13 $po r=2., theta=30. $

14 $po nt=2, r=2., theta=0, $
15 $po x=0., y=0. $

Figure B.12.2.1: Input to AUTOMESH for electrostatic problem.

Figure B.12.2.2 shows the AUTOMESH run as seen from the terminal. We
type the executable filename, automesh, followed by the input file name, coaxcyl.
The code requests an input filename but does not wait for it because it was on the
execute line.

automesh coaxcyl
7type input file name
region no. 1
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ok

region no. 2

ok

stop

automesh ctss time .219 seconds

cpu= .146  sys= .017  i/o+memory= .056
all done

Figure B.12.2.2: AUTOMESH execution log on CRAY.

lattice tape73
?type input file name
beginning of lattice execution
dump 0 will be set up for poisson
coaxial cylinder --- electrostat
7type input values for con(?)
7%21 0 1 0 1 *46 1 %66 0 s

elapsed time= 0.5 sec.
Oiteration converged
elapsed time= 0.8 sec.

generation completed
dump number O has been written on tape35b.

stop
lattice ctss time 1.046 seconds

cpu= .879  sys= .026  i/o+memory= .141
all done

Figure B.12.2.3: LATTICE execution log on CRAY.

The LATTICE run is shown in Fig. B.12.2.3. The execution filename, lattice,
is typed followed by tape73, the AUTOMESI output file. The code requests an
input filename but continues without pause because the needed name was on the
execute line. It requests CON changes and is given six changes. The portion
£21 0 1 0 1 sets the boundary conditions to be used in the problem. The CON(21)
and CON(23) are set to 0, indicating Dirichlet conditions on the upper right curved
boundary. In this case, the Dirichlet conditions mean that the surface is an equipo-
tential. Con(22) and CON(24) are set to 1, indicating a Newmann condition on the
bottom and left sides. The Neumann conditions means the equipotentials are per-
pendicular to the boundary. The input %46 1 sets CON(46)=ITYPE=1, indicating
there is no synunetry. Setting CON(66)=XJFACT=0 is necessary because it tells
the code that it is doing an electrostatic problem. After reading the “s” on the
CON change line, LATTICE knows all changes have been made and proceeds to
run.



December 16, 1986 PART B CHAPTER 12 SECTION 2 13

tekplot
?type input data- num, itri, nphi, inap, nswxy,
70 1 s
input data
num= 0 ditri= 1  nphi= 0 dinap= 0 nswxy= 0
plotting prob. name = coaxial cylinder --- electrostat cycle= ¢
?type input data- xmin, amax, ymin, ymax,
78
imput data
xmin= 0.000 xmax= 5.000 ymin= 0.000 ymax= 5.000
type go or no
7g0

Figure B.12.2.4: TEKPLOT execution log on CRAY.

Next, we use TEKPLOT t{o look at the mesh. See Fig.B.12.2.4. Type tekplot
and the code asks for: a dump number (NUM), if a mesh plot is desired (I'TRI),
how many equipotential lines (NPHI) are required, if minimum and maximum values
are to be entered for the equipotentials (INAP), and if the X and Y axes are to be
interchanged (NSWXY). The reply shown says use dump 0 (NUM=0) and draw the
mesh (ITRI=1). The “s”, tells the code to set NPHI=0 (no lines), INAP=0 (no
input), and NSWXY (leave the axes alone). The next request asks for the limits of
the plotting area and the reply, “s”, tells the code to use the problem limits. On
receiving “go”, TEKPLOT runs and produces Fig. B.12.2.5. TEKPLOT is ended
by two carriage returns followed by a “-1s” in answer to the request for a dump
number.

YA
X
AN
Y N
Y/
Y,
N
\/ YAV,
N
N
INNNINNAG
N \V.Y, X
AY,
\/
AVAVAVAVAVAYAYLY, AA
TAVAYAYAYA)
TAVAY) JAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVAY |

prod. peas ¢ coaxisl cylinder ~— slacirestal cycle o *?

Figure B.12.2.5: TEKPLOT output for electrostatic problem showing mesh and
regions.
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The word poisson is typed to initialize execution of POISSON. The code asks
for an input file name and (after receiving TTY) for a dump number (see Fig.
B.12.2.6). After being told to use dump 0, the code requests CON changes. The
reply *43 31 1 43 s sets limits on the region that the potential and its gradients
are to he computed and written to the OUTPOI file. CON(43)=KTOP is set to
31, CON(44) = LMIN is set to 1 (its default value), and CON(45) = LTOP is set
to 43. Since CON(42) = KMIN = 1 by default, the code will print out potentials
and gradients for those points in the mesh with logical coordinates in the rectangle
" defined by (1, 1), (1, 43), (31, 43), 31, 1).

While executing, POISSON prints some information at the terminal: the cycle
.« . . .« 7 . .
number, the current minimum and maximum values in’the solutions matrix, the
current residual, the current rate of convergence, and the current overrelaxation
{actor.

poisson
?type ‘‘tty’’ or input file name
7tty
;§§pe input value for num
70
beginning of poisson execution from dump number 0
prob. mname = coaxial cylinder --- electrostat

type input values for con(?)
?%43 31 1 43 s

elapsed time= 1.0 sec.
0 cycle amin amax residual-air eta—air rhoair xjfact
0 0 0.0000e+00 0.0000e+00 1.0000e+00 1.0000 1.9000 0.0000
0 100 rheair optimized 0.9126 1.8998 lambda = 9.9864e-01
0 100 0.0000e+00 9.9322¢+02  2.4187e-05 0.9126 1.8998 0.0000
0 150 0.0000e+00 9.9321e+02 2.7238e-07 0.9136 1.8998 0.0000

solution coaverged in 150 iterations
elapsed time= 1.5 sec.

dump number 1 has been written on tape35
7type input value for num

7-1s
stop
poisson ctss time= 3.317 seconds
cpu= 2.012 sys= .028  i/o memory= 1.277
all done

Figure B.12.2.6: POISSON execution log on CRAY for electrostatic problem.

After POISSON has written dump 1 on TAPE35, it is terminated by typing
“~1 s” in reply to the request for another dump number.

tekplot

?type input data- num, itri, nphi, inap, nswxy,
7?1 0 50 s

input data
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num= 1 itri= 0 nphi= 50 dinap= O nswxy= 0

plotting prob. name = coaxial cylinder --- electrostat cycle= 150
7type input data- xmin, xmax, ymin, ymax

?s

input data

xmin= 0.000 xmax= 5.000 ymin= 0.000 ymax= 5.000
7type go or no

7go

Figure B.12.2.7: TEKPLOT execution log on CRAY for equipotential plot.

To see if we solved the correct problem, we nse TEKPLOT to look at the equipo-
tentials. This time (Fig. B.12.2.7), we set NUM = 1 for dump!, I''RI = 0 to avoid
drawing the mesh, and NPHI = 50 to get 50 equipotential lines. The final “s”
sets the remaining two values to default zeroes. The “s” in response to the request
for maximum and minimium limits causes TEKPLOT to plot the whole problem
area. After receiving “go” TEKPLOT plots, Fig. B.12.2.8, the equipotential lines
are evenly spaced on the bottom and left boundaries as they should be.

preb. name ¢ ceaxint cylinder —— slectrestat cycle » 150 7

Fig. B.12.2.8: TEKPLOT output for electrostatic problem.
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The file QOUTPOT contains more information on the solution. OUTPOI contains
a list of the CON values used in the solution, a copy of the iteration history, and
a table of potential and gradients values for the problem (Points in the K-L region
specified by using CONs 42 to 45). The initial part of this table is shown in Fig.
B.12.2.9. The K and I columns are the logical coordinates of a point, while the X
and Y columns give the physical position of the point. V is the scalar potential the
code found for the point, and EX, EY, and ET are the X and Y components of the
field and the total field. Vfit gives the difference between the potential calculated
at the mesh point and the potential calculated by the code using a least square fit
of solution values for the point and its neighbors.

1 least square edit of problem, cycle 150
none syrmetry type

0 k 1 vi{scalar) x y ex(v/cm) oy(v/cm) et(v/cm) vfit

0 21 1 1.000000e+03 2.00000 0.00000 357.848 3.302 357.883 -5.4e-02
0 22 1 9.649683e+02 2.10000 0.00000 343.879 -0.174 343.879 1.1e-02
0 23 1 9.310212e402 2.20000 0.00000 335.778 -0.124 335.778 8.0e-03
O 24 1 8.9766410+02 2.30000 0.00000 331.978 =~0.124 331.978 7.60-03
0 25 1 8.645221e+02 2.40000 0.00000 331.328 ~0.109 331.328 6.40-03
0O 26 1 8.313289e+02 2.50000 0.00000 332.854 - -0.090 332.854 5.30-03
0 27 1 7.879091e+02 2.60000 0.00000 335.730 -0.072 335.730 4.20~03
0 28 1 7.841626e+02 2.70000 0,00000 339,289 ' -0.058 339.289 3.36-03
0 29 1 7.300481e+02 2.80000 0.00000 343.009 -0.042 343.009 2.40-03
0 30 1 6.955708e+02 2.90000 0.00000 346.490 -0.028 348.450 1.6e-03
0 31 1 6.607690e+02 3.00000 0.00000 349.448 ~0.017 349.449 1.16-03
0 21 2 1.000000e+03 1.99730 0.10470 351.841 18.521 362.328 1.1e-01
0 22 2 9.791931e+02 2.056894 0.10380 345.541 14.004 345.825 4.7e-02
0 23 2 9.465786e+02 2.15265 0.10276 336.397 8.125 338.495 8.1e-03
0 24 2 9.133872e+02 2.25222 0.10199 331.400 3.6818 331.419 1.7e-03
0O 25 2 8.803115e+02 2.35226 0.10139 329.952 0.414 329,952 1.0e-03
0 26 2 8.472403e+02 2.45238 0.10090 331.032 ~1.735 331.036 8.0e-04
0 27 2 8.139690e+02 2.55250 0.10047 333.744 -3.038 333.758 6.0e~04
O 28 2 7.803771e+02 2.65262 0.10007 337.357 -3.670 337.377 4.7Te~04
O 29 2 7.464058e+02 2.75273 0.09970 341.291 -3.779 341.312 2.9e-04
0 30 2 7.120465e+02 2.85284 0.09934 345.097 -3.499 345.115 2.60-04
0 31 2 _,6.773290e+02 2.95294 0.09899 348.447 -2.994 348.460 2.9e-05
0 21 3 1.000000e+03 1.98800 0.20910 342.170 36.170 344.5566 -1.0e-02
0 22 3 9.618349e+02 2.10270 0.20624 331.352 20.088 331.960 ~9.9e-03
0 23 3 9.285665e+02 2.20404 0.20452 326.587 9.747 326.732 -3.Te-04
0 24 3 8.958943e+02 2.30435 0.20325 325.540 2.430 325.549 8.80-04
0 25 3 8.631924e+02 2.40461 0.20222 327.118 -2.891 327.128 6.8e-04
0 26 3 8.302357e+02 2.50488 0.20133 330.417 ~5.771 330.468 7.2e-04
0 27 3 7.96898%9e+02 2.60513 0,20052 334.688 -7.475 334.769 5.8e-04
0 28 3 T.631136e+02 2.70536 0.19975 339.307 <-8.017 339.401 3.4e-04
0 29 3 7.288762e+02 2.80558 0.19902 343.803 -7.872 343.889 2.1e-04
0 30 3 6.942181e+02 2.90578 0.19832 347.805 -6.688 347.869 2.0e-04
0 31 3 6.591948e+02 3.00597 0.19765 351.071 ~-5.279 351.111 ~2.36-0%
0 21 4 1.000000e+03 1.97540 0.31290 322.967 §50.768 326.932 2.1e-02
0O 22 4 9.738058e+02 2.05749 0.30989 318.497 33.267 320.229 -3.1e-04
0 23 4 9.426293e+02 2.15606 0.30740 316.03%1 17.204 316.499 3.46-05
0 24 4 9.109678e+02 2.25627 0.30548 316.806 5.222 316.843 3.1e-04

Figure B.12.2.9: Part of OUTPOI file for electrostatic problem.



B.12.3. PANDIRA EXAMPLE - PERMANENT MAGNET SOLENOID 17

B.12.3 PANDIRA Example — Permanent Mag-
net Solenoid

The layout for this problem is shown in Fig. B.12.3.1 and the AUTOMESH
input file, which we have chosen to call “soll,” is shown in Fig. B.12.3.2. Note
that for POISSON and PANDIRA problems with cylindrical symmetry, the Y co-
ordinate corresponds to the direction of the cylindrical axis, and the X-coordinate
corresponds to the radial direction. The problem involves six regions. The first
region defines the boundary of the problem. The material is assumed to be air.

4
’ (6.58.5)
AIR
(s.58.4)
REGION 6
MAT =2
REGION 2
MAT = 6 AR
REGION &
o (UNE REG!ON)
REGION 4 REGION 3
MAT = 2 MAT =7
(0.9) 9 3389 8580 wsae ™ R

Figure B.12.3.1: Physical layout of regions for solenoidal permanent magnet.
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The first REG NAMELIST line tells the codes that there are six regions (NREG=6),
that triangle sizes are to be changed at XREG1=3.58 and at YREG1=3, and to
define the triangle size (DX) and the maximum limits of the problem (XMAX,
YMAX). The following PO NAMELIST lines define the boundary of the first region.
In this case and also in the succeeding regions, extra points are defined on the
boundary. These points ensure that AUTOMESH and LAT'TICE will place nodes
at locations that will be needed later in the mesh assenibly. The use of “sure points”
is not always necessary, but they may often be used to get around mesh generation
problems.

pm magnet solenoid
$reg nreg=6,npoint=10,dx=.102,xreg1=3.58,yreg1=3.,xmax=6.8,ymax=6. $
$po x=0.,y=0. $
$po x=1.,y=0. §
$po x=3.58, y=0.
$po x=5.858, y=0.
$po x=6.58, y=0.
$po x=6.58, y=4.
$po x=6.58, y=5.
$po x=3.58, y=5.
$po x=0., y=5. $
$po x=0., y=0. $
$reg mat=6,npoint=7 $
$po x=1.58, y=1.
$po x=3.58, y=1. $
$po x=3.58, y=3. $
$po x=1.58, y=3. $
$po x=1.58, y=2.5 $
$po x=1.58, y=1.5 §
$po x=1.58, y=1. $
$reg mat=7, npoint=5 $
$po x=3.58, y=0.
$po x=5.58, y=0.
$po x=5.858, y=1.
$po x=3.58, y=1.
$po x=3.58, y=0.
$reg mat=2, npoint=7 $
$po x=1., y=0. $
$po x=3.58, y=0. $
$po x=3.58, y=1. §
$po x=1.58, y=1.0 $
$po x=1.58, y=1.5 $

i

i

O 0 N D WN -

WW W W N NDRNDNNDBNDDNDNDDNE e e e e
DR =-OOO~NROON D WNROWOW®O®NOOO L WN-O
@hH P B BH P L3 @ B P D P B

$po x=1.0, y=1.5 §
$po x=1., y=0. §
$reg mat=1, den=6400., npoint=2 $

w w
o b
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36 $po x=3.58, y=1. $
37 $po x=5.58, y=1. $
38 $reg npoint=12, mat=2, den=0. $
39 $po x=5.58, y=0. $
40 $po x=6.58, y=0. $
41 $po x=6.48, y=4. $
42 $po x=3.58, y=4. $

43 $po x=1.0, y=4. $

44 $po x=1., y=2.5 $

45 $po x=1.58, y=2.5 $
46 $po x=1.58, y=3. $
47 $po x=3.58, y=3. $
48 $po x=5.58, y=3. $
49 $po x=5.58, y=1. $
50 $po x=5.58, y=0. $

Figure B.12.3.2: AUTOMESH input file soll for permanent manget solenoid.

The second region in the problem has a material number equal to 6; this indicates
an anisotropic magnetic material. Region 3 has a material munber equal to 7,
another anisotropic material. In this problem, both materials will be the same,
except that they have different easy axis directions. Regions 4 and 6 both have
material number 2, indicating that the program is to assume iron corresponding
to the internal table in PANDIRA. Region 5 is a line region, which has a current
density of 6400 A/m and acts as the source of the magnetic field in the problem.
Note that in the sixth REG NAMELIST, DEN is set to 0. Otherwise, the sixth
region would have a 6400 A/m? current density.

automesh soll
?type input file name
Note: Since we entered the file name on the first

line, we don’t need to answer this question

region no. 1

ok
region no. 2
ok ‘
region no. 3
ok
region no. 4
ok
region no. 5
ok
region no. 6
ok

stop
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automesh ctss time .346 seconds
cpu=  .266 sys= .021 i/o+memory=  .059
all done

Figure B.12.3.3: Interaction with AUTOMESH on the CRAY for solenoid problen.

After making up the input file, the user types the AUTOMESH executable
filename, automesh, followed by the input file name, soll; see Fig. B.12.3.3. The
program asks the user to type the input file name and gets it froin the execute line so
no futher answer is needed. AUT'OMESII execules producing the terminal output
shown in Fig. B.12.3.3. The user now iypes the LATTICE executable filename,
lattice, followed by tape73. See [ig. B.12.3.4. LATTICE starts to execute by
asking for an input file name. Ilowever, it does not stop since it had its answer
(TAPET3) from the execute line. LATTICE then asks the user for changes in
the problemn CONs. In the reply, the user changes eight CON values. The input
%21 0 0 0 0 sets CON(21), CON(22), CON(23), and CON(24) to 0. These are the
boundary conditions as the upper, lower, right, and left sides. The value 0 means
that the boundary has a Dirichlet condition; that is, the boundary is a magnetic

field line.

lattice tape73
7type input file name
beginning of lattice execution
dump O will be set up for poisson
pm magnet solenoid
?type input values for con(?)
?7%¥21 0 0 0 0 *6 0 *19 1 *101 1 *81 O s

elapsed time= 0.5 sec.
0 interation converged
elapsed time= 0.7 sec.

generation completed
dump number 0 has been written on tape35.

stop

lattice ctss time .984 seconds

cpu= .766 sys= .023 i/o+memory=  .196
all done

Figure B.12.3.4: Interaction with LATTICE on CRAY for solenoid problem.

The entry #6 0 sets CON(6)=MODE=0. This tells the code that some materials
in the problem will have finite and variable permeability (). Setting CON(19)=ICYLIN=1
tells the code it is dealing with a problem having cylindrical symmetry about the ver-
tical axis. The statement *101 1 sets CON(101)=1PERM; this will tell PANDIRA
to initialize the vector potential using currents in the SOURCE vector. In this case,
the SOURCE vector is set by the surface current of region 5. The entry #81 0
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sets CON(81)=NOTE=0. This sets the order of the point relaxation. NOTE=0
is required for all PANDIRA problems. The final “s” tells LATTICE there are no
further changes.

tekplot

type input data- num, itri, nphi, inap, nswxy,

701s

num= O itri= 1 nphi= 0 inap= 0 nswxy= O

plotting prob. name = pm magnet solinoid

7type input data- xmin, xmax, ymin, ymax,

7s

input data

xmin=  0.000 xmax=  6.580 ymin=  0.000 ymax=  5.000
7type go or no

7go

Figure B.12.3.5: Interaction with TEKPLOT on CRAY for solenoid problem.

At this point, TEKPLOT can be used to look at the mesh. Figure B.12.3.5 show
the TEKPLOT session. The user types the executable filename, tekplot, and is
asked for values for NUM, I'I'RI, NPHI, INAP, and NSWYY. The reply “0 1 s”
sets NUM=0 and I'TRI=1. The following three parameters are left by default with
values of 0. The NUM=0 and ITRI=1 tells TEKPLOL to use dump 0 and to display
the triangles in the mesh. The user is then asked for the minimum and maximum
limits of the plotting region. The reply- “s” tells the code to use the internal values
for these variables. After being told to “go”, the code produces Fig. B.12.3.6.

probe sane o po mgest selinesd wpte s 07

Figure B.12.3.6: TEKPLOT output for solenoid problem showing mesh and regional
boundaries:
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f\

prod. 2ane = pa ssgret selinetd . cycle « 97

Figure B.12.3.8: TEKPLOT output showing field in solenoid magnet.

The next step is to run PANDIRA. The user types the executable file name,
pandira (Fig. B.12.3.7). The program asks for the name of the source of input
and is told TTY. It then asks for a dump number and is told 0. The next request
is for CON changes. The reply is *30 30 *18 2 *43 1 1 46 S. The entry *30 30
changes CON(30)=MAXCY to 30. This is the maximum number of cycles allowed.
The entry %18 2 sets CON(18)=NPERM=2; there are two permeabhility tables to be
entered. The entry *43 1 1 46 gives values for CON(43), CON(44), and CON(45).
These values set the limits in terms of (K, L) coordinates to the region in which fields
and gradients are to be calculated. The two permeability tables are constructed
from three input lines each. See Sec. B.5.4 for an explanation of the variables.
After reading the final “s”, PANDIRA executes and converges in nine cycles. The
user can look at the field pattern using TEKPLOT. This time, he sets NUM=1,
ITRI=0, and NPHI=50. On being told to “G0”, TEKPLOT produces Fig. B.12.3.8.

The results of the calculation are in the file OUTPAN. This file contains a
lists of the CON values in the solutions, a table giving the magnetic properties of
material 2 (the internal iron table), tables giving the properties of materials 6 and
7, the history of the iteration, and an edit of the solution in the region defined
bt CON(43) through CON(45). A portion of this edit is shown in Fig. B.12.3.9.
The (K,L) and (R,Z) columns give the logical and physical coordinates of a point.
The ra(vector) column gives the values of r4¢ found by the program at that point.
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The br,bz, and bt columns are the radial, z and total magnetic field at the point.
The field index is given in the n-column. The final column, rafit, is the diflerence
between the rA4g value at the point found during the solution and the value found
using the least squares fitting. The codes does a least squares fit with a polynomial
and then gets the necessary derivatives of Ag for the field from the polynomial.



Chapter B.13

Appendices

B.13.1 Theory of Electrostatics and
Magnetostatics.

Let us begin with Maxwell’s equations:*

V xE+8B/8t =0 (B.13.1.1)
VxH-08D/ot=J (B.13.1.2)
V.-B=0 (B.13.1.3)
V.D=p. (B.13.1.4)

Equations (B.13.1.2) and (B.13.1.4) imply the equation of continuity
V.J+8p/8t=0. (B.13.1.5)

Maxwell’s equations cannot be solved without assuming some relation between the
vectors E, B, D, H and J. In vacuum the relation are

D = ¢BE : (B.13.1.6)

H=B/u (B.13.1.7)
N

J=>3 (B.13.1.8)
i=1
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N .
p= Zpi, (B.13.1.9)
f=x1
where
dJ;/dt = (e/m);lp;E+T;xB], i=1,...,N, (B.13.1.10)

J#
and where the summation is over all ionic species present. Equation (B.13.1.10) is
the Lorentz force equalion under the assumption that charge and mass are quantized
and that relativistic and radiation-damping effects can be ignored. This relation
for J is just illustrative of the type of equation needed to close the system but will
not be used here.

In isotropic solids, which are the only materials POISSON can handle, one can
write with adequate generality

D = ¢(x,t, |E|)|B| = ke(x,t, |B|)eE (B.13.1.11)

H = ~(x,t,|B|)B/o (B.13.1.12)
J = o(x,t,|E|E, (B.13.1.13)

where the dielectric constant ., the reluctivity v and the conductivity ¢ are usually

piecewise constant functions of x. Note that the reluctivity v is the reciprocal of the
relative peameability xn,. For fields slowly varying in time, the time-dependence of
¢ and v can be ignored. The case of rapidly oscillating fields will be discussed later
when examining the capabilities of SUPERFISH. Let us look at static problems
first.

POISSON and PANDIRA solve a generalized intergal form of Poisson’s equa-
tion in two-dimensional, cartesian coordinates or in cylindrically symmetric three-
dimensional coordinates. This integral form of Poisson’s equation works for both
magnetostatics and electrostatics. 1t also handles both isotropic and anisotropic
materials. In the following subsections we will start with the integral equation and
show how it is related to Maxwell’s and Poisson’s equations.

B.13.1.1 Isotropic Magnetostatics in Cartesian Coordinates.
The integral form of Eq.(B.13.1.2) is

f;"y(x,|B|)V x A.dl= uo/AJ . da, (B.13.1.14)

where we have assumed that the displacement field D has no time dependence.
The contour C encloses the area A. See Fig. B.13.1.1. The magnetic induction B
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>

Fig.B.13.1.1 The geometry of the line and area integrals.

is related to the vector potential A by the equation

B=VxA. (B.13.1.15)

One obtains the generalized Poisson equation by the following two steps:
f AV x A -dl = /y x (YV x A) - da = / 1od - da (B.13.1.16)
c A A

V x (YV x A) = peJ. (B.13.1.17)

Equation (B.13.1.17) does not look like Poisson’s equation, but in the case of two-
dimensional carlesian coordinates, it reduces to Poisson’s equation in the following
way. Let us assume that A is only a function of two coordinates (x,y) and that B
has only two non-zero components, B, and B,. Equation (B.13.1.15) requires that

B,=—2_—"¥- (B.13.1.18)

B, = - = —— (B.13.1.19)

B,=—%¥Y_ =, (B.13.1.20)

Equation (B.13.1.20) is satisfied if A, and A, are required to be identically zero.
This requirement also satisfies the guage relation

8A, 04, 0A,

ViA= R4+ =0 (B.13.1.21)
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It is easily seen that Eq.(B.13.1.17) becomnes

8 ( 8A.\ 8 [ 04,

422 =) = — ol B.13.1.22

afc(vam)Jray(Yay) Hots (_ +22)
J.=J,=0. (B.13.1.23)

The latter equation forces the current to be paralled to A and
3q.(B.13.1.22) is the generalized form of Poisson’s equation. Equation (B.13.1.14)
in two dimensions reduces to

A, 84,
f;'y(:z:,y, |B|)[-—87d1: - —é;dy] = ;LO/AJ:da:dy. (B.13.1.24)

For a small enough area A, we can assume thaty and J. are nearly constant and
A. is a linear function of x and y, which we can write as

A, = —byz + by + ao. (B.13.1.25)

The integrals become

[-y(bx,by) ]KC d:r] be + [-)'(b,:,by) fc dy]by = toJA. (B.13.1.26)

This is a non-linear equation with two unknowns, b. and b,. It is the sort of
equalion that is created at each mesh point. Section B.13.6 explains how the set of
mesh-point equations are solved to oblain numerically the vector potential A,.

B.13.1.2 Isotropic Electrostatics in Cartesian Coordinates.
The integral form of Eq.(B.13.1.4) is

fsﬁe(x, |E))VV(x) - ds = —S; /;,p(x)dv, (B.13.1.27)

where V(x) is the scaler potential and the integral on the right is over a volume V
whose surface is denoted by S. The electric field E is given by

E=_-VV. (B.13.1.28)
It is well known that Eq.(B.13.1.27) is equivalent to the differential equation
V- (k. VV) = ~p/eo. (B.13.1.29)

In two-dimensional cartesian coordinates this becomes

a y a - .Y —
5;(@& )+ 5&-(%‘ ) = —p/eo- (B.13.1.30)



January 7, 1987 PART B CHAPTER 13 SECTION1 5

A £=Yv

A
n

7 df4dz

Z.
Fig.B.13.1.2: Cylindrical volume V of uniform cross section A and length L.

The similarity to Eq.(B.13.1.22) is obvious. The integral form of the equation can

also be made to resemble E¢.(B.13.1.24). This is done as follows. Suppose that .,
V' (x) and p(x) are functions of only (z,y). Take the voliune V to be a generalized
cylinder of cross section A and length L as shown in Fig.B.13.1.2. Since V(x) is
only a function of (z,y), VV has only x- and y-components. This immediately says
that the surface integral over the flat ends of the volume cannot contribute because
the direction of these areas is perpendicular to VV. The integral over the area of
the cylindrical surface can be written as

: L
]f K VV - ds = fc / kVV - fidzdl, (B.13.1.31)
S o

where fi is the outward normal to the surface and dl is an element of length on
the contour C. The integral over z is just L and the quantity fidl can be written in
cartesian components as '

fidl = dl cos 08, + dlsin 63, . (B.13.1.32)

From Fig.B.13.1.2 we see that
dz = —dlsind, (B.13.1.33)

and
dy = dl cos ¥, . (B.13.1.34)

and hence
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When this relation is put into Eq.(B.13.1.31) the result is

oV v
]éneVV -ds =—L ) e [ 5 daz — 50 dy] (B.13.1.36)
The integral over the volume V can be written as
1 L
- / pdV = = / pdzdy. (B.13.1.37)
€Eg vV €p JA
This means that Eq.(B.13.1.27) can be written as
v v 1
f ko2, v, |B|)| 2—de — =—dy| = — / pdzdy. (B.13.1.38)
c dy Oz € JA

Comparison with Eq.(B.13.1.24) makes it clear that there is a correspondance be-
tween the quantities

V— A, (B.13.1.39)
Ke — Y (B.13.1.40)
1
— — o (B.13.1.41)
€o
p— J.. (B.13.1.42)

The same correspondances come out of a comparison between
Eqs.(B.13.1.22) and (B.13.1.30).

B.13.1.3 Isotropic Magnetostatics in Cylindrical Coordinates.

We assume that A is only a function of (r,z) and not the cylindrical angle 8. The
expression for B is

_ _ 18/1; ajlg _ 3A9
B, =(VxA) = -y R T (B.13.1.43)
10 184, 18
B: = ;E‘(’I’Ag) - ;-——39 = ;—a—r(‘l‘Ag) (B.13.1.44)
A, OA,
Bo=2A _94: _ (B.13.1.45)
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69 FOR@=0

Fig.B.13.1.3: The geometry of the area and contour integrals in cylindrical coordi-
nates. If the contour is taken in the counter-clockwise direction, then the area has
a normal in the —& direction. This is important in deriving Eq.(B.13.1.47).

Here we have assumed that B lies in the rz-plane. We choose the condition
A=A, =0, (B.13.1.46)

which aulomatically satisfies the guage condition V- 4 = 0. Equation (B.13.1.14)
written in cylindrical coordinates is

7] 7]
f;} %[a(rAg)dr - é—;(rAg)dz] = ;LO/AJgdrdz, (B.13.1.47)
where we have artificially introduced a factor of r into the derivative with respect
to z for symmetry. The geometry is shown in Fig.B.13.1.3.

There is a clear correspondance between quantities in cylindrical and cartesian
coordinates given by the relations

r— (B.13.1.48)
z—y (B.13.1.49)
rhg — —A, (B.13.1.50)

Jo — —J, (B.13.1.51)
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SURFACE 8

d¥=rd9d LA

Fig.B.13.1.4: The geometry of the volume V, surface S, cross sectional area A, and
contour C. Note that the normal to the area A is in the —&g direction.

y/r— . (B.13.1.52)
These relations are used in the codes.

B.13.1.4 Isotropic Electrostatics in Cylindrical Coordinates.

We assume that the scaler potential is only a function of (r,z). The electric field
has only 7- and z-components, which are given by

ov

E =—5- (B.13.1.53)
‘/
E, = _%:. (B.13.1.54)

The volume of integration in Eq.(B.13.1.27) is a torus of cross section A as illus-
trated in Fig.B.13.1.4. Integration over the angle 8 can be done immediately and
Eq.(B.13.1.27) can be expressed as

2
% }4 KVV - firdl = —— / prdrd:. (B.13.1.55)
C €g JA

In analogy to Eq.(B.13.1.35), it can be shown that
fdl = dz&, — dré,, (B.13.1.56)

and hence Eq.(B.13.1.55) becomes

ov v 1 -
jgner[-ézdr— —BTd,.} = G—O/Aprdrdz. (B.13.1.57)
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Comparison with the magnetostatic equation in Cartesian coordinates, Eq.(B.13.1.24)
give the correspondances

T—Z (B.13.1.58)
z—Y (B.13.1.59)
V— A, (B.13.1.60)
Kel —— (B.13.1.61)
1 .
— — o (B.13.1.62)
,60
rp — J,. (B.13.1.63)

These correspondances are used in the codes. Comparison with Eqs.(B.13.1.4R)
through (B.13.1.52) shows that Ag(r, z) is not analogous to V(r,z) in cylindrical
coordinates.

B.13.1.5 Anisotropic Magnetostatics.

Historically, there was an attempt to modify POISSON to handle two-dimensional
anisotropic materials, but the convergence was extremely poor. It was decided
to write a new program called PANDIRA, which uses the so-called direct method
rather than the successive over-relaxation method for the numerical solution of
Maxwell’s equations. Maxwell’s equations hecoine

VxH=1J (B.13.1.64)
V.B=0 (B.13.1.65)
B=VxA (B.13.1.66)
H =7 -B/po + He. (B.13.1.67)

where ¥ is the rel uctivity tensor and Hc is the field when B = 0, that is, the perma-
nent magnetic field. PANDIRA handles anisotropic materials having an “easy-axis”
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and a “hard-axis” perpendicular to the easy axis,

H=H;+H, (B.13.1.68)
H" = ‘)/"B"/;Lo + He¢ (B.13.1.69)
HJ_ =’Y_LBJ_//J,0, (B13170)

or one can write the inverse relations

B" = h‘,mupoH" + B, (B.13.1.71)
B, = km1poH o, (B.13.1.72)
where
N = 1/Km) (B.13.1.73)
YL =1/Km1 (B.13.1.74)
Br = —KmpoHec, (B.13.1.75)

and where By is parallel to the easy axis and B is along the hard axis. The
permeability relations are different in the two special directions. Figure B.13.1.5
shows typical relations. The easy axis is characterized by the coercive force H. and
a remanent field B,.

PANDIRA allows two geometries for the easy axis. In the first geometry the
easy axis is independent of position in the material. In the second geometry, the
direction of the easy axis changes along the circumference of a circle that is not
concentric with the origin of coordinates. These two geometries will be more fully
explained below.

Easy axis in a fixed direction. Figure B.13.1.6 shows the directions of the
easy and hard axes relative to the axes of the region of interest. The field B can be
expressed in terms of the unit vectors for the two coordinate systems as

B = Bxéx + Byéy = By + B.é&.. (B.13.1.76)

The unit vectors are related by the matrix transformation

( ) = ( cos¢p  singp ) ( €x ) (B.13.1.77)

—singg  cos¢g éy

[

l
L

(1l
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Fig.B.13.1.5: A plot of typical anisotropic B-H relations.

Fig.B.13.1.6: Definition of ¢z and unit vectors & and €;.

SECTION 1
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The field H takes the form
H = (v B)/po + He)&) + (voBL/1o)éL = H&) + Hy &4, (B.13.1.78)
from which one can deduce that -
(B.13.1.79)

H-= (H" cospg + H Silld)E)éx + (H" singg — H, cos ¢E)éy.

By using the inverse transformation on the unit vectors, namely,

‘ ——sinqSE> ( I )
n b
one can show that

é€x \ . [ cosog
- cos ¢
B = (Bx cos ¢g + By sin¢g)éj + (—Bx sin ¢g + By cos ¢g)€, .

(B.13.1.80)

(122 )

€y singg

(B.13.1.81)

This gives By and B) (and hence H and H} in terms of Bx and By.

After making the substitutions, one finds that
Hx = [(y cos® g + v, sin® ¢g)Bx /1o + sin 2¢5(y — v1)By/(2p0) — H. cos ¢g],
(B.13.1.82)

and
Hy = [sin2¢p(yy — v1)Bx/(210) + () sin® ¢p + v, cos® ¢p)By /1o — H. sin ¢g).
_ (B.13.1.83)
This can be written as
Hx 1 vyxx xy ) ( Bx Hex
= — — , B.13.1.84
( Hy ) It ( XY  YYY By Hey ( )
where
Yxx = | cos’ g + v sin’ ¢g (B.13.1.85)
Yxy = sin 2¢p(y) —vL)/2 (B.13.1.86)
TYY = sin® o +vL cos® o (B.13.1.87)
He.x = H.cos¢g (B.13.1.88)
(B.13.1.89)

Hcy = Hcsin¢g,

. . .. = .
which defines the symmetric reluctivity tensor ¥ and the coercive force He.

Easy axis on an off-center circle. Although there is no natural material
for which the direction of the easy axis is a function of position in the plane, one
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Fig.B.13.1.7: An example of a magnet constructed from wedge-shaped blocks of
permanent magnet material with the easy axis in each block having a different

orientation.

;(

cd
., R4
., /
. »
N 5
oo e
- -
"""""" x

Fig. B.13.1.8: Definitions of parameters in off-center anisotropic materials.
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can construct a magnet from blocks of permanent magnet material with each block
having its own orientation. An example of this is shown in Fig. B.13.1.7. PANDIRA
will handle the case when the direction is a function of angle around the center of
a circle. The center of the circle need not coincide with the origin of coordinates.
Figure B.13.1.8 shows the geometry of the easy axis in such a material. The ori-
entation of the easy axis is determined by three parameters (X4, Y4, ¢4). Relating
these parameters to the reluctivity tensor Y and the coercive force vector H, is
a matter of coordinate transformations. There are three coordinate systems that
enter into the formulation,

(&), 81) — (&, &) — (&x,8y). (B.13.1.90)

In the (&, é&,) system, the tensor Y and the vector H_ are the same as described in
Eqgs.(B.13.1.85) through (B.13.1.89) above. The axes (&, é,) change as a function
of (x,y). The (x,y) coordinates are related to (X,Y) by a linear transformation. Let

X =Xéx +Yéy =(X1+2)éx + (Y4 +y)éy, (B.13.1.91)
€& \ [ cosf sin @ éx 0
( é, ) - ( —sinf  coséd ) < ey > ’ (B.13.1.92)
where .
cos@ = (X — X 4)/[(X — Xa)* + (Y — ¥4)'/?, (B.13.1.93)
and :
sinf = (Y — Y2)/[(X — X4)2 + (Y — Y)Y )/2 (B.13.1.94)
From Fig. B.13.1.8 one sees that
€ |\ _ [ cos¢a singy éx (B.13.1.95)
&, /] \ —singds cosgy éy |’ e

Either by multiplication of the matrices or by looking at Fig.B.13.1.8 again, one
can show that

& cos(da+0)  sin(da+6) ) [ éx
( €y ) ( —sin(¢a +6)  cos(¢s + 6) ) ( &y ) . (B.13.1.96)

The derivation of the components of Y can be completed as we did before for the
fixed direction case. The only difference is that ¢g is replaced by ¢4 + 6(X,Y").

. . = . . .
The reluctivity tensor ¥ and the vector H, are now functions of position in the
material.

In the input to PANDIRA, the parameters are defined by the equations
ANISO = ¢5,GAMPER =+, ,HCEPT = —H,_, (B.13.1.97)
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and « is determined from B,, that is, from Fig.B.13.1.5 we see that
vy = Br/(1oHe). (B.13.1.98)

With this as a background, we now write down the integral equation used in
PANDIRA to find the vector potential, namely,

]f 3 -V x A + poHc] - dl = pro /A J-da. (B.13.1.99)

In Cartesian coordinates we once more choose the gauge

V.A=0, (B.13.1.100)
which requires that
A =A.&;, (B.13.1.101)
and
J.=J,=0. (B.13.1.102)
Equation (B.13.1.24) becomes
OA.
]( [7,,.,,. Yoy + HoHzdo (B.13.1.103)

aA BA,
e = Ty + ol ldy = o / J,dzdy.

This complication does not prevent one from applying the same numerical method

discussed in Section B.13.6 below to find the solution. If A; is a linear function of
x and y as in Eq.(B.13.1.25), then Eq.(B.13.1.103) reduces to

e f d + %y f e + ey f i+ f sy =
wol T, A — He }4 dz — H., f dy). (B.13.1.104)

This, like Eq.(B.13.1.26) is still a non-linear equation in b, and by. Since the ~’s are
functions of b, and by, the equation must be solved iteratively.

B.13.1.6 Anisotropic Electrostatics in Cartesian Coordinates.

The basic equations for ferroelectric materials are

V.-D=p (B.13.1.105)

VXxE=0 (B.13.1.106)
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E=-VV (B.13.1.107)

D = ¢ ke ‘E + De (B.13.1.108)

As in the magnetostatic case, one can define an easy axis and a hard axis for the
material. This results in relations analogous to E¢s.(B.13.1.68) through (B.13.1.89)
with the correspondances

H —D (B.13.1.109)
B——E (B.13.1.110)
y — Ke (B.13.1.111)
tto — 1/éq. (B.13.1.112)

The coordinate transformations (Eqgs. (B3.13.1.90) — (B.13.1.96)) are the same. The
integral equation for the scalar potential is a straight forward generalization of
Eq.(B.13.1.27), namely,

]g(&e . VV +De/eq) - ds = zl—/vpdv. (B.13.1.113)
0

The derivation leading to E¢.(B.13.1.36) is essentially unchanged. The final result
is

7@(&8 .YV 4 De/eo) - ds = —1,{f(?; WV + De/eo),de j[(h-e YV 4 Dc/eo)zdy},

(B.13.1.114)
and Eq. (B.13.1.38) now takes the form
ov ov
é[lieyz—ag + I\‘/eyya_y + Dcy/éo]d{l! (B131115)

Vv 1% 1
- Vexz 5 exy cz = - dady.
j{[nen 5 + K ¥y + D../€0)dy 6O/Ap ady

A comparison with the magnetostatic result, Eq.(B.13.1.103) reveals distinct dif-

ferences in interpretation. The two equations take the same form if we make the
substitutions

V— A, (B.13.1.116)
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p— J. (B.13.1.117)

€0 — 1/1o (B.13.1.118)

Kezz =~ Yoy (B.13.1.119)

Kezy = Keyz — ~Yay (B.13.1.120)
Keyy —> Yez (B.13.1.121)

Deg — —Her (B.13.1.122)

D, — H,,. (B.13.1.123)

The interchange of components and signs is eqnivalent to changing ¢z to ¢g + 90°
when the easy axis has a fixed direction. This is not simply an interchange of hard
and easy axes.

(Since no one has reported running an anisotropic electrostatic problem on
PANDIRA, we are not sure if the above relations have been implemented in the
code. Time constraints have not allowed us to check the coding itself.)

B.13.1.7 Anisotropic Magnetostatics in Cylindrical Coor-
dinates.

To find the correspondances between the cylindrical and Cartesian cases, one must
return to Eq. (B.13.1.99) and express VX, etc. in cylindrical coordinates. By fol-
lowing the steps taken in deriving Eq.(B.13.1.47) one finds that

f; [h_a._ —rAg) b Z'Z'a?r(—”‘Aa) + [,loI{c,.:l dr (B.13.1.124)

r Oz r

71':2_ _i_q . -
+£}[ r Oz rdo) T 31'( rAe)_*-“oH:]d‘

= uo/A(—-Jg)drdz.

Comparison with Eq.(B.13.1.103) gives the correspondances

rAg — —A, (B.13.1.125)
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Jo — —J,
Yor /T — Yez
Yez/T — Yoy
22 /T — Yy
H, — H.

H.,— Hcy,

which are the analogue of Eqs. (B.13.1.50) — (B.13.1.52).

“January 7, 1987

(B.13.1.126)
(B.13.1.127)
(B.13.1.128)
(B.13.1.129)
(B.13.1.130)

(B.13.1.131)

B.13.1.8 Anisotropic Electrostatics in Cylindrical Coordi-

nates.

The starting point is Eq.(B.13.1.113), which must be expressed in cylindrical coor-

dinates. The resulting equation is
eV
f; [(_T’Cezr)% + (*r’iezz)%z— + '61;(_7'Dcz)] d?’

av av 1
+ ‘%C [(rncrr)g + (rhferz ) 'a"z" + :(; (rDcr )} dz

1
= — [ rpdrdz.
€g JA

Comparison with Eq.(B.13.1.103) leads {o the correspondances
V — A,
rp — J;
€0 — 1/po

TRerr — —Yyy

(B.13.1.132)

(B.13.1.133)
(B.13.1.134)
(B.13.1.135)

(B.13.1.136)
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Therz = TRezr * Yzy
TRezz P =Yz
7Dep — Hg,

rD.,, — H..

SECTION1 19

(B.13.1.137)
(B.13.1.138)
(B.13.1.139)

(B.13.1.140)

(Once again, we have not verified that this correspondence is actually in the code.

Let the user beware!)
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B.13.2 Auxiliary Properties of Static Magnetic
and Electric Fields

The previous section showed how the static Maxwell’s Equations give rise to the
generalized Poisson equation for the static electric (scalar) and magnetic (vector)
potentials. This section shows how the potentials are used to obtain the stored en-
ergy in the field, to obtain the fields and their derivatives, and to obtain the forces
and torques on current-carrying coils and iron regions in magnetic fields. We will
also obtain the forces and torques on charged plates and dielectric materials. These
things will be done for both cartesian and cylindrical coordinates. Iu discussing the
fields and their derivatives in cartesian coordinates, we will make use of complex
variables and the theory of analytic functions. This will lay the basis for the dis-
cussion of harmonic analysis and the use of conformal transformations, in Sections
B.13.3 and B.13.4.

B.13.2.1 Energy stored in the field.

. The general expression for the energy in any volume V containing an electro-
magnetic field is

1 .
£=3 /(E .D + B H)dv. _ (B.13.2.1)
v
For electrostatic problems the B - H—term is zero and for the magnetostatic prob-
lems the E - D—term is zero. Our aim is to reduce this expression to area and

contour integrals over potentials in two-dimensional cartesian coordinates and cylin-
drical coordinates. We begin by substituting

E=-V¢. and B=V x A (B.13.2.2)

into Eq.(B.13.2.1) and using vector identities to get
£ = -;—/(—nge -D+VxA-H)dv (B.13.2.3)
J .
1
= 3 /|77 D)7 D1V )
v

+A -V x H]dv.

Green’s theorem can be used to turn the integral over the volume of the divergence
into an integral over the surface V. The result is

1 !
£ = 56];{ (—$.D +AXH) dat 3 1[ (pde +3 - A)do. (B.13.2.4)
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\

z
Figure B.13.2.1: The arbitrary volume with 2-D, cartesian symmetry. The front
and back surfaces have area a;. The edge has area a, and width L.

where we have used Maxwell’s equations to express the volume integral in terms of
the charge density p and the current density J.

Let us consider cartesian coordinates first. We assume that all functions are
independent of the z-coordinate. Consider an arbitrary volume as shown in Fig.
B.13.2.1. The integration over z can be done immediately. The front and back
planes have equal areas but opposite vector direction. This means that the surface
integral over the front cancels the surface integral over the back. The result is

= %/(—(ﬁeD + A x H)-da+ (1/2) /(p¢e +J-A)da. (B.13.2.5)

The element of area on the ribbon edge can be written as
da = ds x dlz, (B.13.2.6)

where Z is the unit vector in the 2-direction. The magnitude of the vector ds is
the element of length along the counter-clockwise contour C enclosing the area a;.
See Fig. B.13.2.1. This means that we can turn the first integral into a contour
integral around the area a;. Furthermore, we note that both J and A must be in
the z-direction. With theses simplifications we find that

£=(/2) [f (—¢.D+A x H)-ds x 2 + / (pde + J,A:)da.]. (B.13.2.7)

The first integral can be simplified further by using the vector idenities

D-dsxz=Dxds-zZ=(D xds),, (B.13.2.8)
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and

AxH.dsx2 = (AxH)xds-z2=(ds-A)H-2)
—(H-ds)A -3 =—A.H-ds. (B.13.2.9)

The latter equality holds because H has no z-component.

For cartesian symmetry the code calculates the energy per unit length using the
formula

ENl = %{q/ (ppe + J-A.)dxdy (B.13.2.10)
+ j/. [(¢epy — A,H.)dz — (¢.Dx + A.H,)d ] }
C

In all cases handled by POISSON the contour integral vanishes on the boundary
of the region because the boundary conditions are either pure Dirichlet (4, = 0
or ¢ = 0) or pure Neumann (B-ii = 0 or E -1 = 0). For example, consider the
integral in Eq. (B.13.2.5),

1
/A xH.da= f dz](ds(A x H - 1), (B.13.2.11)
az 0 C

where 1i, being the normal to the ribbon area a,, is also the normal to the contour
C. The differential ds is still the element of distance along the contour. Figure
B.13.2.2 illustrates the typical conlour for one-quarter of an H-shaped magnet. As
seen from the figure, the the contour integral vanishes. The energy per unit length
reduces to

£/l = (%) f Ada, (B.13.2.12)
coil
which is £ times the integral of the magnetic potential over the area of the coil.
For permanent magnet (PANDIRA) problems, where there is no current density,
the energy per unit length should be calculated from the contour integral where the
contour goes around the permanent magnet material and not the boundary of the
whole region. The code does not calculate the energy per unit length for the case
of permanent magnets.

In the case of cylindrical symmetry, the volume of integration might be illus-
trated by Fig. B.13.2.3. The energy integral can be written as

= %f(—cﬁeD +A xH) -da+ w/(pd)e +J - A)rdrdz. (B.13.2.13)
’ az ap
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Figure B.13.2.2: The contour C for a typical H-shaped magnet. A vanishes on three
sides because of Direchlet boundary conditions. A x H - i vanishes on the bottom
because A x H is parallel to the contour.

yda=rdefxds

CONTOUR
C

AREA a,

Figure B.13.2.3: Illustration of a general volune with cylindrical symmetry. The
cross sectional area is a;.
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The integral over the volume of the torus has been simplified by an integration over
the cylindrical angle §. Once again the surface integral can be reduced to a contour
integral by expressing the element of area as

da = rdfdsi = rd6f x ds, (B.13.2.14)

where fi is the unit normal and @ is the unit vector in the @ direction. See Fig.
B.13.2.3. After doing the integration on 6, noting that A and J only have 6-
components, and D has no §-component, we get

£ = W{‘f/[((ﬁeDZ + AgH,)rdr + (—¢eD, + AgH.)rd=
(&
+/(P¢e + JgAa)?‘d’l”dz}. (B.13.2.15)
ay

The same arguments can be given to show that the contour integral vanishes on the

boundary of the whole region, thus providing a simplification in POISSON calcu-
lations. Furthermore the authors of the code have chosen to ignore the integration
over the angle 8. The printed results are in units of Joules/radian. Once again the
energy is not calculated for permanent magnet problems.

B.13.2.2 Fields and their derivatives.

In principle one could obtain the fields by numerical difirentiation of the po-
tentials, but this is not a very accurate way of doing it. Furthermore, since the
potentials are known only on poiuts of the mesh, it would not be easy to calculate
fields at points other than mesh points.

What POISSON and PANDIRA do, is fit a power series to the potential at a
given point and then analytically take the derivatives of the series to get the field
and its derivatives. This procedure is not only more accurate, but can also take
advantage of the known symmetry of the magnet.

There is an important difference between the formulation of the problem in
cartesian coordinates and cylindrical coordinates. In the cartesian case one can
use the theory of complex variables, which has several advantages. The theory for
cylindrical coordinates is slightly harder and will be treated separately at the end
of this section.

In two-dimensional, cartesian coordinates, Maxwell’s equations for the magnetic
induction are

L 8
5. (rBy) — a_y(7B’”) = poJ, (B.13.2.16)

and

8 a -
| 5:;(3”) + a—y-(By) = 0. (B.13.2.17)
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Equation (B.13.2.17) can be satisfied by either

OA. 0A.
B=—¢& ——¢,, B.13.2.18
Oy © Oz e‘y ( )
or
ov av -
B=-——é&,— —é& .13.2.19
am e:c ay ey) (B 1 )
where 2V 5V
- =0. B.13.2.20
522 + 0. 0 ( 2.20)

The potential V(z,y) is not a solution of Eq.(B.13.2.16) unless the current densily
J(z,y) vanishes in the region under consideration. If we make one reasonable ap-
proximation, it is possible to reformulate the problein in terms of complex variables.
Since we are interested in finding the magnetic potential A.(z,y) in the vicinity of
a given point (z,y), we can assume that the reluctivity v and the current density
J are essentially constant in the vicinity of the given point. This means that we
can move the reluctivity out of the differentiation and to the right-hand-side of
Eq.(B.13.2.16). One obtains the equation

2 2
G4, + 2.{;1 — _EQJ
Oz? ay? ¥

(B.13.2.21)

for the potential A.(z,y). The solution to this equation can be written as the
solution to the homogeneous equation plus a particular solution. i is easily verified
that

A, =A— 52‘% (2 +y?), (B.13.2.22)

where A A
ZZ 0. 13.2.23
527t T =" (B.13.2.23)

We are now in a position to convert to the notation of complex variables.

Let z = x4y be a number in the complex plane. Mathematically speaking, there
is an isomorphism between complex numbers z and points (z,y) in the cartesian
plane. In current free regions the components of the magnetic induction B can be
written in terms of either A or V as

0A 517
= — = ——— .13.2.24
B Oy oz’ (B )
and
oA av
B, = 5 = —Fy-. (B.13.2.25)

These relations betweeen A and V are the same as the Cauchy-Riemann conditions
for a complex, analytic function
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F(z) = A +iV. (B.13.2.26)

This is easily seen by noting that

or_aro:_ur isaan
Or  dz 0z dz’ (B.13.2.27)

and OF dF®: dF ‘
== 13.2.28
5 = L5 (B.13.2.28)

and hence
dFF  8F OF

_— === =1—. B.13.2.29
dz  9r 'y (B.13.2.29)
If we define a complex, magnetic-induction function
B(z) = B, +iB,, (B.13.2.30)
then
d
B(z)" = il—i}—?. (B.13.2.31)

where * denotes complex conjugation. As the notation implies, B(z) is also a
complex, analytic function, whicl means that B(z) can be expanded in a convergent
power series in the variable z, provided that B(z) is a single-valued function that
does not have a singularity in the region of interest.

From Egs.(B.13.2.19), (B.13.2.20), and (B.13.2.23) we see that both A(z,y) and
V(z,y) satisfy Laplace’s equation. In the theory of complex variables, functions with
this property are called harmonic functions. Two other consequences of the Cauchy-
Riemann conditions are: 1. given the vector potential A(z,y), it is always possible
to find the scalar potential V(x,y) by integrating Eqs.(B.13.2.24) and (B.13.2.25);
and 2. the curves V(z,y) = v and A(z,y) = a are orthogonal to one another for
any constants v and a. Because the magnetic field lines are also orthogonal to the
lines of constant potential, one can use the orthogonality of 4 and V to create plots -
of the field lines.

Let us turn now to the power series representation of the vector potential about
a point z,. This we write as

A(z1,y) = Re{z cn(z1 — :o)"}, (B.13.2.32)
n=0
or o
Az1,11) =) [anul.n + (—bn)vl,n], (B.13.2.33)
n=0
where

Cn = a,, + 1b,,, (B.13.2.34)
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and
(31 - Zo)" =Uin+ iv1;n = un(mi — ZoyYi — yo) + 7:'Un(illi —To,Yi — Yo)- (B-13-2-35)

The polynomials u,, and v, are called harmonic polynomials because they are also
solutions of Laplace’s equation. Table B.13.2.1 shows the first 10 harmonic polyno-

mials.
Table B.13.2.1

The First 10 Harmonic Polynomials®

n__un(x,y) - U+ C.C7- 2 B —
1 £ y

2 22 — P 2xy

3 z3 — 3xy? 322y — y3

4 2% —6x?y? 44y 423y — 4zy®

5 z5 — 1023y? + 5zy? sely — 1022y + ¢°

6 z8 — 15z + 152%y% — it 6z%y — 2023y + 6zy”

7 27 - 21257 + 35z3y? - Txy® 725y — 852943 + 21z%y® — o7

8 28 — 282847 + Tyt ~ 282z7y° + 38 8x7y — 562>y + 56x3y® — 8xy”

9 z° - 3627y? + 1262%y* — 84z3y® + 9xy® 928y — 84x°y® + 126x%y5 — 3622y’ + ¥°

10 210 — 4528y 4 21025 — 210c%y® + 452%4° — 1 102%y — 120743 + 252255 — 12023y7 + 102y°

aThe polynomials used in Eq.(B.13.2.33) are obtained from the polynomials in the table
by replacing z by (z1 — o) and y by (y1 — ¥o)-

(Xo.Yo)

Figure B.13.2.4: First, second and third neighbors of a given point (zy,y;) on a
regular triangular mesh. Points 2 through 7 are nearest neighbors; points 8 through
13 are second neighbors; and points 14 through 19 are third neighbors. The origin
for the series expansion is (2o, Yo)-
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The coeflicients a,, and b, are determined by truncating the power series at N
terms and least-scuares fitting the function A(x,y) at neighboring points on the
mesh. On a regular triangular mesh there are 6 first nearest neighbors, 6 second
nearest neighbors and 6 third nearest neighbors, as illustrated in Fig. (B.13.2.4).
Even after the mesh is distorted to conform to the boundaries of the physical regions,
one can still identify these 18 points. Holsinger and Halbach lump the second and
third neighbors together and call them second neighbors in the distorted mesh.
Henceforth we will speak of six first neighbors and 12 second neighbors.

Suppose that we mnake a column matrix of the values of A(z,y) evaluated at
the point (z1,7:) and the first 18 neighbors of the point (z,,y:1). We can make a
column matrix out of the first N = 7 pairs of coefficient (a,,b,). Next we construct
an 19 X 14 matrix Z, whose rows are the coordinates of the points raised to the

appropiate power and expressed in terms of the harmonic polynomials. Equation
(B.13.2.33) can be written as

Equation (B.13.2.36)

1 0 wy vig wz -+ Uie ag Az, 1)
0 Uz1 V21 Uz -+ Vzg bo A(-'l‘z, yz)
1 0 wusy wvay usz -+ vzs ar | = | Alxs,ys)

| L 0 wugn wigy uis2 -+ Vige 1L —bs ] ] A(z19, Y19) J

or in malrix form .
ZC = A. (B.13.2.36)

Because the number of rows in Z is larger than the number of columns, this set
of linear equations must be solved in the least- -squares sense. There exist standard
subroutines for doing this. One advantage of using least-squares is that the analytic
function A(z,y) will be smoother in the neighborhood of (z,y;) than the values
determined by POISSON in the neighborhood of this point. One disadvantage of
this approach is the power series developed around the point (z;,%) may not be
consistent with the power series for the potential developed around the neighboring
points (z3,y2), etc. In particular, artificial discontinuities are sometimes seen at
points midway between neighboring points. This is a result of the truncation of the
power series. 'The accuracy of the approximation depends on the distance between
mesh points in the vicinity of the given point and the how rapidly the function
A(z,y) is changing. Let the user beware!

One way to make the power series expansion more accurate is to increase the
number N, while still keeping the number of unknown coefficients a,, and b, less
than the 19 data points used in the least-squares fit. This can be done if there is
any symmetry to the magnetic field. Suppose that the point (z,,y,) is a symmetry
point of the magnet, that is, suppose that an axis of rotational symmetry passes
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Figure B.13.2.5: Four basic types of symmetry thal can occur in magnets: a. rota-
tion, b. rotation and change of polarity, c. reflection, and d. reflection and change
of polarity.

through this point or that this point lies in a plane of reflection symmetry. If
there is a rotational axis, then some of the coeflicients ¢, must vanish. If there
is a reflection plane, then ¢, must be a real or imaginary number, depending on
whether reflection changes the sign of the field or leaves it the same. Figure B.13.2.5
illustrate four types of symmetry that can occur in magnets. Figure B.13.2.5a shows
a case of four-fold rotation symmetry for which no change in field polarity occurs
with the rotation. Figure B.13.2.5b shows the same four-fold rotation symmetry,
but this time, the field changes polarity. The change of polarity occurs because the
current generating the field changes direction. This is like a reflection through the
plane of the paper. Figure B.13.2.5¢c shows a case of reflection symmetry, where the
reflection plane is perpendicular to the plane of the paper and passes through the z-
axis. Finally, Fig. B.13.2.5d illustrates a reflection symmetry in which the polarity
of the field changes sign. All other symmetries used in the codes are combinations
of these basic symmetries. One can construct the set of all symmetry elements
that leave the potential function A(z,J) unchanged and use quite general group-
theoretical methods to eliminate some of the coefficients c,. The symmetry is simple
enough that we will not introduce the full group-theoretical appartus.

Let us treat the rotational symmetry first. The effect of a rotation by an angle
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« on a point (z,y) is

(7)-(56 20)G) mwen

In complex notation this can be written
2’ = exp(ia)z. (B.13.2.38)

The eflect of this rotation on the vector potential is

Ale™z) = Re{ i cn(e-""‘*)z“}. (B.13.2.39)

n=0

Henceforth, for convenience we shall assume that the symmetry point z, is the
origin of coordinates. If this rotation is to leave the function invariant, then all the
coefficients ¢, must vanish except for n such that

et =1 = e M (B.13.2.40)

where M is any integer. Furthermore, we know that the angle @ must be some
fraction of the number 27. Let us write & = 2m/m and solve Eq.(B.13.2.40) for n.
The result is

n=mM. (B.13.2.41)

For example, in the case illustrated in Fig. B.13.2.5a, m = 4 and the only nonvan-
ishing coefficients are c,, ¢4, ..., capr.

If the rotation changes the polarity of the field, as illustrated in F ig. (B.13.2.5D),
then the condition for nonvanishing coefficients is
Ale™™my _J) = Re{ 3 c,,(—J)e-Zm'"/mz"} = A(z, J). (B.13.2.42)

n=0

Since changing the direction of the current must change the sign of the potential,

we will assume that )
cn(—=J) = —ca(J) = €7 cp(J). (B.13.2.43)

It can be shown that this is equivalent to the condition that
cos(2mn/m) = —1, (B.13.2.44)
hence the argument of the cosine must be an odd multiple of 7,
2nn/m = m(2M + 1), (B.13.2.45)

or
n=m(2M +1)/2. (B.13.2.46)
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Since n is an integer, m must be an even integer.

Let us now discuss the effects of reflection symmetry. This symmetry does not
eliminate any of the coefficients, but instead tells us whether the ¢,’s are real or
imaginary. The coordinate system can usually be arranged so that the z-axis is
in a plane of reflection. This means that this reflection, which changes (z + iy) to
(z —ty), is equivalent to complex conjugation. The effect of reflection on the vector
potential is to replace z by 2* in its argument. The invariance condition becomes

A(z") = Re{i cn(J)(z*)"} = A(=z). (B.13.2.47)

n=0

It can be shown that
(2*)" = (2")" = tn — p, (B.13.2.48)

and hence invariance requires that
Re{cn}un + Img{ca}vn = Re{ca}un — Img{c,}vn. (B.13.2.49)

This implies that Img{c,} must be identically zero. In the same manner, il is easy
to show that when A(z, J) is invariant under reflection followed by a change in sign
of the current, which changes ¢,(J) to —cn(J), that Re{c,} must vanish.

In summary then, symmetry reduces the number of unknown coefficients a, and
b,. This means that one can include higher powers in the least-squares fit to the
power series representation of the vector potential in the vicinity of a symmetry
point. The use of symmetry also reduces the amount of information needed to
generate the mesh for the problem. For example, only one-fourth of an li-shaped
dipole magnet is required to describe the field for the full magnet. This will be
discussed further in Sec. B.13.5 “Boundary Conditions and Meshes.” Finally, it
should be noted that the scalar potential

V(z,J) = Img{z cn(J)z"} (B.13.2.50)

n=0

satisfies the same symmetry conditions and is easily generated.

Given the power series for either the vector potential or the scalar potential, it
is easy to generate analytic expressions for the magnetic field and its derivatives.
The magnetic field is given by

_ . dF * [.l,oJ
B(2) ——z(dz) B 2y

The second term comes from the particular solution to the inhomogenous equation.
See Egs.(B.13.2.21) and (B.13.2.22). Substitution of the power series for F(z) gives
the result

d 5 a2y .0 a2 o
[ay(w +vy )—zam(a, +y%)|- (B.13.2.51)
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B(z) = B,+iB, (B.13.2.52)

N
= —{ Z n(a,,‘vn_l -+ bnu‘n—l) + ,U()Jy/')’

n=1

N
+i [Z n(Antn_y — byvn_y) + ;toJ:v/’y} }

n=1

The first derivatives of the field are found as follows. Special care must be taken
regarding complex conjugation. The derivative of the complex potential F(z) can
be written

dF J - =
- = —1 [B' - %(y + i:l!)] = [-B, — iB.]. (B.13.2.53)

From this we can derive the Cauchy-Riemann conditions on the analytic function

dF(z)/dz, namely,
&#F 8B, 6B, 08B, §B,

= _ — =1 — .13.2.5¢
d=2 dz 6z 8y oy’ (B.13.2.54)
. 9B. 0B
— == B.13.2.55
and 55 5B
B, B,
—_ = ——=, B.13.2.56
or - dy ( 56)
Furthermore, since the power series for the second derivative can be written
&F N ~
Jz = Z_én(n. —1)caz"2 (B.13.2.57)
[
= Z n(n — 1) [(antn-2 — bpvn_2) 4 i(anv,_s + bnu,,_g)] },
n=2

it follows that

0B, N
ay 2_n(n = 1)(@nttn-z ~ bpn2) + 1o J /7 (B.13.2.58)
n=2
and
oB, X
Ty = 2 = Danvnz + baten2). (B.13.2.59)
n=2

As seen above, symmetry simplifies these general expression even further.

The electrostatic problem can be formulated in terms of the same complex po-
tential F'(z). The only difference comes in the definition of E as the gradiant of A
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instead of as the curl of A. This can be seen as follows. If we make the approxi-
mation that the dielectric constant ¢ and the charge density p are constant, then
Maxwell’s equations are

VxE=0 (B.13.2.60)

and

V-E=p/e (B.13.2.61)
Equation (B.13.2.60) has a solution of the form

v . 9V
= —€x —

5 o (B.13.2.62)

in two dimensions where the function V(z,y) satisfies Laplace’s equation. The
solution to Eq.(B.13.2.61) can be written in the form

A _ 9A _
E= ——3—:;ex - Egey, (B.13.2.63)
where _
A(e,y) = A(z,y) — o +¥°)/(2€) (B.13.2.64)

and A(z,y) also satisfies Laplace’s equation in two dimensions. The electrostatic
potentials A and V are completely analogous to the magnetostatic potentials except
for physical units (Volts as compared with Tesla-meters) and the fact the electric
field is calculated as the gradiant of A as compared with calculating the magnetic
induction as the curl of A.

In the discussion so far, we have assumed cartesian symmetry. The whole scheme
will also work for cylindrical symmetry, but some changes have to be made in the
formulas. The isomorphism to the complex plane is lost. Tle scalar and vector
potentials must be treated separately. One wishes to express the potentials in the
vicinity of a point (z,,7,) as a sum of polynomials. For convenience of writing
we shall assume that the point (z,,7,) is the origin of coordinates. For the scalar
potential we write

bad 1 1
V(z,v) = D bnva(z,7) — E—(—-rz + =2%), (B.13.2.65)
n=0 €8 4
where n
Ou(z,7) = D Va2 T (B.13.2.66)
m=0

These polynomials must satisfy La lace’s equation in cylindrical coordinates, namely,
y Lap

62'0,1 1 8 avn
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It can be shown, by carrying out the above differentiations, that

V1 =0 (B.13.2.68)

for all n and

___(n——m+2)(n—m+1)

vnm h

. Uz (B.13.2.69)
m2

Taken together, these relations imply that v,, = 0 for all odd m. Table B.13.2.11
gives the first five polynomials.

Table B.13.2.I1. Harmonic Polynomials for Cylindrical Coordinates

n Scalar Potential v,

Vector Potential .,

1 =z r?

2 22—-r%/2 zr?

3 2%-—-32r%/2 22t — /4

4 2*—322r% +3r1/8 2r? —3art/4

5 2°—42°r2/3 4+ 27%/2 2%r? —32%01/2 +r6/8

The 6-component of the vector potential Ag(z,7) also can be written as a sum
of polynomials, but it is more convenient for computational purposes to multiply
Ag by r and write a polynormial series for the product, namely,

o0

tod 5

rAg(r,2) = Y anttn(z,7) — = (B.13.2.70)
n=1 Y
where "
un(z,7) = Z Upmz" e (B.13.2.71)
mm=0

and where the un(z,7)’s must satisfy the V x V x A equation

o° 1|18 J
7(1‘449) + 7'5: [;5;(7'149)] = —u—;-r. (B.13.2.72)

Once again, it can easily be shown that

Ung =0 (B.13.2.73)
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for all n, and

(n—m+2)(n—m-+1)
(m? —1)

Upm = —

Upm-—2- (B13.2.74)

Taken together, these equations imply that wnm = 0 for even n. The first five
polynomials are given in Table B.13.11 above.

The coefficients a,, and b, are obtained by doing a least squares fit to the po-
tentials at the nodes of the mesh as described above for cartesian coordinates.

For electrostatic problems the field components are

v o
E.=—=— Z L (n— m)bnvnmzn_m—lrm + L, (B.13.2.75)
82 n=1 m=0 2e
and ,
‘/7 (o o] n (
B = _%7 -3 byt ™ 4 Lo (B.13.2.76)

where the prime on the summation symbol means a summation over even values of
m. For magnetostatic problems the components of the induction are

10 o n” :
B. = —5-(7'/19 =3 > (m+ 1)anttymz™ "™ — Ko gr (B.13.2.77)
n=2m=1 i
and ,
10 o "
B, = -——5— (rdg) = Z }_‘ (n — M)A U 2™ TP (B.13.2.78)
r -~ n=2 m=1

where the double prime on the summation symbol means a summation over odd
values of m. The program does not calculate any derivatives of the electrostatic
field. Tt does calculate the r-derivative of B, which is given by the formula

n

= Z Z (m+1)(m — 1)a,,,_'u.m,,_z”—"‘7‘""2 _ b J. (B.13.2.79) '

n=3m=3 Y

This ends the discussion of fields and their derivatives. The coding associated with
this section is found in subroutines WORK and CWORK, which are contained in
the program LIBSO.

B.13.2.3 Forces and torques.

Consider a conductor of cross sectional area S with the current flowing in the
2-direction as shown in Fig. B.13.2.6. The force F on a section of thickness dz is
given by the formula

F=dz / J x B dzdy. (B.13.2.80)
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da=(d2x8,)dz

>t

J

<Y

Z

Figure B.13.2.6: Conductor of constant cross section with current flowing in the
2-direction.

We will assume that the current density J is constant over the cross section, that is,
independent of = and y. The magnetic induction B is independent of z and hence
the vector potential A need ouly have a z-component; thus we can write

OA. _ o04; .
B=VxA= ?y—ex — —a;:—Ey. (B13.2.81)
It follows that we can write J x B in the form
dA, . 0A.
JxB= Jz(-ézn—ex + —a;ey). (B13282)

We would like to use Stoke’s Theorem to convert the integral in Eq. (B.13.2.80)
from an area integral into a line integral. First we must convert the integral into
vector form. Let the vector differential area be written as

dS = dzdy é&,. (B.13.2.83)
Note that the following identities are true:
. A,
[V x (Ady)le = 5 (B.13.2.84)
A,
[V x (A.8x)]; = a—';*. (B.13.2.85)

Using these identities, we can write the force as

F=J.d: [ / V x (As8y)-dS &x — / V x (A;8,) - dS &|. (B.13.2.86)
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Stoke’s Theorem can now be applied to each integral; the result is
F = J.dz (740 Ady-dl 8~ )é Ay - dl éy). (B.13.2.87)
This can also be written as
F = J.d- ( fc Ady &5 — J[c A.dz éy). (B.13.2.88)

This is the form of the force on a current carrying element used in the code called

FORCE.

The general formula for the torque on a thin slice of the conductor is given by
the formula

T = dz / r x (J x B)dedy, (B.13.2.89)
S
where
r = 2éx + yéy. (B.13.2.90)
By using Eqs.(B.13.2.81) and (B.13.2.82) we find that
9A. A, .
rx (JxB)= J,(m—@ ~Y5 )éz. (B.13.2.91)

Once again, we want to convert the area integral into a contour integral. The
following identily is true:

0A; OA,

V x (—A:r)]. = - . 13.2.
[Vx(-A.r).== %9 i (B.13.2.92)
1t follows that the torque can be written successively as
T = —J,8,dz / V x (4.r)-dS (B.13.2.93)
s
or
T = —Jdz f Ar-dl (B.13.2.94)
c
or
T = —Jdz( f Auzdz + fc Aydy). (B.13.2.95)
c

This is the form of the torque on a current carrying element used in FORCE. Note
that the torque vector is parallel to the current density J.

For problems with cylindrical symmetry, one calculates the force and torque on
a thin wedge of materials. See Fig. B.13.2.7 for a picture of the geometry in the
case of a toroidal conductor. For a general conductor, the cross section need not be
a circle. The force on a wedge of angular width df is given by the formula

F = df / 3 x B rdrdz. (B.13.2.96)
. S
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) d'S:rde(ee x d.2)

Figure B.13.2.7: Picture of a cylindrically symmetric conductor carrying a current
density J. Note that J = —Jé&g and éy = &, x &,

Assuming that J is independent of r and =, and that B is independent of 8, one
finds that

10 . 18 . -
IJxB=-J [;51:(TA9)er + ;gz-(rAg)ez] (313291)
and hence the force is
F = Jdﬂ/—a--(A)dd"é +/—Q-(A)dd~‘" B.13.2.98
= sarrg.r.,r sazrg rd=&;|. (B.13.2.98)

We see that the function 74y in cylindrical coordinates is just like the function A in
cartesian coordinates. The change from area integrals to line integrals is completely
analogous. The final result is

F=-Jdd I:][‘I‘Ag 28, — frAgdréz] . (B.13.2.99)

[

The final equation for the torque in cylindrical coordinates can be shown to be
T = Jd6 [f Agridr + f Agrzd:] . (B.13.2.100)

The above treatment must be generalized when one wants to calculate the force
and torque on the iron, which doesn’t carry a current density J. We will generalize
the problem further by simultaneously treating electric as well as magnetic forces.
The force density on a piece of ponderable matter is

f=(p+p)E+T+In) xB, (B.13.2.101)

where p, is the polarization charge and J,, is the magnetization current density
caused by aligning atomic magnetic dipoles. It is shown in the textbooks® that
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pp=—V-P (B.13.2.102)
and
Jn=VxM, (B.13.2.103)
where
D =E+P (B.13.2.104)
and
H =B -M. (B.13.2.105)

Maxwell’s equations in the stalic approximation are

V.-D=p (B.13.2.106)
and
V xH=J. (B.13.2.107)

Equations (B.13.2.101) through (B.13.2.107) give the following equation for the
force density,

We next use two vector identities to convert this equation into one involving the
electromagnetic stress tensor. 1t can be shown that

V.(EE)=(V-E)E + (E-V)E (B.13.2.109)

and

-

V(E-E)=2E x (VxE)+2(E-V)E=V.(E-E ). (B.13.2.110)

Equation (B.13.2.109) is the divergence of a tensor formed from a product of the
field vectors. Equation (B.13.2.110) is the gradiant of the scalar product. The
gradiant can also be written as the divergence of a diagonal tensor. Combining
these equations gives the relation

(V.-E)E=V.[EE - —;-E ‘ET-Ex (V x E). (B.13.2.111)

The last term in this equation is zero hecause of Maxwell’s equations. The quantitiy
in the square bracket is the electric part of the electromagnetic stress tensor,

=(E) 1 =
S = ¢lEE - EE -E I]. (B.13.2.112)

The magnetic part of the force also can be expressed as the divergence of a
tensor. We use the same vector identities written in terms of B,

V.(BB)=(V-B)B+(B-V)B (B.13.2.113)
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and
V-(B-BT)=2B x (V x B) + 2(B - V)B. (B.13.2.114)

Combining these equations gives
1 =
(V x B) xB:V-(BB—EB-B I)-(V-B)B. (B.13.2.115)

"The last term vanishes because of Maxwell’s equations. The magnetic stress tensor

is defined as
=(M) 1 =
$ '=v%[BB-;B-BT]. (B.13.2.116)

The total force on a volume V is
=(E) =(M)
F= /Vv.(s +5 o (B.13.2.117)

This can be transformed into a surface integral by Green’s theorem

=(B) =(M)
F:/S(S +5 )-da (B.13.2.118)

Let us consider the volume shown in Fig. B.13.2.6. For two dimensional carte-
sian symmetry, we know that B, = 0 and B is independent of the z-coordinate.
This means that the integral over the front and back surfaces contribute nothing to
the surface integral; da is perpendicular to B and E and therefore

(EE + BB) - da = E(E - da) + B(B - da) = 0. (B.13.2.119)

For the (E - E + B - B) term, the contribution from the front face cancels the
contribution from the back face. The integral on the ribbon edge of thickness dz is
the whole integral. The differential area da can be written

da = —dl x &,dz = —(dyéy — dwdy)dz, (B.13.2.120)

where the differential vector dl is pointing counterclockwise along the contour of the
edge. The integrand is independent of = and therefore the surface integral becomes
a contour integral in the zy-plane. After some tedious vector algebra the contour
integral can be expressed in cartesian components. The resulting expressions for
the components of the force are

F, = %dz {eoj[l:(Ei - Ej)dy — 2E,:Eydm] (B.13.2.121)

+Yo f [(Bi — B2)dy — ZBxByd:c] }
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and

oo f (B2 - B+ 28.5,4| |

The beauty of these results is that in deriving them we had to make no assump-
tion about the linearity of the relation between the fields E and D and between B
and H. They are true with and without external charges and currents. Further-
more, there was no requirement that the charge or current densities be constant over
the cross section of the material. The parallelism between the electric and magnetic
parts of the force suggest that the coding will be the same for electrostatic and
magnetostalic problems.

For completeness we give the formulas for the torque in cartesian coordinates,
and for the force and torque in cylindrical coordinates. Because of the parallelism
between electric and magnetic forces, only the magnetic part is recorded in these
formulas:

1 2 2
T, = dz (70 f{[mBmBy - Ey(B; — B})ldy +

[%m(Bﬁ ~ B%)+ szBy]d:c}) (B.13.2.123)
F = —749{ f [1~(1{B2 — B2}dz — B, B.dr)&
2 r z r~z
+r(% {B2 - B}dr + BrBzdz)éz]} (B.13.2.124)

T = ~0df&s(h) f { [g(Bf — B} — rB,B,] rdz
- [g(Bf -B)+ zB,B,] rdr}. (B.13.2.125)

Note that the torque depends on the angle 6 through the unit vector &. When
integrated over the angle 8 the result is identically zero.

In the case of cartesian summetry it is interesting to note that the magnetic
force and torque can be written in complex variables as

F=F,+iF, = % LAt f B%*dz* (B.13.2.126)
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and

T, = %L%Re{ f z(B‘)zdz}. (B.13.2.127)

This concludes the discussion of auxiliary properties.
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B.13.3 Harmonic Analysis

Harmonic analysis of the field gives a numerical estimate of the multipole con-
tent of the field in the gap of a magnet. Iigure B.13.3.1 illustrates the parameters
involved for an l-shaped dipole magnet. One generally chooses a point (usually the
origin of coordinates for the problem) about which to do the analysis and a radius
7 of a circle about that point. The radius 7 should be chosen so that the circle does

IRON

COIL

AR

Figure B.13.3.1: One-quarter of a symmetric H-shaped magnet. The harmonic
analysis will be done about the center of the gap on circular arc of radius 7.

not enclose any iron or coil region. The distarice hetween the circle and the pole
piece should be larger than the mesh increment DY.

The mathematical theory is based on the idea that the vector potential A(z,y)
can be thought of as the real part of a complex function F(z = z + y). This idea
is explained in Sec. B.13.2 above. The function F(z) can be expanded in a power

series
oo

F(z) = A(m) y) + iV(:z:,y) = Z(Cn/T::orm)Zn) (B.13.3.1)

n=0
where 7., is a normalization radius. With this definition, the c,’s all have the
same units, e.g., gauss-cm. If we let
Ch = Gy + 1b,, (B.13.3.2)

and
2" = up, + iv,, (B.13.3.3)

then the vector potential is given by
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Az, y) = D (anttn — bavn) /7o, (B.13.3.4)

n=:0

The quantities u, and v, are called harmonic polynomials; the first ten of them
are found in Table B.13.2.1. Anyoune familar with magnets will recognize that they
generate the regular and skew multipole fields. This means that the representation
of the potential in terms of this power series is equivalent to a multipole decompo-
sition of the potential.

To do the decomposition, we must find the coefficients a,, and b,. This is done
by evaluating the potential on the circle. The simplest way to do this is to go to
polar coordinate in the complex plane, expressing z by the formula

= rexp(iy), (B.13.3.5)

and the coefficients ¢,, by the formula
cn = |cn| exp(ice,) = |en| cos(ay,) + 7|cn] sin(a,). (B.13.3.6)

When these relations are substituted into the formula for the vector potential, one
obtains the sequence of equations

A(r,p) = Re{i( T )"lcnle,aﬂ uup}

n=0 Trorm

o0

=Z(

n=0 Tnorm

T

) |en| cos(an + )

= o_i ( ) [lc,,| cos(ay) cos(ny) — |cn| sin(e,) siu(mp)]

7‘71.07‘ m
> (

n=0

3

>n [an cos(ny) — by, sin(mp)]. (B.13.3.7)

rnorm

This is in the form of a Fourier series in the variable . Fourier analysis theory tells
us that

g = — / (r,0)dp, by =0, (B.13.3.8)
o = %(L;) / A(r, @) cos(np)dyp, n > 1 (B.13.3.9)
and
po— 1 (rmm)"/z"A(r ) sin(n)dp, n > 1 (B.13.3.10)
n=— - g N7 p)dp, n = 1. 1o.0.

The circle of integration should not include any part of an iron or coil region, be-

cause this is inconsistent with the assumptions underlying the use of the complex
poteutial F(z).
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To take advantage of the magnet symmetry, Holsinger introduced two parame-
ters into the integrations. Consider the magnet shown in Fig. B.13.3.1. Because of
the field symmetry one does not need to integrate from ¢ = 0 to ¢ = 2m. In this
case, it can be shown that the integrals from ¢ = 0 to ¢ = 2m are four times the
integrals from ¢ = 0 to ¢ = 7.

We can generalize the limits of integration to be from ¢ = ¢, to ¢ = ¢, where
@ is measured from the horizontal axis (x- or r-axis). The new definitions of the
harmonic coeflicients are:

I ¢A d bp =10 B.13.3.11

a0—¢_¢z A: (7',30) P 0 — Yy ( s )

a, = ¢_2¢z /T(rn:'m)nfl(r,cp) cos(n ), dyp, (B.13.3.12)
2 ¢ (Trorm \™ :

b, = ey /,( " ) A(r,p)sin(n ), dep. (B.13.3.13)

The coefficients ap and by are not needed to calculate the magnetic field and are
not printed out by the program.

The integrals are done numerically by converting them to summations. To make
this conversion we let 6o
- ¥z

Ny — 17
where Ny is the number of equidistant points on the arc of radius r, at which

points the vector potential A(r,¢p) is to be interpolated in carrying out the Fourier
analysis.

dp — Ap = (B.13.3.14)

One cannot, of course, obtain all the coefficients a,, and by, but must, for prac-
tical reasons, limit oneself to n < Ny, where the integer Ny, is the number of
coeflicients to be obtained. Table B.13.3.] summarizes the input parameters for the
problein.
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Table B.13.3.I  Input Parameters for Harmonic Analysis

Name Default Definition

CON(110) = NTERM 5 the number of coefficients to be obtained

CON(111) = NPTC none  the nnmber of equidistant points on the
arc of a circle with radius RINT, with its
center at the origin, (0, 0), at which points
the vector potential is to be interpolated.
Fourier analysis of the vector potential at
these points yields the harmonic coeffi-
cients. NPTC should be approximately
equal to the number of mesh points adja-
cent to the arc for best results.

CON(112) = RINT none the radius of the arc on which the vector
potential is interpolated for the Fourier
analysis. RINT should be less than, by at
least one mesh space (triangle side), the
shortest distance from the origin to the
nearest singularity, i.e., a pole face or a coil.

CON(113) = ANGLE none the extent of the interpolation arc included
in the problem, i.e., (¢ — ¢:) in Egs. B.13.3.11
to B.13.3.14 above. ANGLE is measured in
degrees.

CON(114) = RNORM none the normalization radius. It is often chosen
to be either RINT or the radius of the
magnet aperture.

CON(115) = ANGLZ 0.0 the angle in degrees from the horizontal

axis to where the integration arc begins.

CON(108) = AROTAT 0.0 an additional rotation angle added to
ANGLZ (This is apparently an artifact of
a partially implemenied modification to
the code. The sophisticated user may want
to look into subroutine MINT and finish
the implementation.)
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The harmonic analysis of the magnetic induction starts with the series relation

. AF r \"'1 Cn .
B, —1iB, = i = n; mn (rwml — exp(i(n — 1)) (B.13.3.15)

This can be equated to a Fourier series for the induction, which we write in the form

B, —iB, = Y, Bmexp(imyp) (B.13.3.16)
m=0
The strengths of the harmonic components of the induction are directly related to

the a,’s and b,’s found in analyzing A(z,y). The formula is

(m+41)

- (Tnorm )

B, =

( r ) (R (B.13.3.17)

.
Tnorm

POISSON and PANDIRA print out the quantities a,, bn, nan/Trorm, and nb, [Trorm.
The program also gives absolute values of the complex guantilies ¢, and ncn/rrorm,
which do not have a simple interpretation.

Figure B.13.3.2 is printout from a harmonic analysis done on a dipole magnet
like the one shown in Fig. B.13.3.1. Note that the “R” in Fig. B.13.3.2 below is the
normalization radius, not the radius of integration discussed above.
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1HARMONIC ANALYSIS

OINTEGRATION RADIUS = 1.50000

OTABLE FOR INTERPOLATED POINTS

0 N ANGLE XCOORD3 Y COORD KF LF VEC.POT.
1 0.0000 1.5000 0.0000 4 1 -2.39835E+04
2 9.0000 1.4815 0.2347 5 2  -2.36889E+04
3 18.0000 1.4266 0.4635 5 2  -2.28119E+04
4  27.0000 1.3365 0.6810 4 3  -2.13736E+04
5  36.0000 1.2135 0.8817 4 3  -1.94085E+04
6  45.0000 1.0607 1.0607 4 4 -1,69649E+04
7  54.0000 0.8817 1.2135 3 4 -1.41027E+04
8  63.0000 0.6810 1.3365 3 4 -1.08929E+04
9  72.0000 0.4635 1.4266 2 5 -7.41450E+03
10  81.0000 0.2347 1.4815 1 5 -3.75347E+03
11 90.0000 0.0000 1.5000 1 5 6.76941E-03

1TABLE FOR VECTOR POTENTIAL COEFFICIENTS

ONORMALIZATION RADIUS =  2.00000

0 A(X,Y) = RE( SUM (AN + I BN) * (Z/R)**N )

0 N AN BN ABS(CN)

0 1 -3.1984E+04 0.0000E+00 3.1984E+04

0 3 7 .8190E+00 0.0000E+00 7 .8190E+00

) 5 3.8486E+00 0.0000E+00 3.8486E+00

0 7 8.9108E-01 0.0000E+00 8.9108E-01

0 9 9.6246E-02 0.0000E+00 9.6246E-02

1TABLE FOR FIELD COEFFICIENTS

ONORMALIZATION RADIUS =  2.00000

0 (BX - I BY) =1 * SUM N*(AN + I BN)/R * (Z/R)*x*x(N-1)

o] N N(AN) /R N(BN)/R ABS(N(CN)/R)

0 1 -1.5992E+04 0.0000E+00 1.5992E+04

0 3 1.1728E+01 0.0000E+00 1.1728E+01

) 5 9.6214E+00 0.0000E+00 9.6214E+00

0 7 3.1188E+00 0.0000E+00 3.1188E+00

0 9 4.3310E-01 0.0000E+00 4,.3310E-01

Figure B.13.3.2: Portion of printout from the POISSON output file for the H-shaped

dipole magnet example from Chapter B.2., showing the harmonic analysis.



January 7, 1987 PART B CHAPTER 13 SECTION 3 51

The user should be cautious in using the harmonic coeflicients in any practical
design, unless le is sure of the symmelry implications. Strictly speaking, the inte-
grals in Eqs. B.13.3.9 and B.13.3.10 are over the range from zero to 2w. Holsinger
has used symmetry to decrease the range of integration. If one does not have
the correct symmetry type (ITYPE = CON(46)), some of the a,’s and b,’s will
be wrong. Furthermore there are some symmetry types that do not fit into the
Halbach-Holsinger scheme, and the only way that they can be treated is to put in
the full magnet geometry and set I'TYPE = 1. In particular, be careful of the case
where the only symmetry is a reflection through the y-axis along with a change in
current. See Fig. B.13.3.3.

Figure B.13.3.3: Example of a magnet with reflection plus current change.
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B.13.4 Conformal Transformations

Conformal transformations can be quite useful in trimming multipole magnets.
Presently, the program MIRT can only be used to trim dipole maguets, that is, to
make the field in a given region as uniform as possible by adjusting current densities
and boundaries of iron regions. Through the use of conformal transformations MIRT
can be used to remove higler multipole components of the field in quadrupole
magnets. This is done by conformally transforming the ¢uadrupole field to a dipole
field, making the dipole field more uniforim, and transforming back to the quadrupole
geomelry.

The theory behind this method has been explained quite well by K. Halbach.57
There is very little that can be added to what he has said. We have reproduced
these articles here. More recently Robert Lari of Argonne National Lab. has tested
the procedure using our standard version of POISSON. We have included here his
Light Source Note, LS-32, which may clarify further the practical details of carrying
out the procedure.
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It is shown that for evaluation of twe-dimensional magnets with
nonlinear iromr in 2 conformally transformed geometry, only
minor changes of the magnetostatic equagions are required. The

1. Introduction

Conformal mapping is a powerful technique for
finding solutions, or for simgplifying the process of
finding solutions, to Laplace’s differential equation in
two dimensions, and a large number of applications to
many fields can be found in any textbook dealing with
this subject. This method has also been applied suc-
cessfully to the design of long magnets with infinite
permeability of the iron that, far away from the ends,
can be described with sufficient accuracy by the two
dimensional Laplace equation'*2). However, it does not
seem to be generally known that application of a con-
formal transformation to a two dimensional multipole
can greatly simplify the evaluation or design of that
type of magnet even when the iron has nonlinear B(H)
characteristics. It is the purpose of this paper to point
out some of the advantages that result if such a magnet
is conformally transformed and then, in the new geom-
etry, evaluated with a digital computer that solves
Poisson’s equation numerically. To this end, we write
first the magnetostatic equations in the original co-

. ordinate system in such a way that it will be easy to
transform them to the new coordinate system. From
the transformed equations we then deduce the modifi-
cations that have to be incorporated in the computer
code that numerically integrates the normal magneto-
static equations with nonlinear B(H) characteristics.
In the discussion of the application of conformal trans-
formations to two dimensional magnets with nonlinear
iron, emphasis is on the description of the advantages
that result when the magnetostatic equations are solved
numerically. However, to give a complete picture, we
will also point out some of the generally known bene-
fits associated with conformal transformations when
applied to this kind of problem.

2. Magnetostatic differential equations in the original
and confermally transformed coordinates

2.1. NOTATION
Units used throughout are mks. Complex numbers

advantages resulting from evaluation or design of a magnet in a
suitably transformed geometry are discussed in detail.

and operators are identified by underlining; their com-
plex conjugate by an asterisk. The absolute value of
a complex number is indicated by two vertical bars,
and its real part by Re. The Cartesian coordinates of
the original problem are x and y; the Cartesian coordi-
nates of the transformed problem are u and v, and they
are related to x and y through a suitably chosen con-
formal transformation

utiv=w=wlx+iy) = w(z).

(N

Quantities that depend directly on x and y, or are of
special significance in the x, y coordinate system, carry
the subscript z, and similarly carry the subscript w
when they depend directly on u and v, or are of special
significance in the ¥, v coordinate system.

The reason to consider only conformal transfor-
matijons is the well known fact that the structure of the
magnetostatic equations is destroyed under any other
than conformal transformations.

2.2, MAGNETOSTATIC DIFFERENTIAL EQUATION IN
ORIGINAL COORDINATE SYSTEM

Without loss of generality, we can derive the two
components B, and B, of the magnetic flux density
from a vector potential which has only a component
(A.) perpendicular to the x-y plane. Introducing the
complex field quantity
d .d

A.—1

B.=B.+ib, = 7~ 4,

dx A: =

.{d ., d
. ——l(aA:-*-ld_};A:) (2)
and the complex operator
.[d .d
2:——l(a+ l'(w) s

B.=D.A.. (4)

* Work performed under the auspices of the U.S. Atomic Energy
Commission. AEC Contract no. W-405-eng-48.

(32)

we obtain
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It should be noted that D, acting on any analytical
function K(z) is zero:

D.K(z)=0. (5)

Assuming an isotropic medium, and introducing 7,
the reciprocal of the relative permeability u (which may
depend both on location and flux density),

7:(x.y,1B:1) = 1p(x.p,]B:1),

we obtain for the field components H,, H,, and the
complex field quantity

H.=H.+iH,

H. = (1/10)y-B. = (1/o}y-D-A.. (6)
The magnetostatic equation relating H,, H, to the
current density j, in the direction perpendicular to
the x-y plane is:
. d d
Jex:y) =g Hy — o

.{d .d .
=—Re {1(—(—1? - 13;)} (H,+iH,).

With eqs. (3a) and (6), we obtain therefore for the
magnetostatic differential equation in the x-y coordi-
nate system:

Re D}y:(x.y, | B.(x.y)1) D A(x,) = — poj(x.y)- (T)

It should be noted that when D?¥ acts on y,, it acts not
only on the explicit dependence of y, on x, y, but also
on the x, y dependence that results from the dependence
of y; on |B.(x,y)|. This is, of course, the reason why
total and not partial derivatives are used in defining D,.

H,=

2.3. MAGNETOSTATIC DIFFERENTIAL EQUATION IN
TRANSFORMED COORDINATE SYSTEM
Introducing new coordinates u,v through the con-
formal transformation, eq. (1), we can express x and
yin A(x,y) through u and v, obtaining a new function
A, (u,0). The implicit dependence of A4,, on x,y is of
course the same as the direct dependence of 4, on x,y:

Ax) = A u(x,p),o(x.9))- ®)
To obtain the magnetostatic equation in u, v, we ex-
press D, through derivatives with respect to u, v. From
eq. (3a) we get:

p=-i{dd d_vd_H(ﬁd_
= dx du * dx dv dy du
Using the Cauchy-Riemann relations:

G o o
dy = dx’ dy dx’

do d

+E?'az)}'
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we obtain, with

pmeiflsid)

du dv (30)

and

du .dv re
9:""(d_x'_la')2w—_‘£ Qw' (9)

For the relation between B, = D,4,, and B. we obtain
from egs. (4), (8) and (9):

B.=w'B,=B.z".

(10)
It should be noted that eq. (10) is identical to the
transformation formulas that one obtains if one as-
sumes that the fields can be derived from a complex
potential function, although that has obviously not
been assumed in the derivation of eq. (10).
Using, similarly to eq. (8), and with eq. (10)

(%9, B21) = v {u(x,y),0(x,9), | B[ [12°1}, (1)
we obtain from egs. (7), (8) and (9):

ReQ:HI.YwaAw = _Aquz'

Because of eq. (5), we can write w'* to the left of D7.
We thus obtain, using eq. (9) again:

IH’ l2° Reg: wgwAw = —#sz‘
Introducing

Jelx(uo), o)} 121 =ju(wo),  (122)

we get for the magnetostatic differential equation in the
u, v coordinate system:

RCP:‘YW(“,”, I_Biwl / l E' I)QWAW = —#ij(u’v)' (lzb)

Of the many quantities that are of interest in the
design or evaluation of magnets, we want to discuss
only the transformation properties of two more quan-
tities. Although both transformation properties are
trivial, they are of such practical importance that it is
worthwhile to state them.

Since x, y and u, v are related through a conformal
transformation, infinitesimal areas da,, and da. are
related through

(13)

With eq. (12a) we obtain therefore for the total
current I, passing through any given area in the u,
v coordinate system:

I,= J‘jwdaw = J‘jz |_z_l Izdaw = szda: =1,

i.e. total currents passing through conformally mapped
areas are identical.

da, = |z’ [*da,,.
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Fig. 1. } of quadrupole in original geometry.

For the field energy E stored in any given area per
unit length of magnet, we obtain from

E,= fl B.1%y,da,,[(21)

and egs. (10), (11) and (13)

2u0E,, = J‘Ié:lz‘h Izllzdaw =f|§=1272da: =2u,E.,

i.e. conformally mapped areas store equal field energy
per unit magnet length.

2,4, MAGNETOSTATIC COMPUTER CODE MODIFICATIONS
FOR INTEGRATION OF EQ. (12)

Comparing eqs. (7) and (12), one notices two
differences:

a. The current density j,, appearing in eq. (12b) is
related to the current density j, through eq. (12a). The
proper current density j,, can obviously be obtained by
modifying the input data according to eq. (12a). Since
in most practical magnets, the current density j, is
constant within the boundary of each conductor, it is
convenient to add a small subroutine that allows to
input w(z) and ]z’|3, and the boundary and current
density j, for each conductor, and that then prepares
the input data to give the correct j,. That same routine
can of course also be used to transform all other
boundaries from the x, y coordinates to the u, v
coordinates. Since this routine does not interact with
the integration routine, it is clearly a simple task to add
this routine to the program.

b. The major discrepancy between egs. (7) and (12b)
is that y, depends on |B,|, whereas y,, depends on
IB,1/1z’'|. It would be an easy task to store 1/]z’| for
each iron mesh zone and then to multiply each flux
density value by 1/|z’| before finding the value of y,,
when integrating eq. (12b). However, since in most
integration routines, the value for the flux density in a
mesh zone is derived by appropriate numerical proce-
dures from potentjals at mesh points surrounding that

K. HALBACH

zone, it will in general be easy to modify the algorithm
so that it gives | B,.l/|Z’| instead of | B,,|. Both this and
the above mentioned modifications were incorporated
into POISSON?) with very little effort and without
increasing the storage requirements or the execution
time for evaluation of magnets.

Although we used vector potentials for the derivation
of eq. (12), the resulting conclusions concerning the
necessary modifications of j and y are, of course, in-
dependent of the method that was used to derive them,
and are valid no matter what algorithm is used to
actually integrate the magnetostatic equations.

3. Consequences of application of conformal trans-
formation to evaluation of iron magnets

3.1. INTRODUCTORY REMARKS

When discussing the advantages resulting from using
conformal transformations in conjunction with a mag-
net analysis program, we will talk especially about the
analysis program POISSON?). Although some com-
ments apply only to POISSON, or a program similar
to it, most remarks are valid no matter what analysis
program is used. Also, we will talk mostly about
evaluation or design of quadrupoles, since their dis-
cussion is representative for all higher multipoles.

3.2. CONFORMAL TRANSFORMATION OF A QUADRUPOLE

To provide a good quadrupole field in a circular
aperture, it is desirable to build a magnet with the
highest degree of symmetry possible. Fig. 1 shows the
schematic outline of § of such a magnet, with the 0°
and 45° lines being lines of constant scalar and vector
potentials respectively. Within the aperture, the field
B, can be derived from a complex potential

F(z) = 4, +iV,

and because of the symmetry of the magnet shown in
fig. 1, the power series for F(z) has to have the form

-]

F(z)= > 02(2n+1)52(2n+1)- (142)
n=0
From this follows for the fields:
B*=iF(2)=2 ¥ (2n+1)aypus0z*"*!.  (14b)
- - - n=0
The transformatioq
w=kz* (152)
leads to
F(w)= )y ‘h(:..ﬂf(ﬁ/’_‘)z"H (16a)
=0
and




APPLICATION OF CONFORMAL MAPPING

ol

Oeu

1
Fig. 2. } of quadrupole in transformed geometry.

B =(ifk) i (2n+1)@azns f(/K)" (16b)

When the magnet is 2 good quadrupole magnet, in
the aperture the term proportional to a, dominates in
eq. (14), and therefore dominates also in eq. (16). But
eq. (16) then describes an essentially homogeneous
field in the aperture, and this is of course highly
desirable for evaluation as well as poleface design of a
magnet. Before discussing the resulting advantages in
detail, it is convenient to introduce a particular value
for the scale factor k in eq. (15a).

To get simple relations for saturation considerations,
we introduce 7, as the distance from the center of the
original magnet to the iron nearest the center and
require that for |z]=ro, |W'|=1, giving |B.[=|B,l
there.

Using for simplicity a real k, we thus get from eq.
(152) for |z] =ry: |W'| =2krg = 1.

Using this in eq. (15a) we obtain

w=po(z/re)*; po=14ro (15b)
and
w' = (z[ro) = (Wlpo)*. (15¢)
For a 2n-pole, one would use similarly:
w= po(_z_/ro)"; po = roln,
W =(z[ro)" ™" = (wlpo)' ~". (15d)

Applying the transformation described in eq. (15b)
to the magnet shown in fig. 1 leads to the configuration
shown in fig. 2, which is drawn to the same scale as
fig. 1.

When evaluating a quadrupole magnet, the quantity
of interest is usually the gradient of the field. From
egs. (10) and (15c) we obtain
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B = Bizfro= Biwipof,  (17a)
B = roBlz. (17b)

From eq. (17b) follows the B} is directly a measure
tor the gradient in the real magnet even if the qua-
drupole is not perfect. To obtain the local gradient in
the aperture region, we can differentiate eq. (17a) with
respect to z':

dBYdz = {B3+2w-(@BHdW)}/ro.  (17¢)

It is clear that if the magnet is a good quadrupole
magnet, the derivative on the right side of eq. (17c)
contributes very little to the local field gradient inside
the good field aperture.

3.3. ADVANTAGES OF TRANSFORMED MAGNETS

The most obvious reason for gaining advantages
through conformally transforming a magnet is, of
course, the same reason why conformal mapping has
been used advantageously for a long time in many
fields: The simplifications of the geometry make many
aspects of a problem so transparent that they become
outright trivial, whereas they are often quite obscure in
the original geometry. For instance, it is qualitatively
much easier to see what kind of an effect a modifica-
tion of the magnet near the useful field aperture has
on the field of an essentially homogeneous-field magnet
than it is to see what the effect of the equivalent
modification is on the gradient of a quadrupole
magnet. Or, to take a specific drastic case: if a sextupole
magnet has a circular useful field aperture ry, and a
significant modification of the magnet is made at the
distance 3r, from the center, it is not entirely obvious
what its effect is on the second derivatives of the field.
However, if the circular aperture of the transformed
magnet is p,, the modification in this geometry is then
at the distance 27-p, and it is obvious that this will
have very little effect on the homogeneity of the field
inside p,, allowing the conclusion that the modification
will also have very little effect on the second derivatives
of the field in the original magnet. From these con-
siderations follows that the task of designing a multi-

t This is, of course, correct only where B*, can be derived from
a complex potential, i.e. where y = const. andj = 0.

Le2s
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Fig. 3. } of aperture ellipse and poleface in original gcometry.
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Fig. 4. { of aperture ellipse and poleface in transformed geometry,

pole magnet with a reasonably pure multipole field in
the useful field aperture becomes greatly simplified
through a conformal transformation, particularly since
one can apply many of the fairly simple and well
understood rules thatsone has for the design of homo-
geneous field magnets.

To demonstrate this in more detail we consider the
design of a quadrupole magnet that is required to have
a good quadrupole field within an elliptical aperture.
Fig. 3 shows one quarter of an aperture ellipse with a
ratio of major to minor axis of 2.5, with & rough out-
line of one quarter of the magnet poleface also in-
dicated. To see how far the poleface has to be carefully
designed, we apply the transformation w = kz?, map-
ping the 1-ellipse of fig. 3 into the }-ellipse in fig. 4.
Since we know that in order to obtain a homogeneous
dipole field, the poleface should extend at least one
quarter of the magnet gap beyond the ends of the
aperture region, we also indicate the required poleface
width. It is also shown how far the poleface would have
to go on the left side in order to get a quadrupole that is
symmetrical with respect to the 45°-line (in the original
geometry), with the resulting better field quality because
of the higher degree of symmetry. Since conformally
mapped areas store the same energy per unit magnet
length, it is directly evident how much one pays in
terms of stored energy for the magnet with the higher
symmetry. After fixing the ends of the polefaces in the
described manner, one would then transform these
endpoints into the original geometry and design the
rest of the magnet structure (coils, yokes, etc.) in the
original geometry. Then, as the last step, after trans-
forming the whole magnet and generating a mesh in the
new geometry, one would evaluate the magnet in the
transformed geometry and optimize the poleface to
give a highly homogeneous field in the transformed
geometry, leading to a high quality quadrupole field
in the original geometry.

There are, of course, some basic differences between
true homogeneous field magnets and homogeneous
field magnets that are obtained through conformal
transformation of a multipole magnet. In most mag-
nets the coils have a uniform current density and the
air-coil and most air-iron interfaces are straight lines
(the magnet shown in fig. 1 is an exception in this

K. HALBACH

respect). This is of course no longer true after a multi-
pole magnet has been transformed. Although this
has generally very little effect on the design of the
aperture region, it means for instance that one can not
obtain a practical multipole magnet by transformation
of a window frame magnet.

A more significant difference arises when one con-
siders saturation effects. When one designs a homo-
geneous field magnet and other considerations, such as
stored field energy, do not preclude such a conservative
design, one can get very good field homogeneity over
a wide field range by extending the fiat poleface
significantly beyond the aperture limits. Doing the
same in the case of a transformed multipole would
lead to a badly saturating magnet because, according
to egs. (12b) and (15d), the quantity determining the
saturation in iron is

| Bl wlpol '™

With | B, | iif the poleface region essentially constant,

the factor
[wlpol! ~H"

will lead to stronger saturation effects the more the
poleface is extended beyond the aperture limit. Nu-
merically, this effect can be quite significant: if the total
width of the symmetrical poleface of a transformed
quadrupole is 3p, in one case, and 4p, in another, the
values for | w/po|? at the ends of the poleface are 1.344
and 1.5=1.344x 1.11. This points out that in order
to design a multipole magnet with a good field distri-
bution at low as well as at high fields, it is exceedingly
important to be able to achieve good field distributions
with as little iron beyond the aperture limits as possible.
For this reason, a performance optimization proce-
dure that allows one to optimize the field distribution
simultaneously at low and high fields*) is even more
important for the design of multipole magnets than it
is for the design of dipole magnets.

While the presence of the above mentioned satura-
tion effects is obvious without application of a con-
formal transformation, their qualitative and quanti-
tative discussion and evaluation is considerably easier
in the transformed geometry.

Again with respect to this subject, one gains a better
understanding through considering the transformed
magnet. The resulting simplifications of the design
process will of course in many cases lead to improved
design and performance of magnets.

While the advantages discussed so far are to a large
degree of a qualitative nature, evaluation of multipole
magnets in the transformed geometry can also lead to
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a very significant increase in accuracy. Magnet evalua-
tion codes usually compute potentials at a large number
of discrete mesh points that cover the geometry of the
magnet. In the algorithm for the calculation of the
potentials, the behaviour of the potential in the region
around mesh points is generally approximated by
polynomials in the coordinates. These polynomials
are, to cite two examples, of first order in POISSON,
and second order in SYBIL®). This basic difference is
due to the meshes employed in these two types of
programs, SIBYL using a uniform rectangular mesh
and POISSON a variable triangular mesh. This gives
POISSON the advantage of being more flexible and
therefore having virtually no restrictions on the
boundaries of the problem and between different
materials, at the expense of being less accurate. While
these inaccuracies are of very little significance far away
from the useful field aperture, they can be of impor-
tance in the aperture if the field there is highly in-
homogeneous. By evaluating a multipole magnet in
the transformed geometry, the aperture field will be
very homogeneous for a well designed magnet. Conse-
quently, the potentials are nearly exactly linear func-
tions of the coordinates, thus practically eliminating
this source of error. Furthermore, the local field
gradients in the original geometry are essentially given
by the field in the transformed geometry. This means
that in order to obtain the local field gradient in the
aperture of a quadrupole, one has to calculate second
derivatives of relatively inaccurate potentials if the
evaluation is done in the original geometry, whereas
one has to take essentially only first derivatives of very
accurate potentials if the evaluation is done in the
transformed geometry. The cascading of these two
main accuracy-improving properties leads to a very
significant improvement of overall accuracy: Eval-
uating a magnet that has an analytical quadrupole
field distribution with POISSON gave the gradients in
the aperture region with about 19, errors when the
evaluation was done in the original geometry, whereas
the error was only 0.01%, when evaluated in the trans-
formed geometry. While 0.019, accuracy is better than
normally needed, 1%, errors are more than tolerable in
many cases. It is clear that the accuracy improvement
is even more urgently needed (and obtainable with this
procedure) for higher multipoles, where even an in-
trinsically more accurate program like SIBYL could
not be expected to be quite as accurate as one would
need under some circumstances. A minor advantage
results when a multipole magnet is to be evaluated
with an irregular variable mesh program like POISSON
and the evaluation is done in the transformed geometry:
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Because of the curvature of the poleface in the original
geometry, it is very difficult to generate a good mesh
point distribution, while it is very easy to generate a
practically perfect mesh in the aperture region of the
transformed magnet.

Finally, it might be worthwhile to remark that it is
possible to check internal consistency and accuracy
of a program by computing potentials and fields of a
magnet in the original and a conformally transformed
geometry, and then comparing the results.

4. _Limitations and drawbacks .

Although it is possible to evaluate a transformed
magnet geometry that covers more than one leaf of a
Riemann surface, this is clearly neither desirable nor
practical. Therefore a magnet geometry should be
sufficiently symmetrical so that the transformed magnet
covers only 360° or less of a plane. While most multi-
pole magnets satisfy this condition, one has to realize
that for all practical purposes this makes it impossible
to evaluate in the transformed geometry the effects of
slight assembly-asymmetries of a basically symmetric
magnet.

It is clear that by transforming a 2n-pole with
w~ 2" the ratio of the aperture area to total magnet
area is much smaller in the transformed geometry than
itis in the original geometry, leading to a reduced mesh
point density in the aperture of the transformed
magnet. When using a variable mesh code, this can be
partly corrected by adjusting the mesh spacing ac-
cordingly; with a fixed mesh code, one gains a small
advantage because the fraction of the magnet that has
to be evaluated is generally larger in the original
geometry than it is in the transformed geometry. (For
instance, one has to evaluate 3 of a symmetrical
sextupole in the original geometry, but only 7% in the
transformed geometry.) Depending on the details of
the magnet under consideration, sometimes neither
one of these gains is enough to compensate sufficiently
the reduced mesh point density in the aperture region
of the transformed magnet. We want to discuss briefly
two methods that can be used to improve the mesh
point density in the aperture.

Instead of using the transformation that produces
exactly the desired mapping, one can use one that gives
the desired mapping in the aperture region in very good
approximation, and compresses the transformed mag-
net far away from the aperture.

For instance, instead of using the really desired trans-
formation

W= (ro/n) (E/"o)'l
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for a 2n-pole, one can use the transformation
w={ro/(ne)}In{l +6(z[ro)"} with e < 1.

In the aperture region (]z|/ro £1) the latter trans-
formation gives approximately the same mapping as
the former, whereas for e(}z|/ro)"=1 they differ
markedly, making the overall size of the second trans-
formed magnet relative to its aperture smaller than the
first. The slight deviation from the transformation

w= (’o/")(f/ro)"

should not decrease the evaluation dccuracy in the
aperture if ¢ is not too large; also all the gains of
qualitative nature described at the beginning of this
section are preserved Since the exact form of the used
transformation is known, it is of course very easy to
take the difference between it and the transformation
w~ 2 quantitatively into account. In magnets with
extreme dimensions one could even think of using the
transformation:

w = {ro/(en)}In [1+In {1 +e&(z/ro)"}].

A somewhat simpler procedure would be to evaluate
the magnet in two steps: First in the original geometry,
giving the overall potential distribution and all the
gross-saturation characteristics, but very poor accuracy
in the aperture region. In the second step one evaluates,
in the “ideally” transformed geometry, only a part of
the magnet, extending, in the transformed geometry,
from the centér to about 5-20 times the aperture
dimension. Depending upon whether or not this region
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contains coils, one can then evaluate this partial magnet
with boundaries parallel or perpendicular to field lines
calculated in the first step, or with boundary values of
the potentials obtained in the first step. Since the
boundaries are far removed from the aperture region,
the accuracy of the evaluation in the aperture region
will be practically independent of the choice of the
boundaries or the boundary values. If the saturation
behaviour is of no interest, it will in most cases not
even be necessary to make the first evaluation since one
can guess in general with sufficient accuracy what one
has to do at the boundaries.

Referring to eqs. (10) and (12a), it is evident that
z' #0; w' #0 has to hold in all regions containing iron
and w’ # 0 has to hold in coil regions of magnets. In
the rare cases where one would like to use a trans-
formation that violates these conditions, it is usually
possible to modify the ideally wanted transformation
such that it still gives essentially the desired mapping in
the area of interest, but avoids the violation of the
above mentioned conditions, just as was suggested to
compress the outside portions of a mapped magnet.
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CALCULATION OF THE STRAY FIELD OF MAGNETS WITH POISSON*
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It is shown that application of conformal mapping to two di-
mensional magnets, containing iron with nonlinear 8(H) charac-
teristics, allows calculation of magnetic fields in all 2D space. For
some magnets of finite length, this information can be used to
get a good approximation for the stray fields in all of 3D space.

1. Introduction

It is sometimes necessary to have information about
the stray fields produced by two dimensional magnets.
It is clear that the following consideration, being purely
two dimensional, is valid at most up to a distance of
the order of the physical length of the magnet. We will
later describe a procedure that can give approximate
information about three dimensional stray fields and
will finally discuss application of the basic procedure to
axially symmetric magnets. To simplify the description
of the procedure, we discuss its application to a specific
magnet that is typical for the kind of problem that
arises in practice (and also leads to simple figures that
are easily drawn). Although of general validity, the
description of the method is tailored to the use of the
magnetostatic analysis program POISSON!).

2. Stray fields produced by a window frame magnet

Fig. 1 represents the cross section of } of a window
frame magnet. The field lines are perpendicular to the
midplane 0-8, and the symmetry plane 0-6 has a con-
stant vector potential. For calculation of the field with
a digital computer, one obviously has to limitartificially

\\" Y

' ] s X
Fig. 1. Original geometry of magnet (complex z-plane).

It is furthermore shown that only minor modifications to POIS-
SON are necessary to allow application of the same techniques
to magnets with axial symmetry, leading in this case to solutions
that genuinely and accurately describe the fields in all of 3D space.

the grid that is used for the description of the problem.
Even when saturation effects are of importance, it is a
reasonably good approximation to limit the grid along
the line 6-7-8 and put that line onto the same vector
potential as the line 0-6. Whether one limits the grid in
this way, or limits it farther outside, with air between
6-7-8 and the grid limitation, is immaterial for the
method used to compute the stray fields.

When one wants to calculate the stray field at some
point outside the magnet, the grid does not only have
to include that point, but should go significantly beyond
it in order to avoid falsification of the stray field by the
artificial grid limitation. This leads to an impractically
large total number of mesh points, since the magnet
itself should still contain a reasonable number of grid
points in order-to describe the stray field-producing
saturation of the iron adequately. The large number of
grid points and the errors resulting from the artificial
grid limitation are avoided with the following proce-
dure.

One first solves the magnetostatic problem, without
regard for stray fields, in the configuration shown in
fig. 1, with the artificial grid limitation along line 6-7-8.
One then solves the same magnet again, but in the
geometry obtained by applying the conformal transfor-
mation

D w= —R¥Yz, (1

to the original magnet. R is a suitably chosen scaling
length, and fig. 2 represents the transformed magnet,
drawn to the same scale as the magnet in fig. 1, with
R equal to the distance 0-5.

The minor program modifications necessary to ana-
lyse a magnet with nonlinear iron in a conformally
transformed geometry have been described elsewhere?)
and are incorporated into POISSON.

* This work was done under the auspices of the U.S. Atomic
Energy Commission.

(w=u+iv; z=x+1iy),
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Fig. 2. Conformally mapped geometry of magnet (complex
w-plane).

To solve the magnetostatic problem in the trans-
formed geometry, we limit the grid in the w-plane along
the map of a suitably chosen contour inside the magnet
in the original geometry, for instance line 1-3-4, or
alternatively the dashed circle. We-obtain the vector
potentials at the grid points of that mapped contour
from the analysis in the original geometry, and solve
the resulting boundary value problem, or boundary
value problem with currents, in the transformed ge-
ometry. The field components B,, B, inside the contour
0’-6'-7-8'-c0’ are obtained from the vector potentials
by standard numerical differentation, and the field com-
ponents B, B, in the original geometry are obtained by
application of eg. (10) of ?) and yield with eq. (D):

(B.—iB,) = (B,—iB,)(dw/dz) =
=(B,~iB,)(R/z)" = (B,~1B)(W/R)*. (2)
It can also be practical to calculate from the vector

potentials the multipole coefficients a, of the complex
potential describing the fields in the w-plane:

F (w)= ia,w’. (3a)

This gives for the Laurent-expansion of the stray field
potential:

F@) = Sal~ R (3b)

The only one step described above that 1s not rou-
tinely performed by POISSON is the transfer of the
vector potentials from the contour 1-3-4 to the mapped
contour 1'-3'-4’ in the w-plane. The simplest way to
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accomplish this is to map the grid points on the outer
contour in the w-plane into the z-plane and calculate
the potentials there by interpolation of the vector po-
tential field. Linear interpolation should in general be
sufficient, since minute details of the vector potential
distribution along the outer contour in the w-plane
should have only a small effect on the stray fields. An
alternate method to solve for the stray fields would be
to compute the scalar potentials along the contour
6-7-8 and use its map as the outer problem boundary
in the w-plane. The first method is preferable, since
scalar potentials are usually not computed by POIS-
SON and the stray fields would be more sensitive to
errors in the scalar potentials along 6’-7'-8' then they
are to errors in the vector potentials along 1’-3'-4,

It is clear that the computation of the stray fields
in the w-plane allows the presence of ferromagnetic
bodies in the stray field region as long as they satisfy the
conditions implied by the two dimensional approxi-
mation.

When one is dealing with symmetrical multipoles
(2n-poles), it has been shown?), that it is advantageous
to analyse their fields in the geometry obtained by the
conformal transformation w =k""'z". Similarly, the
stray fields of such a magnet should be computed in the
geometry obtained by transforming the original geome-
try with w= —R""!/z", and the stray fields in the
original geometry are obtained from the fields in the
transformed geometry with appropriately modified
equivalents to eq. (2).

When one is evaluating magnets that saturate badly,
or magnets with an open iron core (for instance C-
magnets), it is not always obvious how much the so-
lution in the magnet is influenced by the artificial grid
limitation. To obtain a: better solution, one can com-
pute the stray fields as described above, then transfer
the vector potentials obtained along the map of the
grid-limiting-contour of the original magnet (6'-7'-8')
to that contour (6-7-8) in the original geometry, and
solve the problem again in the original geometry with
these new values at that boundary. With this iterative
process, which in general will not have to be repeated,
one clearly obtains a very accurate all 2D-space solu-
tion for the magnet. There are obviously other configu-
rations where these all 2D-space solutions might be
useful. One might, for example, want to know how the
field in an iron-free magnet is influenced by the pre-
sence of iron at a distance outside the magnet.

It is worthwhile to point out that it is possible to
obtain reasonable approximations for the three di-
mensional stray fields at virtually any distance produced
by magnets that have small end effects in the sense that
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they do not contribute significantly to the stray fields.
One could derive the three dimensional stray fields
from a vector potential that is obtained by super-
position of finite length filamentary multipoles with
strengths giving the *“near field” multipole strengths
described: by eq. (3b).

3. Extension to magnets with axial symmetry

Magnetostatic fields with axial symmetry can be de-
rived from a vector potential that has only an azimuthal
component which is, of course, independent of the
azimuth. 1f we introduce the axial and radial coordi-
nates respectively as the x and y coordinates of a
Cartesian coordinate system and furthermore introduce
a pseudo vector potential ¥ with only a component in
the x x y direction equal to y times the vector potential,
then the magnetostatic equations for the axially sym-
metric problem can be represented by:

B=(y)"'V.xV, (4a)
H =y(|Bl,x,y) Bltto, (7 = 1tter): (4b)
vc X [(ﬂy)vc X V)] = #O.i' (40)

In these equations, j has only a component in the
xxy direction, equal to the current-density in the
original problem, and V, is the Cartesian form of the
del operator.

The only difference between eqs. (4) and the equa-
tions describing a genuine two dimensional problem in
Cartesian coordinates is the extra factor 1/y, and the
integration routine is easily modified to take this into
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account, POISSON, just as its predecessor TRIM (as
well as other programs), has this modification in-
corporated for the solution of problems with axial sym-
metry. It is clear from egs. (4) and 2) that in order to
solve egs. (4) in a conformally mapped geometry, one
needs to incorporate into POISSON the same modifi-
cations that are needed to solve genuine two dimen-
sional problems in a transformed geometry, as well as
the modification necessary to take the factor 1/y into
account. Although this has not been done yet, it is
clearly a simple matter to do so. To find the stray fields
for an axially symmetric problem, the same transfor-
mation can be used that was employed in the 2D case,
and the rest of the procedure is also identical, with only
two modifications: the power expansion, eq. (3), is not
applicable, and the field components in the x-y(z-r)
coordinate system are obtained from

B.—iB, = {(3V[dv)+i(oV[du)}(dw[dz)/ y.

In contrast to the two dimensional case, application
of this procedure to an axially symmetric magneto-
static problem gives a solution that genuinely and ac-
curately covers all space.
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ARCONNE NATIONAL LABORATORY

9700 South Cass Avenue, Argonne, lllinois 60459

Septenmber 12, 1985

Mary Menzel

LANL AT-6 MS-829

P. O. BOX 1663

Los Alamos, NM 87545
Dear Mary,

I wish to thank you for your help in tracking down the problems I encoun-
tered using POISSON and, in particular, the conformal mapping feature. My
understanding of it is as follows:

LATTICE
1. 'The user must transform the geometry from the x-y plane to the u-v plane.
2.  CON(37) = MAP, CON (123) = TNEGC, CON (124) = TPOSC, AND

CON (125) = RZERO must be specified so that LATTICE can map the curreats

to the u—~v plane and correct them slightly so the total current is the

same in both the x-y and u-v planes.
3. Cannot use line regions with specified potential.
POISSON

l. The field and gradient are printed out at the air points for both the x~y
and u-v plane.

2. The field at the iron points is printed out for the x-y plane only.
3. The stored energy is the same in both planes.

4, The flux lines plotted are lines of constant vector potential in the u-v
plane. Caution, these do not indicate the flux density in the x-y plane.

1 am enclosing a copy of a Light Source Note, LS-32, describing the
testing I did of the Harmonic Analysis feature of POISSON. Please give John
Warren and Martyn Foss a copy and express my thanks to them.

Sincerely,

lg1r£ '2{?l44:

Robert J. lari
RJL:ehr

Enclosure

US. Deparivient of Eneray The University of Chicago



LS-32

Harmonic Analysis Errors in Calculating DipoigL
Quadrupole, and Sextupole Magnets using POISSON

Robert .J. Lari@}(

September 10, 1985

Introduction

The computer program POISSON was used to calculate the dipole, quadru-
pole, and sextupole magnets of the 6 GeV electron storage ring. A trinagular
mesh must first be generated by LATTICE. The triangle size is varied over the
“universe"” at the discretion of the user. This note describes a series of
test calculations that were made to help the user decide on the size of the
mesh to reduce the harmonic field calculation errors. A conformal transfor-

mation of a multipole magnet into a dipole reduces these errors.

Dipole Magnet Calculations

A triangular mesh used to calculate a "perfect” dipole magnet is shown in
Fig. 1. Both the physical (x-y) and logical (K-L) mesh coordinates are
shown. The lower boundary of this "universe™ is a flux normal boundary and
can be considered the mid-plane of the magnet. The top boundary is also a
flux normal boundary and can be considered as an infinite permeable pole
tip. The left boundary is a flux line of vector potential 0.0 G-cm and the
right boundary is also a flux line of vector potential 140,000 G-cm. Since
the distance between these boundaries is 14 cm, the flux denéity in the uni-
verse will be uniformly 10000 gauss. A mesh 8 units high by 29 units wide was
used. The total number of mesh points is (8+2) (29+2) or 310 mesh points.
This includes the four phantom mesh lines surrounding that shown.

The harmonics are calculated by integrating the vector potential on a
circular arc and doing a Fourier analysis of it. Hence, the program requests
an integration radius, RINT, a starting angle, ANGLZ, a change in angle,
ANGLE, and a normalization radius, RNORM. The number of terms to calculate,
NTERM, and the number of equidistant points on the arc of circle, NPTC must
also be specified. The integration radius and normalization radius were both

3.0 and 19 points were used on the circular arc from O to 180 degrees. These



19 mesh points are shown circled in Fig. 1. Table I gives the results of the
calculation. All harmonics have units of gauss. The maximum error for a mesh

this size is less than .05 gauss in 10000 gauss at a radius of 3 cm!
A smaller mesh size might be possible, but with this size, 0.5 by 0.5 cm,
the mesh is not too distorted at RINT when 0.17 cm by 1.5 ecm shims are

attached to the pole tip at the sides. Equal weight triangles were used.

Quadrupole Magnet Calculations

It can be shown (1) that the pole shape for a perfect p-pole magnet
satisfies equation (1).

rp/Z sin (p/2)6 = RBp/2 (1

Likewise the coil shape satisfies equation (2).

rp/2 cos (p/2)6 = R.cp/2 (2)

Rp is the distance to the pole and Rc'the distance to the coil. 1In rectan-

gular coordinates for a quadrupole magnet, p = 4, these become:

»

Xy = R§/2 (pole shape) (3)
and
x2 - y2 = Rﬁ (coil shape) (4)

A perfect quadrupole is shown in Fig. 2. As in the case of the dipole,
the lower and upper boundaries are flux normal boundaries. The left side is a
flux line at 45 degrees and the right side is a flux line of vector potential
A, where

2

2
R , R
[ C - c . G_ (6.945 2 _
A = [ Bydx = B — (1000) &= -5~ em” = 24116.51 G-cm.




It is best to distribute the triangles uniformly along the x axis and the 45
degree line, since the field varies linearly. This makes the change of the
flux density the same across each triangle and makes the errors equal.

POISSON assumes that the vector potential varies linearly across each tri-

angle. This assumption conflicts with the quadrupole field which varies
linearly with radius. This effect is illustrated in Fig. 3.

The distribution of mesh points along the pole tip can be found by solv-
ing equations 3 and 4 simultaneously for a. fixed Rg and for the 15 values of
Rc which are the x coordinates of the mesh points on the x axis. Similarly,
the distribution of mesh points along the coil can be found by solving equa-
tions 3 and 4 simultaneously for a fixed R, and for the 8 values of Ry along
the 45 degree line. This method of distribution has been used to calculate
the harmonics for four different mesh sizes. The results are given in Table
II. A flux plot is shown in Fig. 4.

Using the same number of mesh points, 170, as were used in the dipole
case results in field errors of 15 gauss in 3000 or 0.5 percent. Doubling the
mesh in each direction results in 527 points and reduces the field errors to
3.2 gauss or 0.1 percent. Again, doubling the mesh for a total of 1829 points
gives 1.9 gauss error or 0.06 percent. With 6785 mesh points, the error is
0.3 gauss or 0.0l percent. These results clearly demonstrate the conflict
between the basic assumption of field uniformity in POISSON and the linear
field of a quadrupole magnet. A method to circumvent this problem is
described in the last section.

Sextupole Magnet Calculations

In rectangular coordinates for a sextupole magnet, p = 6, equations 1l and

2 become:
3x2y - y3 = Rg (pole shape) (5)

= - 3y2x = RZ (coil shape) (6)



A perfect sextupole is shown in Fig. 5. The lower and. upper boundaries
are flux normal boundaries. The left side 18 a flux line at 30 degrees of
vector potential zero. The right side is a flux line of vector potential A,

k]

where

3
R
- - —c _ (100 3. _
A, focBydx B —% 3 (7.2569)° = 12738.9 G-cm.
To distribute the mesh points along the x axis so that the change in

field between successive points is the same requires that
xy = (/NeTS)Y2 (R )

where N is the nth point and NPTS is the total number of points along the x
axis. A similar distribution can be made along the 30 degree line. Using
these xy values as R, in equation 2, the two equations, 1 and 2, can be solved

simultaneously to find the nth point on the pole tip. The points on the right

boundary can be found in a similar way using the Ry as RB.

The results of the calculations for two mesh sizes is shown in
Table III. Using 432 mesh points results in errors of l.5 gauss out of 3025
gauss or 0.05 percent. With 1364 mesh points, the error is 0.6 gauss or 0.02
percent., A flux plot is shown in Fig. 6.

Conformal Transformation

It has been shown(z) that higher pole magnets can be transformed into a
dipole magnet by the transformation:

7P/ 2 -

W=

Py p (P/2)-1

& R,

where

W =u+iv
Z =x + 1y
p = number of poles
R = the magnet bore radius.



for p = 4, a quadrupole magnet, these become

(8)

The pole tip and coil shown in Fig. 7a of a quadrupole magnet is transformed
by equations 8 into the pole tip and coil of a dipole magnet of Fig. 7b. The
program LATTICE transforms the current from the x~y plane into the u-v

plane. The user must first transform the x-y geometry into the u-v geometry
and use this as input to LATTICE. The total current is the same in both
planes(z).

POISSON transforms the permeability and prints out the fields: gradients,
etc. in both the x-y and u-v planes for the air points. The fields in the
steel are printed out as they would be in the x-y plane. The stored energy is
the same in both planes. A discussion of the advantages, limitations and

drawbacks 1is given in reference 2 and will not be repeated here.
References
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FIGURE 3. POISSON APPROXIMATION TO A QUADRUPOLE FIELD



n Bn (gauss) (at RNORM = 3.0 cm)

2 2985.7 2996.8 2998.1 2999.7
6 14,54 2.45 1.20 0.12
10 —6.00 -0.96 -0.48 -0.21
14 3.67 0.35 -0.03 -0.08
18 -2.29 -0.32 0.05 -0.12
22 0.47 0.15 -0.02 -0.27
26 0.36 0.01 0.02 -0.04

NO. OF
MESH PTS. 170 527 1829 6785
TABLE II. A PERFECT QUADRUPOLE MAGNET

HARMONIC CALCULATIONS
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FIGURE 4. PERFECT QUADRUPOLE FLUX LINES

A=20 ‘FLUX NORMAL
FLUX LINE POLE TIP

A = 12738.9 G-cm
FLUX LINE

FLUX NORMAL (MID-PLANE)

FIGURE 5. PERFECT SEXTUPOLE MAGNET



FIGURE 6. PERFECT SEXTUPOLE MAGNET FLUX LINES

(RNORM = 5.5 cm)
n Bn (gauss)
3 3023.4 | 3024.5
9 -0.28 -0.02
15 -1.59 -0.66
21 -0.40 -0.02
No. of
Mesh Pts. 432 1364

TABLE III. A PERFECT SEXTUPOLE
HARMONIC CALCULATIONS




P

fll

FIGURE 7a. QUADRUPOLE IN THE x-y PLANE

=

FIGURE 7b. QUADRUPOLE TRANSFORMED INTC A
DIPOLE MAGNET IN THE u-v PLANE
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B.13.5 Boundaries and Meshes

This section is not complete. When it is finished, it will be sent to persons
who have received this manual from the Los Alamos Accelerator Code Group. The
material given below is a sample of what will be included.

B.13.5.1 Boundary conditions

The solution to a two-dimensional, second-order, partial differential equation like
Poisson’s equation is not unignely determined by the equation itself. One needs to
place a constraint on the solution by specifying the value of the solution, and/or its
derivative, along some closed boundary line.

Boundary conditions cannot be imposed arbitrarily. The most general, allowed
boundary condition depends on the type of differential equation (hyperbolic, ellip-
tic, or parabolic). Poisson’s equation for the vector potential A(z, y) and reluctivity
~v(A(z,y)) takes the form

3} 8
E:[‘Y(A)gg] + aiyh(A)%%] + J(z,y) =0, (B.13.5.1)

and is an elliptic differential equation. It can be show that the most general bound-
ary condition for elliptic equations is of the form
0A 0A

aA + b[nz—a; + ny-é—;] =c, (B.13.5.2)

where a, b and ¢ are functions of position on the boundary curve. The quantities

n. and n, are components of a unit, inward-normal vector to the boundary curve.

For purposes of the computer program POISSON the boundary curve is the
peritneter of the area meshed by LAT'TICE. The boundaries between regions inside
the meshed areas are nol boundaries on which boundary conditions must be im-
posed. The functions a, b and c are piecewise constant on portions of the boundary.
In fact, ¢ is normally zero and either a is zero or b is zero on a given portion of the
boundary. This specialized form of boundary condition is rarely absolutely correct
on the boundary of the meshed region. The error resulting from using incorrect
boundary conditions is usually of little practical importance when one is concerned
about the magnetic field at a location far from the boundary. An excellent discus-
sion of this point can be found in the book by D.A. Lowther and P.P. Silvester.®
When a portion of the boundary is a line of symmetry, then the boundary condition
on that portion of the boundary can be exact. On other portions of the boundary
it may not even be obvious how to impose a boundary condition. The magnet de-
signer must rely on previous experience and his expectations for the final field.
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In what follows we will define the nomenclature, derive some rules of thumb for
choosing boundary conditions, discuss successive region overwrite as it applies to
boundary conditions, and say a few words about a new version of the code available
from Lawrence Berkeley Laboratory that has more general boundary conditons.

The nomenclature used in the general theory of PDE’s is:®

Dirichlet — A(w,y) specified everywhere on the boundary,

Neumann ~ fi - VA is specified everywhere on the boundary,

Intermediate — Linear combination (See Ex¢.(B.13.5.2) is specified on the boundary,
Homogeneous — The specified value (c in Eq.(B.13.5.2)) on the boundary is zero,
Iuhomogeneous — The specified value on the houndary is not zero.

The boundary conditions allowed by POISSON are a special form of the inho-
mogeneous, intermediate case. The authors of POISSON use the following nomen-
clature:

Dirichlet — A(z,y) = ¢ on some portion of the boundary,
Neumann — i - VA on some portion of the boundary.

Usually the constant c is zero, but by using CON(20)=INPUTA (See Sec. B.5.5) or
C(6) = -1 (See Sec. B.3.2) one can set the potential on some portion of the bound-
ary to a non-zero constant value. The full closed boundary has been divided into
four pieces corresponding to the four sides of the most general defining rectangle for
the problem (LEFT, UPPER, RIGHT, LOWER). The elements of the CON array,
CON(21), CON(22), CON(23), and CON(24), are used to specify pure Dirichlet or

pure Neumann conditions on the separate sides of the problem rectangle.

Most users have little or no intuition regarding the hehavior of A(z,y) and are
more comfortable with the direction of the magnetic induction B or the electric field
E. The following derivation shows how one relates Dirichlet and Neumann condi-
tions to the field direction at the boundary. Let us write the unit inward, normal
to the boundary in the form

f = n.€x + n,€y. (B.13.5.3)

The unit tangent to the boundary at this point is perpendicular to fi and can be
shown to be

t = t.8x +t,8y = nyéx — néy. (B.13.5.4)

For the Dirichlet condition, since A(z,y) is constant on the boundary, the com-
ponent of the gradient of A(z,y) parallel to the boundary is zero. This gives the

relation oA oA
-~ £
- V g — 22_ = . . 3.5.5
t-VA=n, 5 " 3y 0 (B.1 )
But we know that B, = 84/8y and B, = —8A/0z. This gives us the relation

t.VA=—-(n.B,+n,B,)=-H1-B=0 (B.13.5.6)
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This implies that the magnetic field must be parallel to the boundary.

For electrostalic problem, it is easily seen that V(z,y) constant on the boundary
leads to the equation

£-VV=—(t,E.+t,E)=—-t-E=0 (B.13.5.7)
This implies that the electric field must be perpendicular to the houndary.

For the Neumann condition, the normal derivative of A(z,y) vanishes. This

gives the relation
8A 0A

n-VA = ’nzga? +ny-a—y =
But we know that B, = 84/8y and B, = —8A4/8z, and n, = —t, and ny, = t,.
This gives us the relation

0. (B.13.5.8)

fi-VA=tB,+t,B,=t-B=0 (B.13.5.9)
This implies that the magnetic field must be perpendicular to the boundary.

For electrostalic problem, it is easily seen that fi - VV(z,y) = 0 leads to the
sequence of equations
a vV =l 40, 0 (B.13.5.10)
- =Np—— + Ny = .13.5.
Oz Y 8y ’

and )
n-VV =—(n.E,+n,E,)=-1-E=0 (B.13.5.11)

This implies that the electric field mnust be parallel to the boundary. Table B.13.5.1
summarizes the results.

Table B.13.5.1. Implications of Dirichlet and Neumann Conditions

Field Dirichlet Neumann

'Magnetic parallel to boundary perpendicular to boundary

Electrostatic perpendicular to boundary parallel to boundary

In cases of high symmetry these conditions can hold exactly. There are two
main types of two-dimensional symmetry — reflection and rotation. Under each of
these types there are two subtypes — electric currents change sign or they do not.

Figure B.13.5.1 shows the two types of reflection symmetry and the directions of
the field lines. The plane between two equal and opposite currents, which is called
a separatrix, has fi - B = 0 hence implies Dirichlet boundary conditions. The plane
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between currents of the same sign, which is called an “even line”, is a Neumann
boundary. This assumes of course that the line coincides with one of the boundary

lines for the problem.
— EVEN LINE
SEPARATRIX ~

)

@ v

0ODD SYMMETRY EVEN SYMMETRY

Figure B.13.5.1: The direction of magnetic field lines for two types of reflection
symmetry: separatrix and even line.

If there is rotational symmetry, this has the effect of introducing angular arrays
of separatrices and/or even lines as illustrated in Fig. B.13.5.2. If any of these spe-
cial lines corresponds to a boundary for the problem, then one can use the rule:

Separatrix — Dirichlet
Even line — Neumann.

When there is iron in the problem, it is generallly true that the field inside the
iron near the surface is parallel to the surface. This means that if an iron boundary
coincides with a problem boundary, then the boundary condition is Dirichlet.

When one cannot use symmetry or iron boundaries, then the allowed boundary
conditions will only be approximate. 1t is still useful to look for separatrices be-
tween currents of different sign. When a separatrix hits a problem boundary, that
boundary tends to be nearly a Dirichlet boundary. See Fig. B.13.5.3. Another use-
ful fact is that the field outside an iron surface tends to be normal to that surface.
This may help in guessing the appropriate, approximate boundary conditions.
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-

Figure B.13.5.2: Rotational symmetry introduces arrays of reflection lines. In this
example only one half of the upper right rectangle is required to define the probeln,
and hence the 45° line will become a problem boundary.

SEPARATRIX S 7 TOP

——__ 1]

/57

Yo
4
)
74
nY

oo V. Took
J\/\) ee
360 eeg
: GOIL __ COIL
AN EVEN i
REFLEGTION LINE

Figure B.13.5.3: Use of a separtrix to decide on an approximate boundary condition.
The separatrix S intersects the boundary T'OP, hence the field will be approximately
parallel to TOP, and hence Dirichlet.
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B.13.5.2 Meshes

(This subsection will discuss the numbering of the mesh points and discuss the
order in which the iteration scheme sweeps through the lattice.)



January 7, 1987 PART B CHAPTER 13 SECTION 6 61

B.13.6 Numerical methods used in POISSON and
PANDIRA

The customary way to solve the magnetostatic problem would be to map the
interior region with a mesh and then solve for the vector potential at these mesh
points using a discretized form of Poisson’s Equation and the necessary boundary
conditions. The procedure used in this program does not directly solve Poisson’s
Equation; rather, it solves a form of Ampere’s Law over a closed region made up of
triangular plates. The procedure is iterative using either a successive over-relaxation
algorithm (POISSON) or a direct method (PANDIRA) combined with an iterative
correction scheme for the reluctivity function to obtain an estimate of the solution.
The solution is the vector potential at each mesh point (vertices of the triangles).

The description of the procedure will be divided into the following sections:
B.13.6.1 Mesh formulation;
B.13.6.2 Numerical procedure for calculating the vector potential at a mesh
point;
B.13.6.3 Boundary conditions;
B.13.6.4 Calculations of fields;
B.13.6.5 Computer algorithin using SOR method,;
B.13.6.6 Computer algorithmn using the direct method.

B.13.6.1 Mesh formulation.

An irregular triangular mnesh is generated over the region, within the boundaries
conforming to the following rules:

1. The triangulation will form a regular topology; that is, it is topologically
equivalent to an equilateral triangle array in which six triangles meet at every
interior mesh point;

2. Any part of the interior that is unique or has the same attributes such as
current density, permeability, etc., must be set-up as an interior subregion;

3. Any triangle along an external boundary or boundary of a closed interior
region will have two of its vertices lying on these boundary defining lines.
These boundaries will then be described by piece-wise linear segments which
are the sides of the interpolating triangles.

Since any polygonal region can be triangulated, the method can be applied to
regions of any shape and will produce a mesh in which boundaries and interfaces
lie entirely on mesh lines. In those areas where the gradient of the vector potential
is expected to be large the triangles should be made more dense.
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B.13.6.2 Numerical procedure for calculating vector potentials
at a mesh point.

The procedure solves for the vector potential, A(r), at each mesh point using a
relationship derived from Ampere’s Law,

fc H(r) - dl = /S J(r) - fida. (B.13.6.1)

where H(r) is the magnetic field; J(r) is the current density; ris r. &, 47, &,+7, &;;
fi is a unit vector normal to the surface S; C is the contour of the line integral
enclosing the surface S; and S is the surface enclosed by the contour C. The

n
A

2
‘ v C
'—"(‘i'l

Figure B.13.6.1: Relation between the surface and contour elements in Eq.(B.13.6.1)

solution is iterative in nature in that the calculated value of the vector potential at
a mesh point is a function of previous estimates and arbitrary initializations. The
following approximations are made for each triangular area:

1. The vector potential is linear over a triangle;
2. A reluctivity is associaled with each triangle and is constant over it;

3. A current density is associated with each triangle and is constant over it.

Since Eq. (B.13.6.1) must be expressed in terms of the vector potential A(r), the
first step is to express the magnetic field H(r) in terms of the reluctivity v(|B(r)|)
and the magnetic induction B(r). This relationship is

v(IB(r)[) B(r) = poH(r). (B.13.6.2)
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By substituting this into Eq.(B.13.6.1), Ampere’s Law becomes

fc +(IB(r))) B(r) - dl = o /s I(r) - fida. (B.13.6.3)

The final step is to use the fact that the magnetic induction B(r) is the curl of the
vector potential, namely,

B(r) = V x A(r). (B.13.6.4)
Substituting this into Eq.(B.13.6.3) give the required form

fc Y(BE))V x A(r) - dl = o fs 3(r) - fda. (B.13.6.5)
Next the curl is expanded in terms of its components, giving

B4, aAy)é, (aA,, aAz)- (aAy 8A.,
_ . 9%:) ¢, -

8y 0z 8z Oz 8z 8y

V x A(r) = ( ) &.. (B.13.6.6)

The induction B(r) is by definition in the simulation a 2-dimensional vector
lying in the z-y plane. The vector potential A(r) can then be chosen normal to this
plane with only the A,-component being non-zero,

A, =A, =0, (B.13.6.7)

A necessary condition to e satisfied for Poisson’s equation, in addition to Ampere’s
Law, is that of the Coulomb gauge choice,

V. A(r) =0, (B.13.6.8)

&%

which can be expanded in the following form,

8A, 04, 0A,
+

el (B.13.6.9)
Since Eq.(B.13.6.7) implies 5
0A; 04,
5= o =Y (B.13.6.10)
the only remaining condition from E¢.(B.13.6.9) is
0A,
5 = 0. (B.13.6.11)

This is equivalent to the statement that the A, is not a function of z. By making
the position vector r a 2-dimensional vector in the z-y plane, the Coulomb gauge
condition has been satisfied. Henceforth it will be understood that

r=r,&; +7,€, (B.13.6.12)
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It follows that

0A., OA., .
B=Vx A(r) = ‘a—y— €, — oz €y, (B.l3.6.13)
and Eq. (B.13.6.5) becomes
0A,, O0A: .| -, .
f;’yﬂB(r)l) [—a—y- &~ 5o ey] - dl _uo‘/;.J(r) fida. (B.13.6.14)

This section will only handle the development in Cartesian coordinates; the
theory in cylindrical coordinates is analogous.

Before continuing with this derivation, a brief discussion of the complex notation
used in place of vector notation by the authors of POISSON would be helpful. A
two-dimensional vector

a=a,&, + a,é, (B.13.6.15)

can be represented as a complex number
0= ay+iay. (B.13.6.16)

The complex conjugate of a is defined by the relation

a' = day —1iay. (B.13.6.17)

Given two vectors
a=a,8& +a,8é, . (B.13.6.18)
b=">0,8&,+b,¢é,, (B.13.6.19)

and their complex representation
a=a;+1iay (B.13.6.20)

b= b, +iby, (B.13.6.21)

then the product a*b can be writien as
a*b = (ar — tay)(bs + by) = azb, + ayby + 2 (azby — ayb.) (B.13.6.22)
and contains both the scalar and vector products of the vectors, namely,
a - b=asb; +ayb, (B.13.6.23)

a X b = (azb, — ayb;)&.. (B.13.6.24)

Hence we can write
a’b=a-b+ié&; - (axb), (B.13.6.25)
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and it follows that

a - b = Re{a"b}. (B.13.6.26)

The above equation can be used to get the integrand on the left-hand side of
Eq.(B.13.6.14) into a tractable form. “

Corresponding to the relationship between the vector B(r) and the vector potential,

0A 04, .

B(r) = —a-y— €, — —6—:13— ey, (B.13.6.27)
one can deﬁ1.1e a complex function
' ' Bla,y) = 2z 1 (94 (B.13.6.28)
’y - ay ? am [} . 0.
and its complex conjugate 54 94
B(ay) = 5 +ig, (B.13.6.29)

The vector dl will not be represented as a sum of its components but rather as
a comnplex number dl. The logic for this will be seen later in the analysis.

The integrand, excluding the 4(|B(r)|) term, in this complex notation is

) 84, . 0A.
B(r) - dl = Re{B"dl} = Re{[ 5 i ] dl}. (B.13.6.30)

The potential A, can be viewed as a scalar function of the complex number z,

namely, :
A:(z,y) = A.(2) = Az +iy). (B.13.6.31)

It is also useful to think of A, as a function of both z and 2* since
z = %(z +2*) and y = %(z‘ — z). (B.13.6.32)

Now evaluate the partial derivatives 8A,(z,z*)/8z and 9A.(z,2*)/8y.
It is easy to see that

0A.(2,2")  0A.(z,2%) 0z + 0A.(z,2*) 0z*

Oz - 0z oz 8z 8z’ (B.13.6.33)
and aA( ‘) aA( ‘)3 aA( o)a-
z\%, 2 =(2,2%) 0z .(2,2%) 82
= a3 . B.13.6.34
Because of the relations 5 ot
z z
o = B.13.6.35
Oz L Oz 1, ( )
z =1, and o —t, (B.13.6.36)




66 PART B CHAPTER 13 SECTION 6 January 7, 1987

it follows that the partial derivatives can be expressed as

0A.(z,2") (0 0 .
r (z")z + 62‘) A(z,2") (B.13.6.37)
and 8A.(z,2") 8 8
z\2,2 1Y -
. i (62 8z‘> A.(z,2°). (B.13.6.38)

Substituting these relations into Eq.(B.13.6.29) gives

. . 0 15} 2 [0 b5} .
B'(z,y) =1 [az + Oz* —t (82 - az‘)] A:(2,2%)

8A.(z, 2"
B*(z,y) = 2 —-:é%z—l. (B.13.6.39)

Equation (B.13.6.30), with this new notation, becomes

or

B(r) - dl = Re {27: ai;gﬂdz} . (B.13.6.40)

A few words about the intended numerical scheme are appropriate at this point.
The vector potential at each mesh point, including the boundary points, is calcu-
lated as a function of the following atiributes of the six surrounding triangles:

1. The magnitude and position of the vector potentials at each of the surrounding
six mesh points,

2. The area of each of these triangles,
3. The current density of each of these triangles,

4. The reluctivity of each of these triangles.

The geometry used to calculated the vector potential A, is shown in Fig. B.13.6.2.

For notational convenience the following conventions are adopted for the remainder
of this section:

Ai = Az (z,;, z",;) and J,' = Jz (z.;, Z‘,’) .

Ampere’s Law is now applied to a contour around the point ¢ = 0. The contour
is not on the circumference of this hexagon but rather on a dodecagon whose cir-
cumference passes through the midpoints of each side shared by two triangles and
the respective centroids of each triangle. The path is shown in Fig. B.13.6.3.

The procedure for evaluating the integrals will be developed for one of the triangles
shown in Fig.B.13.6.4, designated “triangle 2”, and then generalized for all six
triangles forming the dodecagon shown in Fig.B.13.6.3.
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Figure B.13.6.2: Definition of physical quantities relative to the mesh geometry.
A; is the vector potential at mesh point i; v;’s are reluctivities; J;’s are current
densitites; and w;’s are coupling parameters.

Figure B.13.6.3: Path of contour integration for Ampere’s Law.
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A Az(zzvzzo)

X

Figure B.13.6.4: The contour integration over the dodecahedron can be Lroken into
integrations over six quadrangles.

Ampere’s equation for the shaded portion of Fig. B.13.6.4 using the complex
notation, is given by

fc 72(|B(r)]) Re {22%—’} dl} = 1o Jg%z, (B.13.6.41)

where C is the path (po, p1, P2, P3, Po); @2 is the area of “triangle 27; J» is the normal
component of current density for “triangle 2”; «, is the reluctivity for “triangle 2”;
and po is 4 X 10~7 in rationalized MKS units.

To evaluate the left-hand side of Eq.(B.13.6.41), a functional relationship of the
vector potential over the triangle must be developed. The assumption of the pro-
gram is that the vector potential varies linearly over any triangle in the mesh. Using
the three-point form for the equation of a plane, an expression for the vector po-
tential at any point can be developed. The positions of the three vertices and their
respeciive vector potentials are used to determine the coefficients of the expression.
The three-point form can be written as the determinant,

zZ—2p Z"—Za A.—Ao
z—2 2z —z25 Ai— 4o |=0. (B.13.6.42)
20— 29 23— 2z5 Az—Ap

The plane in function space is pictured in Fig. B.13.6.5.

Expand this determinant and solve for A. Introduce the notation
AA] = A1 - Ao (B.13.6.43)
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A
7]
(z029")

Figure B.13.6.5: The vector potential A(z, 2*) is taken to be a linear function over
each triangle. The functional dependence is completely determined by the values
of A at the corners.

and
AAy = A — Ag. (B.13.6.44)

It can be shown that the determinant reduces to
(z — z0)(27 — 25)AAz + (22 — 20)(2* — z5) A A1 + (21 — 20)(25 — 25)(4A — Ap)
— (22 — 20)(27{ — 25)(A — Ao) — (2 — 20)(23 — 25)AA; — (21 — 2z0) (2" — 25)AA; = 0,

(B.13.6.45)
which can be solved for A, giving
A e poy BATI( = 20) (35 = 5) = (52 = 20) (= = %)
(21 — 20) (23 — 25) — (22 — 20) (21 — 20)
[AAs] (21 = 20) (=" = 55) = (2 = ) (5 — )] (B.13.6.40

(21 — 20) (25 — 25) — (22 — 20) (2} — 25)
Taking the origin at the coordinates (zg, z5) reduces Eq. (B.13.6.46) to
AA]Z; - AAgZ; -+ AAzZl — AAIZQ

2125 — 2221 2125 — 2327

A=A+ 2, (B.13.6.47)

or
A=Ag+Cz—-C"2* (B.13.6.48)

where

_ AAlz; - AAzZ{

zZ1 Z; - 25221.

C

(B.13.6.49)
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Using Eq.(B.13.6.47) it is an easy task to calculate

OA _ , _ Adiz— Dszt

Oz 225 — 2p27

(B.13.6.50)

Substituting this expression into Eq.(B.13.6.41) and making the assumption that
the reluctivity is constant, namely

~Y2(|B(r)|) = 2 = constant (B.13.6.51)

and is not a function of |B(r)|, the results are

fc 2 Re [(%AA‘ZZ — AAZZ‘) (dl)] = 1o 931 (B.13.6.52)

Z125 — 222}

Since the integrand is not a function of z it may be taken outside the integral sign.
The result is
AAzYy — A4z
+2Re [21. 1= 2t f dl] = nos 2. (B.13.6.53)

212% — 292"

Before evaluating the line integral it should be recalled that all six triangles will
be used in the final equation for Ag. The assumption is made that the effective B(r)
field on the common side of any two adjacent triangles is the average of the B(r)
fields in the two triangles. Therefore the line integrals, in the opposite directions,
along any of these common sides will cancel each other. This is illustrated in Fig.
B.13.6.6.

Triangles on the boundary will not have their path integrals canceled along
the boundary. Hence the advantage of this type of configuration implies that the
sum, over the entire problem area, of Ampere’s Law applied locally around each
mesh point is equal to Ampere’s Law applied around the boundary of the complete
problem. See Fig. B.13.6.7.

Returning to the geometry of Fig. B.13.6.4, this leaves the integration over the
open path C = (p1, p2, ps) where the points p; and p; have coordinates given by
the complex numbers

pr =2 ; i (B.13.6.54)
and +
A Z
ps == 2 (B.13.6.55)

The noncanceling part of the contour integral is

ﬁdl:/:duf:dz
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Figure B.13.6.6: 1t is assumed that the effective B(r) on common sides of of adjacent
triangles are the same and therefore the line integrals along these common sides will
cancel one another.

Right
Boundary

Lower Boundary

Figure B.13.6.7: The sum of contour integrals around each point adds up to a
contour integral around the whole region because of cancelation of interior contours.
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= (p2 — 1) + (p3 — p2)

=pz— N
_Z2+2 z1 + 29
2 2
29— 2
= (B.13.6.56)
Substituting this result into equation (13.6.53) gives the equation
,(AA.]_Z; - AA.QZ;) Zo — 2’1) asg
Y2 Re |i - A = poJs —. (B.13.6.57)
21 32 - 2221 3 )

In order to obtain the real part of the factor on the left-hand side, it is necessary
to express the positional variables z; and 2] in terms of the angles (8o, 8:,/3z) and
the side dimensions (dp,d;,dz) of the triangle shown in Fig. B.13.6.4. Begin by
evaluating the denominator, namely

z) zy — 23 21 (B.13.6.58)

The 2’s can be expressed in exponential form as follows:

z = doe™™ (B.13.6.59)

z} = dge™i (B.13.6.60)
25 = dy eilertho) (B.13.6.61)
2} = dlé-"(“l%). (B.13.6.62)

When these expressions are substituted into Eq.(B.13.6.58) the result is
21 2% — 22 2°1 = dpei®rdye @) _ g gilartho) g =i
= did, (e'iﬁ° — eiﬁ")
= —12d,d; sin (Bo) . (B.13.6.63)

Next evaluate the numerator,

1(AAy 25 — AA2z]) (22 — 1), (B.13.6.64)
using the relations
29— 21 = —do COSs (,BO - 011) + ‘Ldo sin (ﬂo — al)
= dpelmteah), (B.13.6.65)
2 (22 — 21) = dpe™™ + doel(mtonh)

= —dodze™ P, (B.13.6.66)
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23 (22 — z) = dy e 4P | doet (4 oy — 1)
= —dod; 2. (B.13.6.67)
We find that Eq.(B.13.6.64) can be written,

i(AA12] — Adr2}) (22 — 21) =i (Adydodye® + Adydodre™) . (B.13.6.68)

Having evaluated both the numerator and denominator of Eq. (B.13.6.57), we
can combine our results to obtain the following,

- [, (AAyz — AAyz}) (2, — zl)] R r (AArdod; e + A Azdodze_wx)}

2125 — Zp23

—12d,d; sin (Bo)

— Re { [AA1dod;] [cos (B2) + isin (,32)] + [AAadod,] [cos (—f1) + i sin (—54)] }
—2d,d; sin (fo)

- AAidod; cos ()  AAadgd; cos ()

2d1d3 sin (ﬂo) 2dl d2 sin (,BU)
_ AAjcos(f2)sin(B) AAzcos(Br) sin(fSo)
T 2sin (Bo) sin (B2) "~ 2sin (Bo) sin(By) (B.13.6.69)
where d in (Bo)
sin (Bo
TGy (B.13.6.70)
and

do _ sin(fo)

dy  sin(Bz)

The final expression is in terms of the cotangents of the interior angles and the
vector potentials at the vertices, namely,

(B.13.6.71)

e Z(AA],ZE et AAZZI‘) (22 ol 21)

2125 — Zp2]

R = —% [AA; cot (B2) + AAs cot (6y))

= _é {[A1 — Ad] [cot (B2)] + [Az — Ao] [cot (B1)]}

{[Aq] [cot (B1) + cot (B2)] — A1 cot (B2) — Az cot (B1)} - (B.13.6.72)

DN =
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Substituting this result into Eq.(B.13.6.57) gives the relation

752' {[Ao] [COt (ﬂl) + cot (ﬁz)] — A1 cot (,32) - A2 [COt (ﬂ]_)]} = /.Lojz%g. (B.136.73)

Change the angle representation from B’s to ’s as shown in Fig. B.13.6.2. The
result is

1’23 {[Ao] [cot (8a) -+ cot (84)] — Ay cot (85) — Ay [cot (65)]} = #,on‘;l. (B.13.6.74)

The complete line integral around the dodecagon is the sum of the partial paths
over each triangle. See Fig. B.13.6.3. The result is

2 {{40] oot (61) + cot ()] — Ax cot (61) — 4> cot (65)}
+‘§ {{ o] [cot (8s) + cot (8s)] — Az cot (6s) — 4y cot (6a)}
+§ {[Ao] [cot (8s) + cot (8s)] — As cot (85) — As cot (66)}

+

+% {[Ao] [cot (f11) + cot (812)] — Ag cot (6y;) — As cot (612) }

.6
- ESE Y Jias. (B.13.6.75)

Solve for Ap using the following “coupling” coeflicient notations,

=1
1

w1 =3 [71 cot (81) + 2 cot (64)]
) .

wy =3 [v2 cot (83) + 3 cot (66)]

1
Wz = -2" [73 COt (05) + Y4 COt- (08)]

1
we = 3 [v6 cot (611) + 1 cot (62)] .

The final result is
_ T Awi+ 8 5L, Jios

.13.6.
S (B.13.6.76)

Ao
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B.13.6.3 Boundary conditions.

Boundary conditions are divided into two classes:

1) Dirichlet - the value of the solution variable is specified at a boundary;
2) Neumann - the value of the normal derivative of the solution variable is
specified at a boundary.

Only one of these boundary conditions can be qualified over a specified portion of
the boundary.

Dirichlet boundary: Any boundary or portion of a boundary that is specified as
Dirichlet has a value of the solution variable, A, at each mesh point on the bound-
ary. The default value at these mesh points is zero. The user may input non-zero
values, if necessary, for the problem definition.

Neumann boundary: In the case of the Neumann boundary condition, the only al-
lowed value, at the mesh points along this boundary, for the normal derivative of
the potential A4, is zero, which can be written

0A; | -
517,_ €n = 0, » (B1367l)

where &y, is the unit vector normal to the boundary.

Since the program, computationally speaking, uses only Dirichlet values at mesh
points on the boundary, any boundary or boundary segment that is designated as
Neumann must have an appropriate set of Dirichlet values calculated for these
points. The procedure is the same one that is used for calculating the vector po-
tentials A, over the interior mesh points with the exception that the values of the
reluctivities associated with those triangles lying outside the boundary are set equal
to zero. Each Neumann boundary point must be surrounded by 6 triangles as in
Fig. B.13.6.8. This is identical to the geometrical structure in Fig. B.13.6.3 with
the exception that the path integral will not lie in the triangles outside the bound-
ary nor along the boundary but will follow the contour defined in Fig. B.13.6.8.

It is required to show that the path integral along this Neumann boundary is
zero. First divide the closed path of integration into three parts. This will include
the boundary even though it will be later shown that the path integral along this
segment is zero.
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Interior
Region

Boundary

Figure B.13.6.8: Path of contour integration on a Neumann bhoundary is C = path
(pla P2y -y pG,P::')-

f. WB@NBE) - d+ § A(BEDBE) - di+ £ ¥(BE)B() - dl =

o /s I(r) - Ada (B.13.6.78)

where C is the path (po,p1); Ca is the path (p1,p2,...,p6,P7); and Cz is the path
(P7, Po)-

Recalling that the vector functions B(r) and A(r) are 2-dimensional, we write
B(r) = Bn én + Bt ét (B.13.6.79)
and

A(r) = An én + At é{; + Az éz' (B.13.6-80)

where &, is the unit vector normal to the boundary, and &, is the unit vector tangent
to the boundary.

Using Eq.(B.13.6.4), namely,
B(r) = V x A(r), (B.13.6.81)
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and expanding the curl in this reference system, one obtains the result

8A, OA). (04, OA,\. [8A, 0A.
B =\ — 5 )% ‘

The reasoning is still valid, as in Eq. (B.13.6.7), that the components of A(r) in
the two-dimensional plane are equal to zero, hence

0z on

=~ 5 )e,. (B.13.6.82)

Ap=A=0 - (B.13.6.83)

The result of equating the coefficients of like unit vectors is

OA.
B.=— (B.13.6.84)
and
0A,
By=——=. (B.13.6.85)
Since at a Neumann boundary 4
= =0, (B.13.6.86)
then
B, =0. (B.13.6.87)
Hence along the Neumann boundary
B(r) - dl= B,dl =0. (B.13.6.88)

The path integrals along a Neumann boundary segments will then be zero, that is,

fci Y(B(x)|) B(r) - dl = fc (B B() - dl=o.
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B.13.6.4 Calculation of fields.

The magnetic induction, B(r), by definition is a 2-dimensional vector function
lying in the zy-plane.
B(r) = B, &, + B,é&,, . (B.13.6.89)

and is equal to the curl of the vector potential A(r)

84, . OA, .
B9 & — 5. & (B.13.6.90)

B(r) = V x A(r) =

Equating the coefficients of like unit vectors of the above equation with those of the
magnetic induction B(r) from E¢.(B.13.6.89) give the required equations describing
the components of the magnetic induction over each triangle in terms of the only
non-zero component of the vector potential, A,. Since the vector potential is linear
over any triangle the magnetic induction, B(r) will be constant over that triangle.
The partial derivatives

OA,
= B.13.6.9
B By (B.1 1)
and oA
B, = ——- (B.13.6.92)

can then be evaluated, analytically, for any triangle in the mesh by using the po-
sitions, (z,y), of the three vertices and their corresponding values for the vector
potential component, A, at these points. The following equations are the results
of evaluating Eq. B.13.6.37 and Eq. B.13.6.38 using Eq. B.13.6.47:

B, A= _ (fa = Ao)us — (i — Aoz (B.13.6.93)
Oy T1Y2 — T2Y1
8A, (Ay— Ay ~ (4, —A

B, = 04 _ (A= Aon = (4 0)yz (B.13.6.94)
Oz T1Y2 — T2Y1

The origin for each triangle in the above equnations is taken at the coordinates
(zo,¥0) = (0,0) for convenience.
B.13.6.5 Computer algorithm using SOR method.

In the development of the algorithm that solves for the vector potential, A(r),
the assumption was made that the reluctivity v is constant over a triangle and not
a function of the magnetic induction B(r), namely

7:(|B(r)|) = ¥: = constant. (B.13.6.95)

This was an expedient which now must be dealt with. An iterative procedure is
used by the program that handles this problem. It solves for the vector potential
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one mesh point at a time while also modifying the reluctivities of the surrounding
six triangles. Use Fig. B.13.6.2 as a reference for the procedure steps. These steps
are as follows:

1. Given the estimates, both initialized and calculated, for the vector poten-
tial to be calculated, Ao, as well as those on the six surrounding mesh points,
Ai, As, ..., As, Ag, calculate new estimates of the reluctivities vy, vz, ..., s, Y6
associated with these six triangles . Use these to the calculate new estimates
of the coupling coeflicients, w;"*, w,™¥, ..., ws™", we™¥. Now underrelax
{these values, _

w™! = qw™ + (1 — q)w;" (B.13.6.96)

where 0 < g < 1.

2. Calculate a new estimate of the vector potential, 4, using a successive over-
relaxation (SOR) technique,

3  ak.ntl | 8  pktl ntl 6
AR gl [ 2z Aj W™ + Y AW R YD Jia
0 — 440

—A’(j

(B.13.6.97)
where 0 < w < 2. The superscript index k in the above equation is a sweep
counter of estimates and is not incremented until a convergence criterion for
the vector potential is met.

3. Repeat steps 1 and 2 until a convergence criterion is met.

This procedure is followed for each mesh point as it sequentially sweeps across the
mesh.

B.13.6.6 Computer algorithm using the direct method.

A direct method was developed for the program PANDIRA. It is direct in the
sense that estimates of the vector potential for all the interior mesh points are calcu-
lated simultaneously. The procedure is still overall iterative in that the reluctivities
of each triangle must be first estimated before the vector potentials can be calcu-
lated directly and then these two steps repeated again until a convergence criterion
is met. The procedure is as follows:

1. Given the estimates, both initialized and calculated, for the vector potentials
on the boundaries and well as all the interior mesh points, calculate new
estimates of the reluctivities, v;, for all the interior triangles. Use these to the
calculate new estimates of the coupling coefficients, w;"**. Now underrelax
these values, using the relation

'win+1 =gq w™ (1 _ Q)win (B.13.6.98)
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where 0 < ¢ < 1.

9. Calculate new estimates of the vector potentials using a direct method that
takes advantage of the block tridiagonal form of the matrix. The number of
equations is equal to the number of interior points to be solved. The follow-
ing equation, referenced to Fig. B.13.6.2, can be used to. setup these linear
algebraic equations which then can be solved simultaneously. The resulling
equalion is

Yo, w4 25t i

AO = el L=
6 . 1
D iy Wit

(B.13.6.99)

3. Repeat steps 1 and 2 until a convergence criterion is met.
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B.13.7 Table of Problem Constants in Numerical
Order

Constant Default Symbol Function

CON(1) 0 KPROB KPROB is used by LATTICE to differentiate between a
SUPERFISH and a POISSON-PANDIRA run. It is set to 0
or 1 in LATTICE, depending on the absence or presence of a
character in the first position of the title line. KPROB = 0
means POISSON or PANDIRA. KPROB # 0 means
SUPERFISH.

CON(2) none  NREG Number of regions in the prohlem. Passed by AUTOMESH
to LATTICE and from LATTICE to POISSON or
PANDIRA. Note: NREG must be less than 32.

CON(3) none LMAX Number of points in the L (vertical) direction in the logical
mesh. Determined in LATTICE.

CON(4) none KMAX Number of points in the K (horizontal) directon in the
logical mesh. Determined in LAT'TICE.

CON(5) none IMAX IMAX = KMAX + 2

CON({(8) ~2 MODE Option indicator for permeability in matter. MODE = -2
indicates “infinite” permesbility (iron); MODE = -1 indi-
cates permeability is finite, constant and defined by
CON(10); MODE = 0 indicates permesability is finite, not
constant, and the values will be taken from the internsl table
or tables supplied by the user. Mode = 0 can also be used to
read in up to 4 values of constant ¥ = 1./p1. See Chap. B.5
for more information.

CON(7) 1.0 STACK Stacking or fill factor for iron regions. The default value of
STACK will be overwritten for regions with MAT > 1 when
tables are entered by changing CON(18). See Chap. B.5

CON(8) 1.0E+15 BDES A flag for changing the value of the magnetic field B at
location (KBZERO = CON(40), LBZERO = CON(41)). If
BDES is not equal to its default value, the electric current
factor XJFACT = CON(66) will be adjusted so that |B| =
BDES within a tolerance XJTOL = CON(67). If BDES is
left at its default value, no adjustment is made.

CON(9) 1.0 CONV  Conversion factor for length units. Default units are centi-
meters. Set CONV equal to the number of centimeters per
unit desired. CONV must be be changed in LATTICE.

CON(10) 0.004 FIXGAM The value of ¥ = 1/(relative permeability) when the user has
set CON(6) = MODE = ~-1. FIXGAM is also used to
initialize a table for MODE = 0.
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Table of Problem Constants in Numerical Order (cont.)

Constant Default Symbol

Function

CON(11)

CON(12)

CON(13)

CON(14)

CON(15)

CON(16)

CON(17)

CON(18)

CON(19)

0

0

none

none

NAIR

NFE

NINTER

none

NPINP

NBND

NSPL

NPERM

ICYLIN

Number of “air” points. The default is an initial value.
LATTICE counts the number of mesh points in the air
regions of the magnet and records the vatue in CON(11).
The user has no control of this CON.

Number of “iron” points. The default is an initial value.
LATTICE counts the number of mesh points in the iron
regions of the magnet and records the value in CON(12).
The user has no control of this CON.

Number of interface points. The default is an initial value.
An interface point is a point whose nearest neighbors are a
mixture of air points and iron points. See CON(11) and
CON(12). The user has no control of this CON.

Not used in POISSON or PANDIRA problems.

Total number of points in the problem. NPINP = NAIR +
NFE + NINTER + NBND + NSPL. The user has no
control of this CON.

Number of Dirichlet boundary points. Default is an initial
value. LATTICE counts these points and stores the number
in NBND. The user has no control of this CON.

Number of points held at special fixed potential values.
Default is an initial value. POISSON counts' these points

and stores the number in NSPL. The user has no control of
this CON.

If positive, this is the number of permeability tables to be
read in as data by POISSON or PANDIRA. If negative, it is
the number of stacking factors to be used with the internal
permeability table or up to 4 different v's if CON(6) =
MODE = —1. After entering a nonzero value of NPERM, the
action of the code is complex. See Sec. B.5.4 for details.

A flag indicating the coordinate system to be used. ICYLIN
= 1 indicates cylindrical coordinates using (horizontal, verti-
cal) = (R, Z). Note that these axes are interchanged relative
to those used in SUPERFISH. ICYLIN = 0 indicates
two-dimensional (X,Y) coordinates. CON(19) must be
changed in POISSON, PANDIRA, MIRT, or earlier.
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Table of Problem Constants in Numerical Order (cont.)

Coustant Default Symbol

Function

CON(20)

CON(21)

CON(22)

CON(23)

CON(24)

CON(25)

CON(26)

CON(27)

CON(28)

CON(29)

0

INPUTA

NBSUP

NBSLO

NBSRT

NBSLF

NAMAX

NWMAX

NGMAX

NGSAM

LIMTIM

The number of special fixed potential values to be read in as
data by POISSON or PANDIRA. When INPUTA is set, the
code will write “NUMBER OF FIXED POTENTIAL
VALUES TO BE READ IN (INPUTA).” The user is now
expected to enter INPUTA number of lines of the form: “K
L POT” where (K,L) are the logical mesh coordinates of the
point and POT is the value of the potential in the appro-
priate units for the problem.

An indicator for the type of boundary conditions on the
upper boundary. NBSUP = 0 indicates a Dirichlet boundary
condition, which means magnetic field lines are parallel to
the boundary line. NBSUP = 1 indicates a Neumann boun-
dary condition, which means that the magnetic field lines are
perpendicular to the boundary line. The default value that
was passed by AUTOMESH is shown. AUTOMESH will
pass the other value if IBOUND on the REG input line is
used. See Sec. B.3.3.

An indicator for the type of boundary condition on the lower
boundary. See CON(21) for description. The AUTOMESH
default is shown. (The default from LATTICE is 0.)

An indicator for the type of boundary condition on the right
boundary. See CON(21) for description.

An indicator for the type of boundary condition on the left
boundary. See CON(21) for description.

Number of elements in the GTU and GTL vectors. The user
has no control of this CON.

Number of points for recalculating couplings. The user has
no control of this CON.

Number of points for recalculating gammas. User has no
control of this CON.

Number of points for recalculating gammas with NM6 =
NM1. The user has no control of this CON.

An indicator used to check the remaining time in the run.
Deactivated by comment in both POISSON and PANDIRA.
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Table of Problem Constants in Numerical Order (cont.)

Constant Default Symbol Function

CON(30) 100 000 MAXCY Maximum number of iteration cycles. In POISSON the
default is as shown; in PANDIRA the default is 20.

CON(31) 0 IPRFQ The print frequency during POISSON interation cycles.
IPRFQ = 0 indicates that the iteration information will be
printed only on the first and last cycle. Input values of
IPRFQ must be integer-multiples of IVERG = CON(87).

CON(32) 0 IPRINT An indicator for print options: IPRINT = -1 in LATTICE
writes the (X, Y) coordinates of mesh points to OUTLAT.
IPRINT = 1 (or any odd integer) writes a map of the
solution matrix A into OUTPOI or OUTPAN. If IPRINT =
2, POISSON constructs and writes the gamma vs B table to
OUTPOI; POISSON and PANDIRA write a map of |B| in
the iron triangles. IF IPRINT = 4, POISSON and
PANDIRA write field components (B, By) in the iron
region triangles into OUTPOI or OUTPAN. Any combin-
ation of these three write options is available by summing
the IPRINT values. For example, IPRINT = 7 (1 + 2 + 4)
will give all three options. °

CON(33) none none  Not used in POISSON or PANDIRA,

CON(34) -1 INACT An indicator to allow the user to interact with the iteration
during POISSON or PANDIRA. If INACT > 1, the calcu-
lation is stopped at intervals and the user is asked to type:
“GO”, “NQ”, or “IN”. If “GO”, iteration continues; if “NO”,
iteration stops and final results are written; if “IN”, user is
asked for new values of CON’s.

CON(35) 0 NODMP An indicator conirolling the write to TAPE35. If NODMP =
0, a dutnp is written; if NODMP # 0, no dump is written.

CON(36) 0 IRNDMP Not used in POISSON or PANDIRA. In MIRT IRNDMP =
1 causes the code to read from two dumps on TAPE35 when
doing either gamuma = 0 or gamma finite optimizations.

CON(37) 1 MAP A parameter in the conformal transformation W =
Z¥*MAP/(MAP*RZERO **(MAP-1). In LATTICE this will
cause a transformation of the current density; in POISSON
or PANDIRA the permeability is transformed and the fields
are calculated in both the original and transformed geome-
tries. For more information on the use of conformal trans-
formations, see Sec. B.13.4.
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Table of Problem Constants in Numerical Order (cont.)

Constant Default Symbol Function

CON(38) 0.0 XORG The real part of the complex number Z0 used to specify the
origin in the polynomial expansion for the magnetic poten-
tial A(X,Y) = Re[EC,, * (Z — Z0) % ¥n]. The dimension of
(!ON(38) is centimeters; values are automatically multiplied
by CON(9) = CONV to get XORG and YORG. Note: For
cylindrical coordinates, CON(38) is always zero. For more
information on this, see Secs. B.5.3 and B.13.3.

CON(39) 0.0 YORG The imaginary part of the complex number Z0. See
CON(38) for further description.

CON(40) 1 KBZERO The K logical coordinate of the point at which BDES =
CON(8) is specified.

CON(41) 1 LBZERO The L logical coordinate of the point at which BDES =
C'ON(8) is specified.

CON(42) 1 KMIN  The lower K bound of the region in which the ficld and its
gradient are to be calculated at each mesh point.

CON(43) KMAX KTOP The upper K bound of the region in which the field and its
gradient are to be calculated at each mesh point. If the user
prefers to specify physical limits to the region, then KXTOP is
used to determine DX. See CON(54) through CON(57).

CON(44) 1 LMIN  The lower I, bound of the region in which the field and its
gradient are to be calculated at each mesh point.

CON(45) 1 LTOP The upper L bound of the region in which the field and its
gradient are to be calculated at each mesh point. If the user
prefers to specify physical limits to the region, then LTOP is
used to determine DY. See CON(54) through CON(57).

CON(46) 2 ITYPE A constant specifying the symmetry of the problem and used
to determine which C,, terms appear in the harmonic analy-
sis of the complex potential function and whether C, is real,
imaginary or complex. For further discussion see Secs. B.5.3
and B.13.3. For problems with cartesian coordinates:
ITYPE = 1 means no symmetry, ITYPE = 2 means nmid-
plane symmetry, ITYPE = 3 means elliptical aperture quad,
ITYPE = 4 means symmetrical quad, ITYPE = 5 means
skew elliptical aperture quad, ITYPE = 6 means

85
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Table of Problem Constants in Numerical Order (cont.)

Constant Default Symbol Function

CON(46) (cont.) symmetrical “H” dipole or elliptical aperture sexupole,
ITYPE = 7 means symmctrical sextupole, ITYPE = 8
means elliptical aperture octupole, I'T'YPE = 9 means
symmetrical octupole. For all of the above symmetry codes
except ITYPE = 1 or 5, field lines are perpendicular to the
X-axis. For I'TYPE = 5, the X-axis is a field line.

For vector potentials in cylindrical coordinates: ITYPE = 1
means no symmetry, I'TYPE = 2 means midplane symmetry
and the magnetic field lines are perpendicular to the R-axis.

For scalar potentials in cylindrical coordinates: TTYPE = 1
means no symmmetry, ITYPE = 2 means midplane symmetry
aud the lines of constant potential are perpendicular to the
R-axis, ITYPE = 3 means micdplane symmetry and the
R-axis is a line of constant potential.

CON(47) 0.125 w2 The weight factor for the second nearest neighbors to a given
lattice point in the mesh; W2ND = VW2, It is used in the
determination of the C,’s in the harmonic expansion of the
potentials. See Secs. B.5.3 and B.13.2.

CON(48) 1 ISECND An indicator telling the program to use second nearest
neighbors in determining the C,,’s in the harmonic expansion
of the potentials. ISECND = 0 means use first neighbors
only; ISECND = 1 means use 1st and 2nd nearést neighbors.

CON(49) 0 NFIL  The number of current filament values to be read in. If NFIL
# 0 the program will print “NUMBER OF CURRENT
FILAMENT VALUES TO BE READ IN = (NFIL)". The
user is expected to type NFIL lines of the form: K L CFIL.
K and L are the logical mesh coordinates of the filament and
CFIL is the current in the filament.

CON(50) 100000 IHDL An indicator used in POISSON only to determine the num-
ber of cycles between making quasi-integrals of H - dl around
the Dirichlet boundary. Making corrections to the solution
matrix based on the value of this integral sometimes speeds
the convergence, particularly for non-symmetrical “H”
magnets.

CON(51) 0 NPONTS In LATTICE this is the number of unknown relaxation
points in the mesh. In POISSON and PANDIRA: NPONTS
= NAIR + NINTER if MODE < —2; NPONTS = NAIR +
NINTER + NFE if MODE > -2
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Table of Problemn Constants in Numerical Order (cont.)

Constant Default Symbol Function

CON(52) 0.001 OMEGADO or A parameter used in calculating overrelaxation factors in
OMEGA LATTICE and POISSON.

CON(53) 25 IRMAX  An index for checking the progress of the relaxation process
in LATTICE; not used in POISSON or PANDIRA.

CON(54) 0.0 XMIN CON(54) through CON(57) are used to redefine the region
over which the field and its gradient are calculated. If
CON(54) through CON(57) and CON(42) through CON(45)
are left at their default values, then the field and its gradient
are calculated only along the horizontal axis. The user can
define a larger region. XMIN is the lower X bound of the
redefined region.

CON(55) 0.0 XMAX  The upper X bonnd of the region over which the field and its
gradient are calculated. The quantitics are calculated on a
grid. The grid step DX is specified by DX = (XMAX -
XMIN)/(KTOP - 1), where KTOP = CON(43).

CON(s6) 0.0 YMIN  The lower Y bound of the region over which the field and its
gradient are calculated. See CON(54).

CON(57) 0.0 YMAX  The upper Y bound of the region over which the field and its
gradient are calculated. The quantities are calculated on a
grid. The grid step DY is specified by DY = (YMAX -
YMIN)/(LTOP - 1), where LTOP = CON(45). See
CON(54).

CON(58) 0 IBOUT A parameter controlling a phantom output file for POISSON
or PANDIRA. At present, IBOUT = 1 will cause your run to
abort because of a write to an unassigned file. IBOUT has
been deactivated by a “c” in column 1 of statements involv-
ing IBOUT.

CON(59) ] PI PI is given to machine accuracy, namely, P1 = 4. *
ATAN(L).

CON(60) 0.0 SPOSG  Total positive current at generation; used only in LATTICE.
The user has no control of this CON,

CON(61) 0.0 SNEGG  Total negative current at generation; used only in LATTICE.
The user has no control of this CON.

CON(62) 0.0 STOTG  Total current in problem at generation; used only in
LATTICE. The user has no control of this CON.
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Constant Default Symbol Function

CON(63) 0.0 SPOSA Total positive current in problem at solution. The user has
no control of this CON.

CON(64) 0.0 SNEGA Total negative current in problem at solution. The user has
no control of this CON.

CON(65) 0.0 STOTA Total current in problem at solution. The user has no
control of this CON.

CON(66) 1.0 XJFACT The factor by which all current and current densities (but
. not current filaments) will be scaled in POISSON or
PANDIRA; XJFACT = 0.0 indicates the use of a scalar
potential (no currents) for electrostatic problems.

CON(67) 1.0E-04 XJTOL The tolerance allowed in the determination of XJFACT =
CON(66) when given BDES = CON(8), the field at a
specified point.

CON(68) 1.0 AFACT The factor in MIRT by which scalar potentials are scaled
when XJFACT = CON(66) = 0.0.

CON(69) 0.0 RATIO The ratio of |BZERO|/(XJFACT = CON(66)) in POISSON
for the solution in the air portion of the problem.

CON(70) 0 ICAL  An indicator for the type of formula to use in calculating the
current associated with a point near the boundary of a coil.
Can only be changed in LATTICE. ICAL = 0 means use
normal area formula; ICAL = 1 means use angle formula.
This latter formula is more accurate near coil boundaries.

CON(71) 0 NEGAT A flag indicating a zero or negative area triangle in the mesh.
This may occur in the relaxation of the mesh in LATTICE
and NEGAT # 0 will generate a diagnostic message.

CON(72) 0.0 SNOLDA The old sum of delta squared’s for air points. This number is
calculated in POISSON at the end of IVERG = CON(87)
cycles.

CON(73) 0.0 SNOLDI The old sum of delta squared’s for iron points. This number
is calculated in POISSON at the end of IVERG = CON(87)
cycles.
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Constant Default Symbol Function

CON(74) 1.9 RHOPT1 A flag to cause optimization of the parameter CON(75) =
RHOAIR. If RHOPT1 is equal to the initial value of
RHOAIR, then RHOAIR is automatically optimized during
the iterations.

CON(75) 1.9 RHOAIR The overrelaxation factor in POISSON for air and interface
points and for iron points in problems with the permeability
finite and constant. This factor is automatically optimized
during the iteration if the initial value of CON(75) =
CON(74) = RHOPT1.

CON(76) mnone RIIOM1 RHOMI! = RHOGAM - 1., where RHOGAM = CON(78).
The user has no control over this CON.

CON(77) 1.0 RHOFE The over relaxation factor for iron points in problems with
finite but variable permeability. Used in POISSON.

CON(78) 0.08 RHOGAM The overrelaxation factor for the inverse permeability in
problems having finite but variable permeability. Used in
POISSON.

CON(79) 1.6 RHOXY The initial value of the X and Y mesh over-relaxation factors
in LATTICE. .

CON(80) 1 ISKIP  The number of cycles between recalculation of inverse
permeabilities during a problem with finite and variable
permeability. Used in POISSON.

CON(81) 1 NOTE A flag for determining the order in which the mesh points
are relaxed. NOTE = 0 gives the order: air points, interface

points, then iron points. .
NOTE = 0 must be used for PANDIRA. NOTE = 1 gives
the order: (air + interface) points, then iron points.

CON(82) none BMAX The maximum value of B in the triangles. Used in
PANDIRA. Note: Subroutine PTABLE has an internal
variable with the same name.

CON(83) 0 TABORT An abort flag in LATTICE, POISSON and PANDIRA. If
IABORT = 1, the run is stopped.

CON(84) 1.0E-056 EPSO A parameter to test for convergence in the mesh generation.
Used in LATTICE only.
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Constant Default Symbol Function

CON(85) 5.0E-07 EPSILA A parameter to test for convergence of the potential solution
of air and interface points and also iron points if the problem
has finite and constant permeability. Used in POISSON.

CON(86) 5.0E-07 EPSILI A parameter to test for convergence of the potential solution
of iron points in a problem with finite but variable
permeability.

CON(87) 10 IVERG The number of cycles between convergence tests. The

default value of 10 should not be altered when using the
option to optimize the over-relaxation factor RHOAIR =
CON(75). Used in POISSON.

CON(88) 1.0 RESIDA The residual of the air points at each IVERG = CON(87)
cycles. The user has no control of this CON. Used in

POISSON.

CON(89) 1.0 RESIDI The residual of the iron points at each IVERG = CON(87)
cycles. The user has no control of this CON. Used in
POISSON.

CON(90) 0 ICYCLE The present iteration number; used in LATTICE, POISSON
and PANDIRA. The user has no control of this CON.

CON(91) 0 NUMDMP Present dump number for writing to TAPE35.

C'ON(92)- none none Thhis set of eight words stores the title of the problem,
(99) which was read by LATTICE.
CON(100) none ITERM A print control number for OUTPOI or OUTPAN., If

ITERM = 0 and XJFACT = CON(66) = 0, the writing of
DBZDR, XN, and AFIT to files OUTPOI or OUTPAN is
suppressed.

CON(101) 0 IPERM A flag in PANDIRA for the initialization of the vector
potential. If IPERM = 0, the vector potential for a perma-
nent magnet is initialized with the current vector called
SOURCE, whirh is given a value when NFIL = CON(49) is
not zero or when a coil region with current is input. If there
are no real current sources in the problem, then set IPERM
= 1 or any nonzero number. This will allow the code to
initialize the potential.

CON(102) 600 000 000g IAMASK A mask used in LATTICE, POISSON, and PANDIRA to
isolate bits in certain words.

CON(103) 2 000 000 000g ISCAT A mask used in LATTICE to isolate bits in certain words.
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CON(104) 4 000 000 000 1IFILT A mask used in LATTICE, POISSON and PANDIRA to

CON(105)

CON(106)

CON(107)

CON(108)

CON(109)

CON(110)

CON(111)

CON(112)

CON(113)

CON(114)

isolate bits in certain words.

100 000g IDIRT A mask used in LATTICE to isolate bits in certain words.

1.0

1.0

0

none

0

0

0.0

0.0

0.0

ETHAIR

ETAFE

AROTAT or

ICYSEN

1TOT

NTERM

NPTC

RINT

'ANGLE

RNORM

A measure of the rate of convergence of the solution during
the current cycle. Used in POISSON to calculate RHOAIR
= CON(75).

The current rate of convergence in iron.

AROTAT was an additional rotational angle added to
ANGLZ = CON(115) in harmonic analysis. It has been
deactivated in subroutine MINT.

IF ICYSEN = 0 in POISSON, the boundary integrals are
not printed.

ITOT = (KMAX + 2) * (LMAX + 2).

The number of coeflicients to be obtained in the harmonic
analysis of the potential. See Section B.13.3.

The number of equidistantly spaced points on the arc of a
circle with its center at the origin, at which the vector
potential is to be calculated by interpolation. The Fourier
analysis of the vector potential at these points yields the
coefficients in the harmonic analysis. The input value of
NPTC should be approximately the number of mesh points
adjacent to the arc.

The radius of the arc of a circle on which the vector poten-
tial is to be calculated by interpolation for use in the harmo-
nic analysis. RINT should be less than the distance to the
nearest singularity (the pole or coil) by at least one mesh
space, i.e., the size of the side of a triangle.

The angle in degrees that defines the extent of the arc of a
circle on which the vector potential is to be calculated by
interpolation for use in the harmonic analysis. See
CON(111).

The aperture radius or other normalization radius used in
the harmonic analysis of the vector potential. See

Sec. B.13.3 for a discussion of the harmonic analysis.
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Constant Default Symbol

Function

CON(115) 0.0 ANGLZ

CON(116) 37s MASK37

CON(117) 77 777s MASKS5

CON(118) none MAXDIM

CON(119) none NWDIM

CON(120) 3775 MASKC1

CON(121) 1174005 MASKC2

CON(122) none TSTART

CON(123) 0.0 TNEGC
CON(124) 0.0 TPOSC
CON(125) 1.0 RZERO

The angle in degrees that defines the initial point of the arc
of the circle on which the vector potential is to be calculated
by interpolation for use in the harmonic analysis. ANGLZ is
measured from the X-axis. See Sec. B.13.3 for complete
discussion of harmonic analysis.

A mask used in LATTICE, POISSON and PANDIRA to
isolate bits in certain words.

A mask used in POISSON and PANDIRA to isolate bits in

certain words.
The maximum allowed value of ITOT = CON(109).

NWDIM = MAXDIM/2, where
MAXDIM = CON(118).

A mask for the eighth character in a word.
A mask for the seventh character in a word.

The wall clock siarting time for the codes that contain
TSTART.

The total negative current in the geometry obtained after a
conformal transformation. it is equal to the total negative
current in the original geometry. This CON must be entered
in LATTICE.

The total positive current in the geometry obtained after a
conformal transformation. It is equal to the total positive
current in the original geometry. This CON must be entered
in LATTICE.

The scaling factor in the conformal transformation W =
Z**MAP/ (MAP*RZERO** (MAP-1)), where MAP =
CON(37). Normally RZERO is the aperture radius. This
CON must be entered in LATTICE.
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AFACT
ANGLE
ANGLZ
BDES
BMAX
CONV
EPSILA
EPSILI
EPSO
ETAFE
ETHAIR
FIXGAM
JABORT
JAMASK
IBOUT
ICAL
ICYCLE
ICYLIN

ICYSEN or AROTAT

IDIRT
IFILT
IHDL
IMAX
INACT
INPUTA
IPERM
IPRFQ
IPRINT
IRMAX
IRNDMP
ISCAT
ISECND

CON(68)
CON(113)
CON(115)
C'ON(8)
CON(82)
CON(9)
CON(85)
CON(86)
CON(84)
CON(107)
CON(106)
CON(10)
CON(83)
CON(102)
C'ON(58)
CON(70)
C'ON(90)
CON(19)
CON(108)
CON(105)
CON(104)
CON(50)
CON(5)
CON(34)
CON(20)
CON(101)
CON(31)
CON(32)
CON(53)
CON(36)
CON(103)
CON(48)
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ISKIP
ITERM
ITOT
ITYPE
IVERG
KBZERO
KMAX
KMIN
KPROB
KTOP
1.BZERO
LIMTIM
LMAX
LMIN
LTOP
MAP
MASK37
MASKS
MASKC1
MASKC2
MAXCY
MAXDIM
MODE
NAIR
NAMAX
NBND
NBSLF
NBSLO
NBSRT
NBSUP
NEGAT
NFE
NFIL
NGMAX
NGSAM

CON(80)
CON(100)
C'ON(109)

© CON(46)

CON(87)
CON(40)
CON(4)
CON(42)
CON(1)
CON(43)
CON(41)
C'ON(29)
CON(3)
CON(44)
CON(45)
CON(37)
CON(116)
CON(L17)
CON(120)
CON(121)
C'ON(30)
CON(118)
CON(6)
CON(11)

_CON(25)

C'ON(16)
CON(24)
CON(22)
CON(23)
CON(21)
CON(71)
CON(12)
CON(49)
CON(27)
CON(28)
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Table of Probcons in Alphabetical Order (cont.)

NINTER CON(13)
NODMP CON(35)
NOTE CON(81)
NPERM CON(18)
NPINP CON(15)
NPONTS C'ON(51)
NPTC CON(111)
NREG CON(2)

NSPL CON(17)
NTERM CON(110)
NUMDMP CON(91)
NWDIM CON(119)
NWMAX CON(26)
OMEGAO or OMEGA CON(52)
PI CON(59)
RATIO CON(69)
RESIDA CON(88)
RESIDI CON(89)
RHOAIR , CON(75)
RHOFE CON(77)
RHOGAM CON(78)
RHOM1 CON(786)
RHOPT1 CON(74)
RHOXY CON(79)
RINT CON(112)
RNORM CON(114)
RZERO CON(125)
SNEGA CON(64)
SNEGG CON(61)
SNOLDA CON(72)
SNOLDI CON(73)
SPOSA CON(63)
SPOSG CON(60)
STACK CON(7)

STOTA CON(65)
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Table of Probcons in Alphabetical Order (cont.)

STOTG CON(62)
TNEGC CON(123)
TPOSC CON(124)
TSTART CON(122)
w2 CON(47)
XJFACT CON(66)
XJTOL _ CON(67)
XMAX CON(55)
XMIN CON(54)
XORG CON(38)
YMAX CON(57)
YMIN CON(56)

YORG CON(39)
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In 1976 Holsinger and Tlalbach? published a paper describing a new way of
solving the generalized Helmholtz equation

Vip+ k=S5

for the eigenvalues k and the eigenfunctions ¢(z). The quantity S is called the
source term. The applications were to rf waveguides in two dimensions and cylin-
drically symmetric rf cavilies in three dimensions. The Helmholz equation is an
elliptic partial differential equation, hence the same type of houndary conditions
are required for its solution as for the generalized Poisson equation, namely, ¢(z)
or its derivative must be specified on all portions of the mesh boundary, but not
both on the same portion.

The first step in solving the problem is to define physical regions internal to
the cavity and overlay these regions with a logical triangular mesh, which is then
deformed into the so-called physical mesh. The sides of the triangles in the physical
mesh conform as closely as possible to the physical boundaries of the regions. These
steps are accomplished using the programs AUTOMESH and LATTICE.

The next step is to solve the Helmholtz eigenvalue problem. This is done in
the code called SUPERFISH. The solution gives either the T'M or TE modes of the
cavity depending on the boundary conditions. Given the solutions, the user usu-
ally wants auxiliary properties such as plots of electric field, transit time factors,
power losses on the cavity walls, and sensitivity of the eigenfrequencies to small
perturbations of the cavity structure. These auxiliary calculations are done in the
postprocessors TEKPLOT and SFO. Each of these codes will be described below
in some detail, but to begin with, we will summmarize the basic theory.






Chapter C.1

SUMMARY OF THE BASIC
THEORY

In the subsections that follow we will write down the basic forms of the Helmholtz
equation for cylindrical and cartesian coordinates, list the definitions of some aux-
iliary quantities calculated by the post-processors and discuss the system of units
used in the codes. This is followed by a short discussion of the numerical method
used to solve the eigenvalue problem. In particular we discuss the significance of
the drive point in obtaining a solution.

C.1.1 Equations for the TM and TE modes

The most common application of SUPERFISH is for finding the accelerating
(TM) modes of a cylindrically symmetric accelerating cavily. It can be shown (see
Sec. C.13.1) that Maxwell’s equations take the form

_%_%98%:0 (C.1.L.1)
.11:8% (rHy) — %aafr =0 (C.1.1.2)
aair _ a;:’ + %a{i" —0 | (C.1.1.3)
%56; (rE,) + % =0 (C.1.1.4)

where Hp is the component of the magnetic field in the cylindrical direction, ex-
pressed in electric field units. The true magnetic field is \/e/p times Hp .
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and .
c=—= (C.1.1.5)

T

The relative permittivity . and the relative permeability £, are input param-
eters for each region, and they are used when the true magnetic field is required.
See for example Table C.1.2.1 below. The direction of the fields are illustrated in
Fig. C.1.1.1.

Eze,

A

Heee A

Ny

Tl
m}

Figure C.1.1.1: Illustration of electric and magnetic field lines for the TM mode in
a cylindrically symmetric rf cavity. The magnetic feld lines are coming out of the
plane of the paper above the z-axis and going into the paper below the z-axis.

In the TM mode r- and z-components of the magnetic field and the f-component
of the electric field vanish. It can also be easily shown that the equations for the
deflecting (TE) modes of an rf cavity are very similar to those for the TM modes,
namely,

-5, " oh (—H,)=0 (C.1.1.6)
% 587? (rEq) — %gt (-H,) =0 (C.1.1.7)
% (—-H,) - g;. (—H.) + %% = (C.1.1.8)
%53; (—rH,) + 58; (-H.) =0 (C.1.1.9)
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"The only differences are the interchange of E for H and the minus sign appearing
before H, and H.. The outpnt of SUPERFISH has no flag to tell the user which
type of mode is being calculated. The column labels always display field components
for the TM modes. It is up to the user to reinterpret these column headings when
TE modes are being calculated. Generally speaking, the only difference between
solving a problem for TE modes instead of TM modes is the boundary conditions.
This is discussed further in Secs. C.3 and C.13.3 below.

We will work with the equations for the TM mode. If we assume that

- Hy(r,z,t) = Hy(r, z) cos wt (C.1.1.10)
and define
kE=w/c (C.1.1.11)
Then Eqgs. (C.1.1.1) through (C.1.1.4) can be reduced to the form
|10 8%Hg(z,7) 2
-é; [;E (T.He (..,7') )] + W—— + I» fIg(Z,T) =0 (011.12)
_ 16H9(Z,7‘) « -
E.(z,rt) = 5 g, Shw (C.1.1.13)
E.(zyrt) = =2 (rHy(z, 7)) sinwt (C.1.1.14)
- (2,7, t) = i 5y (rHe(z,7)) sinw .1,

Equation (C.1.1.12) is the Helmholtz eigenvalue equation, and the other two define
the electric field components.

SUPERFISH also solves Maxwell’s equations in two-dimensional cartesian co-
ordinates. The main applications are to waveguides and cross sections of an RFQ
accelerating cavity. It is assumed that the waveguide is infinitely long in the z-
direction and the fields are independent of z. That is, the program solves for the
cut-off wavenumber and fields. For Cartesian symmetry it is usually the TE mode
that is of interest. The geometry of the fields is illustrated in Fig. C.1.1.2. For the
mode shown, the magnetic field is coming out of the end of the cavity.

"The equations solved by the code are

8’H(z,y) + O*H,(z,y)

522 oy T FH(my) =0 (C.1.1.15)

laHz(m,y) o

E,_.(m,y,t) = % ay

swt (C.1.1.186)
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. ;
L7

D

Figure C.1.1.2: Illustration of electric and magnetic field lines for the TE mode in
a rf cavity having cartesian syminetry.

m
I
m—7

18H(x,y)

Ey(z,y,t) = i 8 coswt (C.1.1.17)
The eigenvalue k is still given by Eq. (C.1.1.11) and I, is assumed to be propor-

tional to cos wt.

C.1.2 Auxiliary Quantities Calculated in SFOL1.

Table C.1.2.] is a summary of formulas for auxiliary quantities calculated from the
fields generated by SUPERFISH. The discussion following the table defines the sym-
bols and describes the assumptions used in deriving the equations. Full derivations
and references are given in Sec. C.13.2.
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Table C.1.2.I1 Formulas for Auxiliary Quantities
in Cylindrical Coordinates

1. Energy/Volume,

e [,[ Ho(z,7)]? rdrdz

U= 2 [, rdrdz

2. Power Loss on Walls,

%
P, =m 2“3{13 f [Ho (2,7)]2rdl

3. Power Loss on Stems,

— kp "2 2
P, = ZWRJ”W-/; [Ho (23,7')] dr

4. Average Accelerating Field,

E—I/L/gE( = 0)d
L et

5. Shunt Impedance,

Z, = Eg’L/ (P, + P,)

6. Quality Factor, -
71"\7\/%.’;.[]{9(2,7')]27‘ dr dz
- (P + P,)

7. Maximum Electric Field, F,... is found by searching.

8. Frequency Perturbation,

Ak _ s {{Ho(z ) = [Bele, ) = (Bl )} do

k 2 [, [He(z,7)])* dv
9. Transit Time Factors (K =2w/L):
T(K) = —— [ B(z,r = 0)cos Kz d
)_EOL L2 :(z,7 =0)cos (z dz
L/2 _
TP(K)= _Kdl K 2E.(2,0)sin Kz dz

2ndK  2wEoL J-L)2
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-

Table C. 1 2.1 (cont’d ) Formulas for Auxiliary Quantities
in Cylindrical Coordinates

K\* &T KN\? 1 b2,
)= |— =|{—]) == E. Kz dz
TPPI) (27r) dK? (27r) EolL /_L/zz =(2)0) cos Kz
10. Coupling Coefficients (K =27 /L) :
9 L/2
S(K)= Bl E.(z,0)sin Kz dz
Lz
SP(F WEQL/ z,0)cos Kz dz
K? Le ., .
SPP(K) = S F L / z°E.(z,0)sin Kz dz
ods

The electric and magnetic fields are very nearly 90° out of phase. The energy
stored in the field shifts sinusoidally back and forth hetween the magnetic and elec-
tric field, but remains a constant, independent of time. Therefore, the energy per
unit volume U can be evaluated when the magnetic field is maximum and the elec-
tric field is zero, without loss of generality. The integral is over the zr-cross section
of the cavily. The integration over the cylindrical angle ¢ has been carried out
analytically.

If the electrical resistivity p of the cavity walls were zero, there would be no
power loss and the electric field amplitude would go to zero at the wall. For walls
with finite resistivity, the electric ficld penetrates the wall and causes an ohmic cur-
rent to flow. The derivation of the equation for P, is not trivial and involves some
approximation.!> The main approximation is that the field energy in the wall is
much less than the field energy in the cavity. In cylindrical coordinates, the integral
over the surface of the cavity is easily changed to a line integral around the cross
section of the cavity in the zr-plane. The line element is called dl and the contour
around the cavity cross section is called C.

When there are small cylindrical stems holding the drift tubes in the middle of
the cavity, there is an additional power loss given by P,. Figure C.1.2.1 illusirates
a typical stem arrangement.
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Figure C.1.2.1: Cutaway of a DTL tank showing stems holding the drift tubes in
place.

In the formula for P,, R, is the radius of the stem; r; is the outer radius of
the drift tube; 75 is the radius of the tank holding the drift tubes; and z, is the
z-coordinate of the stem. The other parameters in the formula have been defined
above.

The average accelerating field Ep is defined as the integral of the z-component
of the field along the beam direction. The rf cell has length L and is assumed to be
symmetric with the center of the gap between drift tubes located at z = 0. Real
cavities are slightly asymmetric but since the electric field is vanishingly small at
the ends of the drift tubes, the approximation that the cavity is symmetric is a
good one.

Shunt impedance Z, has dimensions of Ohmns/meter. It is a measure of excel-
lence. The larger the accelerating field for a given power loss/unit-length, the better
the accelerator.

The quality factor Q is a ratio of the energy stored in the cavity to the enecrgy
dissipated per radian of rf. A high @ is desirable if it means low power dissipa-
tion, but if it means large stored energy, then it is not desirable because it implies
sensitivity to frequency errors. For pulsed systems high @ also implies a long time-
constant for filling the cavity with rf field.’®

The maximum electric field on a metal boundary E,,q; is important because this
determines whether and where elcctrical breakdown will occur. The code must do
a search since there is no way to calculate this quantity from a formula.

It is also useful to know how sensitive the resonant frequency is to errors in the
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size of the cavity. The frequency perturbation is determined by using Slater’s Per-
turhation Theorem,'4 which states that, for small perturbations, the relative change
in resonant frequency caused by a perturbation that decreases the volume of the
cavity by an amount &V is given by Formula 8, in Table C.1.2.L 1n particular when
the perturbation is a stem, the formula reduces to

Ak TR [P {B (5,7) + BXeyr) — Haz )} dr
E Jv [He(::,r)]2 dv

(C.1.2.1)

The transit time factors T and TP come into the calculation of the transit time
TT, which is defined by the relation

TT = /L/" d“ (C.1.2.2)

L/2 cfB:(= o
where cf.(z) is the velocity of the synchironous part.icle going through the cavity.
It can be shown that

L ) 1 k k
TT ~ B {1 B |2 [ =T (ﬁm) sing, + TP (/3m> cos d),]} (C.1.2.3)

where ¢@;, is the velocily of the synchronous particle at the entrance to the cavity;
k is related to the resonant frequency of the cavity by Eq.(C.1.1.10); and ¢, is the
rf phase when the particle is at the center of the gap. The quantity é is given by
the equation

€EOL

mce?

6=

(C.1.2.4)

where m is the rest mass of the particle. The transit time factor TPP and the
coupling coefficients S, SP, and SPP are needed to describe the radial motion of the

particle as it goes through the accelerating gap. For more details see Sec. C.13.2 or
reference C.14.15.
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C.1.3 Units

Before running SUPERFISH the user must define the cavity and give a starting
frequency in AUTOMESIH or LATTICE. The units of length are assumed to be
centimeters but this unit can be changed to almost anything the user desires by the
use of CONV in AUTOMESH = CON(9) in LATTICE. The quantity CONV is the
number of centimeters per unit length desired. Angles entered into AUTOMESH
or LATTICE are assumed to be in degrees. The estimated {requency w is assumed
to be in the units of megahertz (MHz).

All quantities appearing in the ontput of SUPERFISH will have properly iden-
tified units. It should be noted that gquantities such as power loss P, electric fields,
etc., which are calculated in SFO1, are normalized by assuming that the average
axial electric field Ep, defined in Table C.1.2.1 above, is 1 MV /meter.

C.1.4 Method of Solution Using a Drive Point

The method of solution is based on Stoke’s Theorem in vector analysis. Equa-
tions (C.1.1.12) and (C.1.1.15) are special cases of the equation

Vx(VxH)-KH=0 (C.1.4.1)

where H is a function of (z,r) for cylindrical symmetry or (=,y) for cartesian sym-
metry. To solve this equation in the region of interest, we introduce an irregular,
triangular tnesh and derive a linear diflerence equation at each mesh point. Figure
C.1.4.1 shows the neighborhood of a given mesh point.

We introduce a secondary mesh by drawing connecting lines between the “cen-
ter of mass” of every triangle and the center of each of the six lines connecting “0”
to its nearest neighbors. The mesh point is now surrounded by a unigue 12-sided
polygon. This secondary mesh of dodecagons covers completely the whole region of
the problem. The difference equations for H are now obtained by integrating Eq.
(C.1.4.1) over the area, one dodecagon at a time. This yields

/V><'(V><H)-da=j£vXH.d1=k2/H-da (C.1.4.2)
A C A

If we assumne that H can be approxiinated by a linear function of the variables
(z,7) or (z,y) within every triangle, then H inside every triangle is uniquely de-
termined by the values of H at the three corner-mesh points of the triangle. The
integrals in Eq. (C.1.4.2) can be done analytically and the results expressed in
terms of the value of H at the mesh point n and its six nearest neighbors, giving a
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2 1 , '—-T::unqle 2

4 5

Figure C.1.4.1: Six nearest neighbors of a given point called “0” in a triangular
mesh with secondary dodecagon. T'he contour C is the path of integration in Stoke’s
Theorem.

set of homogeneous equations of the form

6
S Hem (Vi + KW,) =0, n=1,...,N = (C.143)
m=0
where N is the number of mesh point. This set of equations can be thought of as
an N by N matrix of coefficients multiplying a column matrix containing the values
of H at the mesh points. This is a very sparse matrix with at most six entries in
each row. The equations then take the form

N
> AwmHm =0, n=1,...,N (C.1.4.4)

m=1

where the single index m on H now runs now runs from 1 to N.

We would like to use the so-called direct method for solving this set of equations,
but this cannot be done unless we can convert this set of homogeneous equations
artificially into a set of inhomogeneous equations. This is accomplished by replac-
ing one of the equations (say the equation for the p-th mesh point) by the simple
equation

H,=1 (C.1.4.5)

The prescription for making the set inhomogeneous is as follows: Every matrix
element in row p and in column p is set equal to zero, except the (p,p) diagonal
element is set equal to one. Column p is moved to the right side of the equation
and its sign-is changed except for the element in row p, which is set equal to one.
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The direct solution then gives values of H at all other mesh points. If we take
the original difference equation for the mesh point p, we can solve for H,. This
value will in general differ from one, except at resonance. This difference can be
interpreted as being proportional to the current I(k) necessary at that point to
drive the cavity to the prescribed amplitude of H = 1 at the mesh point p. For this
reason we refer to this mesh point as the “driving point.” In essence, SUPERFISH
finds the eigenvalues k by numerically finding the zeros of a functional proportional

to I(k).

In principle, the location of the drive point is arbitrary. In practice, the drive
point should not be placed at a point where the value of the magnetic field in
TM modes is nearly zero. This will result in a “current”I(k) that is very flat and
this makes it difficult to find the zero being sought. The algorithm for choosing
the defaull location of the drive point usually leads to quick convergence, but for
cavities with unusual shapes the default drive point may not be chosen optimally.
If the user is having trouble getting the code to converge, he should use the option
of moving the drive point to another location in the cavity.



Chapter C.2

Simple Example — Drift Tube
Linac (DTL) Cavity

A drift-tube linac, in essence, is a long tube with a series of smaller tubes inside
it. The smaller tubes are drift tubes. These are attached to the wall of the outer
tube by stems. The spaces between adjacent drift tubes are the accelerating gaps.
A section of this assembly consisting of one-half of a drift tube followed by a gap
followed by another half drift tube forms an rf cell of the linac. When all cells are
tuned to the same resonant frequency the entire assembly will also resonate at the
same frequency. SUPERFISH is used to tune individual cells although it can also
be used to study multiple cell structures.

The portions of the rf cell boundaries have special names. The inner radius of
the enclosing tank is the cavity radius; the outer radius of the drift tube is the drift
tube radius; and the angle the drift tube face makes with the axis of the drift tube
is called the face angle. Figure C.2.1 identifies some of these features.

The cavity radius, the drift tube diameter, the nose radius, the corner radius,
and the bore radius are all defined by the design of the linac. The main problem
for any particular cavity is to choose the cavity length, face angle, and accelerating
gap length in such a way that the accelerated particle gains just the right energy,
surface electric fields are not too high, and the cavity has the design frequency of
the linac. This usually requires several SUPERFISH runs, but in this example we
will only give the results of the final run. Once we have found the final design,
there are a number of other things that one wants to know about the cavity. For
beam dynamics one needs the transit time factor and other related integrals. For
the electrical design it is useful to know the power dissipated on the metal surfaces
of the cavity, the shunt impedance, the quality factor Q, the stored energy in the
cavity and the surface electric fields. From a perturbation analysis we can learn how
small changes in the positions of surfaces will affect the resonant frequency.

The first step in running the problem is to set up an input file for AUTOMESH.
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We shall assume that the cell is symmetric and therefore it is only necessary to cal-
culate half of the cell, thus reducing the amount of input to AUTOMESH. Figure
C1.2.1 shows the outline of one-half of the cavity. By default SUPERFISH assumes
that the cavity is a figure of revolution about the line labelled 1-10.

24 o3 0 seeeeegecenene
. : :

§

%-.:" ac3.$ 211008

iios

Vi 4 e |

h{x R=0.5
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4.03025

74 /B# R=0.325
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; ©  coennns \ ST SO

Figure C.2.1: Geometry of drift tube linac cell. The cavity radius is 21.1; the drift
tube radius is 4.03; the nose radius is 0.325; the bore radius is the length of the line
9-10. The face angle is a = 3.5°.

The picture of the full cavity can be visualized by reflecting Figure C.2.1 in the
vertical R-axis and rotating the whole figure around the horizontal Z-axis. The
numbered dots indicate the boundary segment endpoints that enter into the data
file. The points are numbered in the order given in the AUTOMESH input file
shown in Figure C.2.2.
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ssuperfish dtl test problem

$reg nreg=1,dx=0.075,xmax=4.2843,ymax=21.1008,yregl=5.,
yreg2=7. ,npoint=11$

$po x=0.0 , ¥=0.0 $

$po x=0.0 , y=21.1008 $

$po x=4.2843 , y=21.1008 §

$po x=4.2843 , y= 4.03025 $

$po x=1.60454 , y= 4.03025 $

$po nt=2 x0= 1.60454, yO= 3.53025, r=0.5, theta=176.5$
$po x=0.93936 , y= 0.84484 $

$po nt=2, x0=1.26375, y0= 0.825, r=0.325, theta=270.0$
$po x=4.2843 , y= 0.5 $

$po x=4.2843 , y= 0.0 $

$po %=0.0 , ¥y= 0.0 $

Figure C.2.2: Input to AUTOMESH for DTL cell.

The cavity dimensions are in centimeters. Figure C.2.1 is not drawn to scale and
the dotted segments on the vertical lines indicate that the vertical scale has been
foreshortened.

The first line of the input file is the title, which can he whatever you choose,
except that the first column of the title must not be a blank. (A blank in col-
umn one signals AUTOMESH that the input file specifies a magnet problem in-
put for POISSON or PANDIRA.) The lines following the first line are in standard
FORTRAN namelist format with a blank space in the first column and the namelist
items delimited by $. The second and third lines of the file make up the REG (re-
gion) namelist. The variables to be entered are the number of regions, NREG, and
the approximate longitudinal step of the logical mesh, DX in centimeters. One can
also enter the vertical step DY, but we have chosen to use the default value, which
is about 0.87 * DX. XMAX is the longitudinal extent. The YREG1 and YREG2
variables allow one to change the fineness of the vertical dimension of the mesh to
reduce the number of mesh points in the problem. From R =5 cm to R = 7 cm,
the mesh is to be twice as coarse as between R = 0 and R = 5 cm. Between R =7
cm and R = YMAX the mesh is coarsened again by another factor of two over that
between 5 and 7 ém. Since 5 cm is larger than the radius of the drift tube, this
should not affect the accuracy of the solution very much. The variable NPOINT is
the number of endpoint lines that are to follow. If there are n segments, there must
be NPOINT = n + 1 endpoint data lines to close the boundary. There are other
variables that can be set in the REG namelist, but we do not need them for this
example and hence they will have their default values. (See Chaps. C.3 — C.8 for
a full description of these variables.)

-
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The PO input data lines describe the endpoints of curves that form the physical
boundary of the region. The variable NT specifies the type of curve to be drawn
from the previous point to the next point. Its default value is 1 (a straight line),
which is why NT is not specified on the first 5 PO lines. The first PO line gives
the (Z, R) coordinates of the starting point; the next four lines give the coordinates
of the succeeding four points, each connected to the preceding point by a straight
line. The sixth PO line gives the endpoint of a circular arc that starts at point
5 and ends at point 6. The line gives the coordinates of the center of the circle,
(Xo, Yo), the radius of the circle, R = 0.5 , and the angular position of the endpoint,
THETA = 176.5% NT is set to 2 to tell the program that it should draw a circle.
The seventh line again gives the (Z, R) coordinates of a point reached by a straight
line. The eighth PO line describes a point reached by a circular arc, and the re-
maining lines describe endpoints of straight line segments. The last PO line is the
same as the first, and thus closes the boundary.

With the input data file prepared, we are ready to start the AUTOMESH
run. This is done on the CTSS system by entering the name of the executable
AUTOMESH file. Figure C.2.3 shows what happens at the terminal. Throughout
the text when displaying terminal sessions, the information entered by the user will
always be underlined. AUTOMESH asks for the name of the input file, which in
this example is SFT1. AUTOMESH then executes and prints out some information
on the logical boundary segment endpoints, and produces a file called TAPE73,
which is used for input to LATTICE. AUTOMESH also produces a summary file
OUTAUT. Usually there is no reason to consult OUTAUT, but it can be useful if
something is wrong with the input file or if you want to know the parameters, either
input or default, used in the run. 1t also contains a copy of the contents of TAPE73.
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logical boundary segment

automesh
7type input file name
7 sftl
region no. 1
iseg kb
i 1
2 i
3 1
4 1
6 b8
6 58
7 58
8 58
9 22
10 16
11 14
12 18
13 B8
14 58
stop
automes ctss
cpu= .211
all done

1b
1

78
93
146
146
93
78
63
63
56
14

= O ©

time
sys=

end points

kd

.594

14

seconds

ko

[y

58
68
B8
68
22
i6
14
i8
58
68

.619 i/o+memory=

PART C CHAPTER2 5

lo
78
93
146
146
93
78
63
63
56
14

= O O

.364

Figure C.2.3: Log of interaction with AUTOMESH. The logical coordinates (kb,
Ib) correspond to the beginning points and the (ko, lo) to the end points of the
segment. The long segment from (0, 0) to (0, 21.008) has been divided in 3 parts
because of the mesh size changes (YREG1=>5 and YREG2=7). The quantities (kd,
1d) represent the incremental steps in going from (kb, Ib) to (ko, lo). Essentially all

they give are the direction of the step.

The next step is to execute LATTICE, which on CTSS is done by giving the
executable file name LATTICE. Figure C.2.4 shows what happens. LATTICE asks
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lattice

7type input file name

7 tape73

beginning of lattice execution
dump O will be set up for superfis
ssuperfish dtl test problem

?type input values for con(?)

T s
elapsed time = 1.0 sec.
Oiteration converged
elapsed time = 3.8 sec.

generation completed
dump number 0 has been written on tape3b.

stop

lattice ctss time 4,337 seconds

cpu= 3.659 sys= .034 i/o+memory= .644
all done

Figure C.2.4: Log of interaction with LATTICE.

for the input file name; TAPET3 was entered. The program then asks if the user
wants to change any of the constants (CON(?)). Sometimes one wants to change
the houndary conditions. Let us review these conditions. The upper boundary is a
metal wall, which requires that electric field lines be perpendicular to the boundary.
This is called a Newmann boundary condition, and is the upper boundary default
value for SUPERFISH. The two side boundaries are vacuum, hence not conducting,
but by symmelry the electric field must be normal to these boundaries; again these
are default values for the side walls. The lower boundary is the axis and the field
must be parallel to the boundary in the TM-mode. This is called a Dirichlet bound-
ary condition, which is the SUPERFISH default for the lower boundary. Therefore
there is no need to change the boundary constants. A review of the other possible
input constants (See Chapters C.3 and C.5.) shows that the default values are ap-
propriate for this run. The user types “S” (for “skip”) to tell LATTICE to proceed.

LATTICE completes execution by printing that it has written a block called DUMP
0 on file TAPE35.

At this point. we could call SUPERFISH, but it would be wise to see if the half
cavity looks the way we want it to. To do this the user execuies TEKPLOT by
typing TEKPLOT. Figure C.2.5 shows how TEKPLOT responds.
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tekplot

7type input data- num, itri, nphi, inap, nswxy,

7 0,5

input data

num= 0 itri= 0 nphi= 0 inap= 0 nswxy= 0
plotting prob. name = superfish dtl test problem c¢cycle = 0
7type input data-- xmin, xmax, ymin, ymax,

? 0. 4.50. 22,

input data

xmin= 0.000 =xmax= 4.500 ymin= 0.000 ymax= 22.000
7type go or no

? go

Figure C.2.5: Log of interaction with TEKPLOT.

TEKPLOT asks for five pieces of data, whose default values are all zero. To get just
the cavity outline, the defaults are sufficient. The format of the reply is numbers
separated by spaces or commas. If one wanted to enter only the first number, one
could type the number and an “S” as shown in Figure C.2.5. If on the other hand
one wants to change the fifth number, the first four numbers have to be entered
first. Variations on this format are hopefully obvious.

The meaning of the five variables is as follows. NUM is the DUMP number.
ITRI = 1 means that we want the triangular mesh plotted. NPHI is the number
of equipotential lines to be plotted; a non-zero value only makes sense if NUM is
not equal to zero. INAP has to do with the minimum and maximun values of the
equipotential lines to be plotted and hence also is inappropiate for NUM = 0. The
parameter NSWXY = 1 causes the z- and y-axes to be interchanged in the plot.

Line 3 on Figure C.2.5 indicates that we have set NUM = 0. TEKPLOT answers
by typing out the input data it proposes to use and the problem title. It then asks
for the boundary limits wanted on the graphical display. All that is needed are
the rough values of the boundaries of the cavity. TEKPLOT echos this input and
asks permission to proceed. If we answer no, the program goes back to the first
input line and the user may change any of the previous variables in turn. On the
CTSS system, if one answers: go, TEKPLOT erases the CRT screen and draws the
cavity (See Figure C.2.6). To end TEKPLOT, press the carriage return key once.
TEKPLOT asks for input data; type -1 s to exit TEKPLOT.
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(?type input data - num, itri, nphi, inap, nswxy)
? -1s

toekplot ctss time 1.043 seconds

cpu= .209 sys= .027 i/O+memory= .808

prob. name = superfish dtl test problem freq = 0.000 7

Figure C.2.6: Output of TEKPLOT showing the DTL cavity boundary.

We are now ready to run SUPERFISH; the executable file name on CTSS is
FISH (See Figure C.2.7). SUPERFISH asks for an input file; we answer “tty” if
we wish to enter data interactively from the keyboard. If one has prepared a set
of input data in advance and put it in a file, then the name of this file should be
entered at this time. In the interactive mode, SUPERFISH then asks for a DUMP
number NUM. Then the program SUPERFISH types a couple of lines and asks for
any changes in the CON array. This is the appropriate point to specify a guessti-
mate of the resonant frequency of the cavity. The next line tells the program to
change CON(65) to 425. MHz and skip to the end of the array without making any
other change.
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fish

7type "tty" or input file name

7 sty

?7type input value for dump number
70

beginning of superfish execution from dump number 0
prob. name = superfish dtl test problem

?type input values for con(?)

7 *65 425. s

olapsed time = 2.7 sec.

cycle hmin hmax residual

0 0.0000e+00 0.00000+00 1.00000+00

e T . S > D D Bt G T > . . > P - - Y —— - - —— > 0 WO > ——

k**a = 7.93416-03

freq = 4.25000+02
solution time = 20.993 sec.

1 0.0000e+00 2.32766+00 1.0000e+00
58 1fix =146 deltal= -1.0127e-05 di(k**2)= -2.7635e-07

B e . S Bt s Y T P P e D = T D WD A e -  ————— . — — ———— - —— —— - > >

using slope = -1 formula with rlx =1.0000
del k**2 = -2.7635e-07 k#*2 = 7.9338e-03 freq = 4.2499e+02

solution converged in 1 iterations
elapsed time = 24.0 sec.

dump number 1 has been written.
?type input value for dump num

kfix

? =zis
stop
fish ctss time 25.175 seconds
cpu= 4.186 sys= .388 i/o+memory= 20.601

Figure C.2.7: Log of interaction with SUPERFISH on CRAY.

SUPERFISH then executes with the results shown in Figure C.2.7. The resonant

frequency found by the program is very close to the guesstimate.

A useful check on the solution is to look at some of the field lines to be sure that
we have the mode that we are looking for. This is done by exiting SUPERFISH
and entering TEKPLOT as shown at the end of Figure C.2.7 and the beginning of

Figure C.2.8. This time, when TEKPLOT asks for input to NUM, etc.,
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tekplot

7type input data- num, itri, nphi, inap, nswxy
? 1050s

input data

num= 1 itri= 0 nphi= B0 inap= 0 nsuxy= 0

plotting prob. name = superfish dtl test problem cycle = 1

7type input data-zmin, xmax, ymin, ymax,
? 0. 4.50. 22.

input data

xmin= 0.000 xmax= 4.500 ymin= 0.000 ymax= 22.000
7type go or no
7 go

Figure C.2.8: Log of interaction with TEKPLOT for field plot.

we type “1 0 50 s” to tell the program to use DUMP 1, not plot the triangular
mesh, draw 50 equipotentials of rHy, which are parallel to the electric field lines,
and to skip to the end of the input. Again, the rough boundaries are the same as
before. TEKPLOT then draws Figure C.2.9.
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(?type input data - num, itri, nphi, inap, nswxy)
? =1s
tekplot ctss time 5.188 seconds
cpu= 2.913 sys= .050 i/O+memory= 1.225
all done

1

prob. name = superfish dtl test problem freq = 424.993

Figure C.2.9: Output of TEKPLOT for electric field lines.

TEKPLOT is exited as before by typing “-1 s.” The next step is to execute the
SUPERFISH Output routine, SFO1. Figure C.2.10 shows the results of typing the
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sfol
Ttype "tty" or input file name
7 tty
?ﬁ;ﬁg input value for num
? 1
beginning of sfodtl execution from dump number i

prob. name = superfish dtl test problenm

?type input values for con(?)
? *50 9 s
?type input values for iseg’s(?)
? 4-56-6-789 10 11 12 8
1
superfish output summary 09:01:31  84/06/17
problem name =

cavity:length = 8.569 cnm, diameter = 42.202 cm
frequency (starting value = 426.000) =  424.993 mhz
beta= 0.1215 proton energy = 6.999 mev

normalize factor (e0 = 1.0 mv/m) ascale 4827.3
stored energy {for problem geometry) 0.0094 joules
stored energy (full cavity) = 0.0188 joules
power dissipation (for problem geometry) = 521.12 watts
power dissipation (full cavity) 1042.24 watts
t,tp,tpp,s,sp,spp = 0.874 0.038 0.005 0.394 0.053 0.004

q = 48231 shunt impedance = 82.213 mohm/m
product zxt**2 ztt = 62.816 mohm/m
magnetic field on outer wall = 1281 amps
maximum electric field on boundary = 5.741 nv/s
iseg =zbeg rbeg zend Trend emax power d-freq d-freq
(cm) (cm) (em)  (cm) (nv) (W) (delz) (delr)
4 0.000 21.101 4.284 21.101 0.00061 249.1 wall 0.0000 -1.3230
8 4.284 4.030 1.604 4.030 2.73689 144.2 wall 0.0000 0.1057
9 1.604 4.030 1.105 3.561 5.60369 22,0 wall 2.9432 2.5166
10 1.105 3.561 0.939 0.845 5.30568 i7.4 wall 6.83i9 0.4179
i1 0.939 0.845 1.264 0.500 65.74078 0.0 wall 0.3629 0.1434
12 1.264 0.500 4.284¢ 0.500 0.72178 0.0 wall 0.0000 0.002%
total 432.7 wall
-5 4.284 21.101 4.284 7.000 0.63067 61.0 stem 0.9211  0.0000
-6 4.284 7.000 4.284 5.000 0.61812 15.7 stem 0.2423 0.0000
-7 4.284 5.000 4.284 4.030 0.32672 11.8 stem 0.3001 0.0000
. total 88.4 stem 1.4635
?type input value for num
? -is
stop
sfol ctss time 1.904 seconds
cpu= .311 sys= .0562 i/o+memory= 1.541
all done

Figure C.2.10: Log of interaction with SFO1 for DTL cavity.
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executable file name SFO1. This program can be run from a prepared input file
or interactively from the terminal as we have done in Figure C.2.10. After telling
SFO1, when it asks, that we will input from the terminal and to use DUMP 1, we
change CON(50) to 9, indicating that we want power and frequency shifts calcu-
lated for 9 sections of the cavity boundary. SFO1 then asks for the section numbers,
ISEG’s, The reply as shown in Figure C.2.10 has 9 numbers, some of which are neg-
ative. The reason for this is as follows. Remember that the REG line in the input
to AUTOMESH asked for mesh changes at R = 5 and 7 cm. Inside the code, this
caused the left and right boundaries to be divided at R = 5 and 7, thus adding two
boundary segments on each side. There are now a total of 14 boundary pieces. The
numbering of the segments (numbers in circles) is illustrated in Figure C.2.11.

2 u @ 3  esccess 7
© = seaeT §
O O,
@ ©

O GR“E_ ------- -
sw | (@
o

4.03025

D@
A IG... |
5 L2

Figure C.2.11: Numbering of line segments for DTL problem.
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The ISEG’s input has the following interpretation. Section 4 is the outer wall;
sections 5, 8, and 7 form the cavity boundary between the wall and the drift tube;
sections 8, 9, 10, 11, and 12 are the drift tube. The minus signs before sections 5,
6, and 7 mean that we want SFOL1 to calculate power and frequency shifts for these
portions as if a drift tube stem were supporting the drift tube. If these segment
numbers were positive, SFO1 would assume a solid wall.

After accepting this input, SFO1 executes, printing information about the prop-
erties of the cavity. Much of the information in Figs. C.2.10 and C.2.12 is self-
explanatory. The quantity beta is the relativistic velocity ratio for a proton of the
energy shown. SFO1 assumes that the total cell length corresponds to beta times
the wavelength lambda of the electromagnetic mode for a proton and calculates beta
from this information. The normalization factor tells us that SFOL assumed that
the drift tube linac was operating with an average axial field of 1 MV /m. If actual
operation is to be at a different gradient, the stored energy and power must be
adjusted accordingly. The normalization factor could also be changed by changing
CON(100) at the beginning of the SUPERFISH run. The values in the line labeled
“T. TP, TPP, S, SP, SPP” are the transit time factor and related quantities, which
are explained in Section C.13.2. The magnetic field on the outer wall is constant
for a TM(01) mode and is given in units of Amp/m. The maximum electric field
(Emaz) at the boundary is given as a quick check. 1f one wants more detailed values
along the boundaries on which power was calculated, one should look into the file
OUTSFO.

The final table printed by SFO1 gives the power dissipated on the segments and
the frequency shifts that would result if the boundary in question were shifted in R
or Z by 1 mm in a direction that would result in an increase in the volume of the
cavity. The values given for the segments representing the stem correspond to a 1
em radius rod. This radius can be changed by changing CON(81) at the beginning
of the SFO1 run. The frequency shift (delz) for the stem is the number of MHz
change for a 1 mm change in the radius of the stem.

The SFO1 output file OUTSFO contains a list of the problem CON’s used, the
value of Ez at points on the axis, the values of several moment integrals of Ez along
the axis, and a copy of the terminal output. It also contains tables for each segment
on which power and frequency shift calculations were requested. Each segment table
consists of the K, L (logical mesh coordinates) and Z, R coordinates of the points
on the path, the value of Hy at the point and the value of | Bz | midway between
points. At the end of the table appear the maximum electric field on the path, the
power, and the estimated frequency shifts per millimeter shift in Z and in R. A
portion of this output is shown in Figure C.2.12.
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power to be calculated on the following segment
iseg kb 1b kd 1d ke le
12 18 9 1 0 58 9

field along a specified path

m  kpath 1path z r h-phi

(a/m)

1 18 9 . 1.264 0.500 °  3.756e+01

2 19 9 1.339 0.500 2.467e+01

3 20 9 1.416 0.500 1.670e+01

4 21 9 1.490  0.500 1.145e+01

5 22 9 1.566 0.500 7.890e+00

6 23 9 1.641 0.500 5.458e+00

7 24 9 1.717 0.500 3.783e+00

8 26 9 1.792 0.500 2.625e+00

9 26 9 1.868 0.500 1.823e+00

10 27 9 1.943 ° 0.500 1.267e+00
11 28 9 2.019 0.500 8.804e-01

12 1.2637e+00 5.0000e-01 4.2843e+00 5.0000e-01 7.2178e-01 1.1383e-04

wall 0.0000e+00 4.1813e-03

a1 68 < 9 4.284 ¢.500 3.240e-05
emax on the above path = 7.2178e-01
power on the above path = 1.1383e-04
total power = b5.2112e+02
freq= 424,993 mhz delta-freq = 0.00418 mhz
delta-freq/freq = 9.8386e-06

abs(e)
(v/m)

7.218E+05

4.463e+05

2.946e+05

1.991e+05

1.362e+056

9.380e+04

6.484e+04

4.492e+04

3.116e+04

2.1640+04

1.300e-01

per mm. for delta r perturbation (volume added)

Figure C.2.12: A portion of the output of SF01 for the DTL.
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Chapter C.3

SUPERFISH Input for LATTICE
and AUTOMESH

Before the code AUTOMESH, the only way to enter data describing the physical
geonmetry of the problem was through LATTICE. Although most users will use AU-
TOMESH to enter input, it is worthwhile understanding the structure of LATTICE
input so that the structure of AUTOMESH makes sense. Furthermore there may
be occasions when the user wishes to modify the output of AUTOMESH, which

becomes the input to LATTICE. In this case, the user needs an understanding of
the input to LATTICE.

C.3.1 Format-Free Input Routine
(FREE I, RAY1, N1,...; RAYI, NI)

The authors of the Poisson Group programs developed their own format-free
input routine to make it easier to enter data into all programs except AUTOMESH.
The input into AUTOMESH is via the standard FORTRAN NAMELIST method.

The other Poisson Group programs expect most of the input file to be in a format
‘that ¢an be read by one of the following CALL statements:

CALL FREE(1,RAY1,N1)
CALL FREE(2,RAY1,N1,RAY2,N2)
CALL FREE(3,RAY1,N1,RAY2,N2,RAY3,N3)

where RAY1, RAY2, and RAY3 are arrays of length at least equal to N1, N2, and
N3 respectively. In some cases the array length is variable. The CALL statements
and dimensions are part of the program and hence not under the user’s control,
except for arrays of variable length. Section C.3.2 spells out in detail which of the
three CALL statements are being used to enter data and what freedom the the user
has.
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The FREE format uses special characters to shorten input and to save array
space. These characters and their functions are described below, and an example
is given which uses all of them. When the forms in the left-hand column below are
used for input, FREE interprets them as explained on the right. The case (upper
or lower) for the letters R, S and C may be important on some computers.

*[ X  This notation means store the number X, in the location (I) of the
current array. If there are numbers following X, they are stored in
locations (I+1), (1+2), etc.

XRN This notation means store the number X, in N successive locations
in the current array. A blank between X and R is optional. (‘Think
of RN as being shorthand for “repeat N times.”)

S This symbol means skip the rest of the input to the current array
and go to the next array, or end the read if the current array is the
last array in the CALL FREE statement.

C This symbol means count the number of values read into the current
array and save the number as N1, N2 or N3 as appropriate. 1t also
acts like S above. The purpose of this feature is to read in arrays
of variable length.

Numbers may be either integers or floating point numbers. The latter can be
in simple decimal format +XX.XX or in scientific format £X.XXXE+XX. The
exponent must contain a plus or a minus sign. The plus sign in front of the mantissa
is optional. The only other non-numeric characters allowed in the input field are
the blank and the comma. Either the blank or the comma can be used to separate
input values. Comments may follow the last S or C or required numbers on any
input line.

The example below illustrates all the above features. A and B are dimensioned
arrays, and K is a single variable.

Calling sequence: N=100; CALL FREE(3,4,5,B,N,K,1)

input line:
-3,4. +5.3E-2 R2 S *20 .1R10 C 13 THIS IS AN EXAMPLE.

This input produces the array values:

A(1) = -3

A(2) = 4.0

A(3) = 0.063
A(4) = 0.063
A(B) -= unchanged
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B(1) thru B(19) = unchanged

B(20) thru B(29) = 0.1

N =10

K =13

One final important note. The FREE entry format requires all floating point

numbers to have a decimal point. For example, ANGLE = 90 degrees must be
entered as “90.” in order to be recaenized correctly. Leaving out the decimal point
is a common beginner’s mistake.

C.3.2 SUPERFISH oLiiputs to LATTICE

Logically the user would begin by making an input file to AUTOMESH, but
to understand the reasoning behind AUTOMESH it is important to understand
the structure of the input file to LATTICE. The input file for LATTICE is called
TAPET73 for historical reasons.

The structure of the read statements in LATTICE is shown in Fig. C.3.2.1.

Recd Reod
Reod Initiolize _ | NewCON | _ | Naw CON Recd NSEGand | _
Tile ™™ CON ™1 _Voiues ™1 Vaiues Logical boundary [~ Run [~ Step
From input From tty gEndpolnis
Initiclize
.C
s Y
Reod
C Array
Y
Read
1 B Array

Figure C.3.2.1: Flow Diagram for Read statements in LATTICE for SUPERFISH.

The first data line can have anything in columns 2 through 80. If the first column
is non-blank, then this data set is for a SUPERFISH problem. If the first column is
blank, then this data set is for a POISSON or PANDIRA problem. The characters
in columns 2 through 65 are stored and used in printouts for run identification.
Because of the smaller word size on the VAX as compared with the CRAY, only
columns 2 through 33 are available to the user for run identification when running
on the VAX.
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The reason that LATTICE distinguishes between SUPERFISH and POISSON
runs is because LATTICE initializes the elements of the CON and C arrays with
their default values. Some of the CON’s and C’s have different meanings for
SUPERFISH as compared to POISSON or PANDIRA, and therefore the default

values are different.

The next line (or several lines if needed) is reserved for making changes in the
default values of the CON’s (elements in the CON array). Only one CON absolutely
must be changed; the user must tell the program the number of regions, NREG =
CON(2). NREG is the upper limit of the DO-loop for the next read statements.

There are several other CON’s that should be examined at this point. Many of
these can only be changed in LATTICE if they are to have any effect at all on the
problem. A list and brief description are given in Table C.3.2.1.

Other CON’s can be changed from their default values at this time even though
they have no effect in LATTICE. The changes will carry through to the output file
TAPE35 and be available to the other programs when needed.

The format for entering the changes in the CON’s is the special free format
written for this program and described in Sec. C.3.1. The following example will
illustrate the power of this format. Suppose we want to change CON(2), CON(9),
and CON(21) through CON(24). The input line might read as follows:

x2 10 %9 2.54 %21 1100 S

The * occurs before the number of the element to be changed. When several ele-
ments in a row are to be changed, only the first one need be indicated by a star.
The final notation S means skip the rest of the elements in the array. This same
free format is used to enter elements into the C and B arrays that come next.
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Table C.3.2.I CON’s that can only be changed in LATTICE

Number

SUPERFISH

Name Default

Description

CON(2)

CON(9)

CON(21)
CON(22)
CON(23)
CON(24)

CON(32)

CON(36)

CON(79)

NREG  None Number of Regions in the problem geometry.

CONV 1.0

NBSUP
NBSLO
NBSRT
NBSLF

et O

IPRINT " 0

NSEG  none

RHOXY 1.6

Presently, NREG < 31.

Conversion factor for the units of length in the
problem

CONYV = 1.0 for centimeters

CONV = 0.1 for millimeters

CONYV = 2.54 for inches.

Indicator for boundary conditions on the UPper,
LOwer, RighT, and LeFt boundaries of the rectan-
gular region defining the problem. A default value
of 0 indicates a Dirichlet boundary condition,
which means electric field lines in the TM mode
are parallel to the boundary line; a default value
of | indicates a Neumann boundary condition
which means electric field lines are perpendicular
to the boundary line in the TM mode.

An indicator for print options: IPRINT = 0

gives no printout; IPRINT = - causes LATTICE
to write the (X, Y) coordinates of mesh points
to OUTLAT on the CRAY or to LATTICE.OUT
on the VAX. It is not often that this write to
OUTLAT is of much use, but the option exists.
This parameter can be changed again when
running SUPERFISH. An odd value results in a
print of the solution matrix on the OUTFIS file.

The number of boundary segment endpoints for
all regions. This number is normally computed

in AUTOMESH and passed to LATTICE by
the file TAPET3.

The starting over-relaxation factor for the irreg-
ular mesh generation. There is seldom a reason to
change this number.
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Table C.3.2.I (continued)
CON’s that can only be changed in LATTICE

SUPERFISIT
Number Name Default Description

CON(84) EPSO 1.0E-5 The convergence criterion for mesh generation.
There is seldom a reason to change this number,
but if LATTICE has trouble converging, increasing
EPSO might help.

There are six elements in the C array for each region; they are called “region
constants”. The first of these is an arbitrary region identification number. These
numbers need not be in numerical order.

The second region constant is a material code that tells the program whether
the region being defined is air or a material with different dieleciric and/or mag-
netic properties. For SUPERFISH problems C(2) can take on the values 0 through
5. The value 0 means that the region is not in the problem. When C(2) = 0 for
a region, no mesh is set up in this region. The treatment of the boundary points
of such a region are determined by the region constant C(6) discussed below. The
value C(2) = 1 indicates that the region is in the problem and is to be treated
as an air or vacuum region. (This air value can be overwritten in SU PERFISH if
two or more materials are used, by enfering a value of MATER equal to 1. See
NPERM=CON(18)) The values C(2) = 2 through 5 indicate regions with different
values of relative permittivity k. and relative permeability £m. These values are
read into SUPERFISH when NPERM=CON(18) is not equal to 0.

The third region constant, C(3), should be 0 in SUPERFISH problems unless
the region being entered is a drive point. Then C(3) should be set to 1 and C(6)
should be set to —1.

In SUPERFISH, the fourth region constant C(4) is used to define the length of
cells in multicell cavities. Its use is a little complicated because the numbers being
entered usually have nothing to do with the region being described. Figure C.3.2.2
shows a three cell cavity.
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Figure C.3.2.2: Multicell rf cavity; Regions 4 and 5 have C(2) = 0; the Z1 and 72
are C(4)’s.

Region 1 was originally the whole area. Out of this area we have defined several
other regions using what is called “successive region data overwriting.” The lengths

of the first two cells are indicated on the figure by the symbols Z1 and Z2. The
input value for C(4) associated with each region is given in Table C.3.2.11.

Table C.3.2.11.
Example of input for C(4) in Multicell Cavity Problems

Region c(4)
1 -
2 z1
3 Z2
4 -
5 -

The Z values are entered starting with the second region and continued until
lengths of the first (N — 1) cells have been entered. The program knows the length
of the whole multicell problem and therefore it calculates the length of the last cell.
The default value of C(4) is 0.

The fifth region constant is an integer indicating the type of triangle to be used
in defining the logical mesh for the region. There are three choices:

C(5) = 0 equal weight triangles (the default)
C(5) = 1 isosceles triangles
C(5) = 2 right triangles.
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Equal weight and isosceles triangles are geometrically the same in a strictly uni-
form mesh. The difference comes in the relaxation process by which the logical mesh
is deformed to the physical mesh. The distinction between the logical and physical
mesh is discussed below when we discuss input to the B-array. The default is prob-
ably the best choice.

The sixth region constant is called a special boundary indicator. This constant is
used for two purposes. It is used to indicate a user-defined drive point (C(6) = -1),
and it is used to indicate the boundary condition on a boundary of the problem that
does not coincide with the extreme rectangular logical boundary of the problem.
When it is used for the latter purpose, it can have a value of 0 or 1. C(6) = 1 indi-
cates a Neumann boundary condition, and C(6) = 0 indicates a Dirichlet boundary
condition. The LATTICE default values for C(6) are C(6) = 0 for the first region,
and C(6) = 1 for all other regions. This is not suitable for a SUPERFISH problem
which usually needs C(6) = 1 for all regions. When AUTOMESH is used, it sets
up C(6) = 1 for all regions by default. When the problem area does not fill the
full rectangle defined by the first region, that is, when some region has C(2) =0,
then C(6) must be used to specify the desired boundary condition. Figure C.3.2.2
shows an example of a problem where the special boundary condition is required.
The electric field must be perpendicular to the boundaries of regions 4 and 5 which
are drift tubes. This requires Neumann boundary conditions, or C(6) = 1, which is
the default value. This means that the user can skip the entry of this parameter in
this case.

To avoid singularities in the solution of cavity modes, there must be a “drive
point” in the cavity. This is a point region that can be put anywhere in the cavity
by the user. Thereis a default location in the code, but sometimes it is in an inap-
propriate position, and the user must specify his own location. C(6) = -1 for this
point region and C(3) = 1 will do the job. The code knows that the point region
defined in the B-array is a drive point.

The B-array requires a list of logical and physical coordinates for the boundary
of each region. The first stage of any problem using LATTICE is to set up a phys-
ical picture of the geometry and assign physical coordinates (X, Y) to points on
the boundaries of the various regions. The second stage is to superimpose a regular
triangular mesh on the whole area. Fach mesh point can be assigned logical coordi-
nates (K, L) as illustrated in Fig. C.3.2.3. One can now associate logical coordinates
(K, L) with physical coordinates (X, Y) by matching the physical point with the
closest logical point. LATTICE will use this association to distort the logical mesh
into the so-called physical mesh, consisting of irregular triangles as illustrated in
Fig. C.3.2.4.
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Figure C.3.2.3: A logical mesh for a drift tube linac.
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Figure C.3.2.4: The corresponding physical (relaxed) mesh for a drift tube linac.
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The tediousness of constructing the logical mesh and making the association of
coordinates is the main reason AUTOMESH was created. Since LATTICE connects
points on boundaries with straight lines, one need only specify points at the ends of
long straight segments, but approximating a circular arc with straight lines requires
many points.

Once again the special free format is used to enter the values in the B array. The
order of the input is K(1), L(1), X(1), Y(1), K(2), L(2), X(2), (Y2), etc. Note that
the origin of coordinates in the logical mesh is (1, 1), not (0, 0). This input list is
terminated with the free format character C, which stands for “Count the number
of input values”.

As indicated in Fig. C.3.2.1, the data groups for the C and B arrays are repeated
for each region. The first region defines the largest rectangular region containing
the problem and its boundary values must contain the largest K and L values in the
mesh. The data for the second region redefines, or overwrites, the region constants
for all mesh points belonging to that region. Data for each following region over-
writes previously defined values in the same way. For example, suppose one wishes
to define a drift tube region such as region 4 in Fig. C.3.2.2. 1f this region were
given first in the input data and then followed by the larger region 1, then region 4
would be overwritten and this region would not exist in the problem.

Usually each region is closed, i.e., the data for the first and last boundary points
of the region are identical. However, it is possible to specify data for a “point region”
or a “line region”. One purpose of this would be to define the physical coordinates
of specific points, for example a drive point in a cavity problem. For point and line
regions, the input values of C(2) and C(5) are not used in the program.

The final set of data LATTICE needs for a SUPERFISH problem is a table
giving, for each boundary segment, the logical starting point, the change in K and
in L from the starting point to the second point on the segment and the logical
ending point of this segment. However, the first line of this data has a “special
coded value” for the starting K logical coordinate. This special value of K is the
number of boundary segments times 1000 plus the proper K coordinate.

Figure C.3.2.5 shows the LATTICE input for the cavity of Fig. C.3.2.2.
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1 lattice input example
*2 6 %21 10 1 1 =8 1.0000

*36 12 +37 1 skip
1 1 0.0000 0.0000 O 1 region
1 0.0000 0.0000

1

1 3 0.0000 1.0000
1 3 5.0000 1.0000
1 10 5.0000 4.0000
1t 10 0.0000 4.0000
1 47 0.0000 20.0000
79 47 39.0000 20.0000
79 10  39.0000 4.0000
67 10  33.0000 4.0000

2 2 0.0000 12.0000 O 1 region

5 42 2.0000 18.0000
1 42 0.0000 18.0000 coun
3 2 0.0000 24.5000 O 1 region
75 47 37.0000 20.0000
79 47 39.0000 20.0000
79 42 39.0000 18.0000
75 42 37.0000 18.0000
75 47 37.0000 20.0000 coun
4 0 0.0000 0.0000 O 1 region

15 3 7.0000 1.0000
15 10 7.0000 4.0000
35 10 17.0000 4.0000
35 3 17.0000 1.0000
15 3 7.0000 1.0000 coun

S 0 0.0000 0.0000 O 1 region

39 3 19.0000 1.0000
33 10 19.0000 4.0000
6t 10 30.0000 4.0000
61 3 30. 0000 1.0000
39 3 19.0000 1.0000 coun
6 1 1.0000 0.0000 O -1 region
79 47 39.0000 . 20.0000 coun
28001 1 o} 1 1 3
] 3 1 o} 11 3
11 3 (o} 1 i1 10
11 10 -1 [o} 1 10
1 10 o] 1 1 a7
1 47 1 o]} 79 47
79 47 (o] -1 79 10
79 10 -1 o} 67 10
67 10 (o} -1 67 3
67 3 1 [o] 79 3
79 3 o} -1 79 1
79 1 -1 (o} 1 1
1 42 o} 1 1 47
1 47 1 (o} 5 47
5 47 0 -1 S 42
S 42 -1 (o] 1 42
75 47 1 [o] 79 47
79 47 e} -1 79 42
79 42 -1 [0} 75 42
75 42 (o] 1 75 47
15 3 0 1 15 10
1S 10 1 o} 35 10
35 10 (e} -1 35 3
35 3 -1 (o] 15 3
39 3 (o} 1 39 10
39 10 1 o} 61 10
61 10 (o} -1 61 3
61 3 -1 (o} 39 3

Figure C.3.2.5: LATTICE input for the cavity of Fig. C.3.2.2. The data in the figure
was generated using AUTOMESH and this method of generation is recommended.
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C.3.3 SUPERFISH Input for AUTOMESH

AUTOMESH prepares an input file, called TAPET73, for LATTICE. It constructs
the logical mesh from triangles whose size and shape are specified by the user and
from the physical region boundaries. It assigns logical (K, L) coordinates and phys-
ical (X, Y) coordinates to points on the boundaries of the region. Extra line regions
can be added to the problem where requested. These lines form boundaries for
changing the size of the triangles. AUTOMESH automatically assigns boundary
conditions (GON(21) through CON(24)) to the problem and writes TAPET73. CON
values that AUTOMESH passes to LATTICE are CON(2) = NREG, CON(9) =
CONV, CON(21) = 1, CON(22) = 0, CON(23) = 1, CON(24) = 1, CON(36) =
NSEG, CON(37) = NCELL = 1.

Occasionally the default values that AUTOMESH gives for some CON values
may not be proper for the problem. 'In this case the user can change CON values
when asked for CON changes by LATTICE or he may enter TAPE73 and make
changes directly.

The input to AUTOMESH is the same for either SUPERFISH runs or POISSON/
PANDIRA runs with iwo exceptions. The first exception is the first data line,
which is the title for the problem. If column 1 is blank, AUT OMESH assigns
POISSON/PANDIRA defaults to some variables; if column 1 is not blank, the
program assigns SUPERFISH defaults. The second exception occurs when the user
elects to use cylindrical coordinates by later setting CON(19) = ICYLIN. For POIS-
SON/PANDIRA (X, Y) corresponds to (R, Z); for SUPERFISH it is the opposite,
namely, (X, Y) corresponds to (Z, R). Mathematically this may be confusing, but for
most physical problems it is the natural choice. If the user is not satisfied with this
convention, he can change it to some extent by setting NSWXY =1 in TEKPLOT.
Of course, this only changes the plots but not the expected inputs to AUTOMESH.

The first line of input to AUTOMESH is the title card. Positions 2 through
80 can be anything. Column 1 should be some nonblank character as mentioned
above. The next 8 computer words (columns 2 through 65 on the CRAY, columns
2 through 33 on the VAX) are used for output identification.

Following the first line, AUTOMESH expects one or more groups of data. Each
group consists of oné REG NAMELIST input followed by one or more PO NAMELIST
inputs. The first REG NAMELIST must include a value for NREG; the NREG is
the number of REG NAMELISTS expected. The READ structure is shown in
Fig. C.3.3.1.

NAMELIST is the standard FORTRAN input routine. Each such input starts
with a blank in column 1 followed by $“name” where “name” is the name of the
input. Here “name” is either REG or PO. Any item in the group may be entered in
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Write |——pf Stop

TAPE73

Read
$REG’s

Figure C.3.3.1: Flow chart for read statements in AUTOMESH.

any order separated by commas. If there is any question about NAMELIST, see a
FORTRAN manual. The following is a typical NAMELIST entry for the namelist

REG:

$ REG NREG=5,DX=0.08,XMAX=3,5,YMAX=2.85,IBOUND=1,NPOINT=8$
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C.3.3.1 The REG NAMELIST.

Twenty-nine quantities can be entered in this NAMELIST for each region of the
problem. Most quantities entered for the first region are used for all succeeding
regions until changed by a subsequent REG input. This is called “successive region
data overwrite”. Certain quantities must be entered, while others have meaningful
default values. The following is a list in alphabetical order describing the quantities
as used by SUPERFISH. Some can only be entered in the first REG NAMELIST
and must not be changed in sebsequent regions. These are marked by ¢ before the
variable.

Table C.3.3.I Region Namelist Variables.

Name Default Description

¢ CONV 1.0 Conversion factor for length units. If CONV = 1.0, units
are centimeters. To use other units, set CONV to the num-
ber of centimeters per unit desired. CONV is the same as
CON(9) in the input to LATTICE and should be entered
for the first region only.

CUR 0.0 If the region is a drive point, CUR should be set to 1. If
another region follows, reset CUR to 0 in that next region.
This is the constant C(3) in the Sec. C.3.2 Input for
LATTICE.

DEN 0.0 Length of cell for multicell problems. This is C(4) in
LATTICE region input. See Section C.3.2.

¢ DX none  The requested width of triangles in the mesh for the first
region. It must not be changed for subsequent regions.

o DY (cc DX) The requested height of triangles in the mesh for the first
region. If DY is not specified the default value is either
V3% DX/2 if ITRI = 0, or 1, or DY = DX if ITRI = 2
(right triangle option). It must not be changed for subse-
quent regions.

IBOUND -2 A special region boundary indicator. See discussion under
the sixth region constant C(6) in the Input for LATTICE.
If the present region is to be a new drive point, the user
must set IBOUND = -1.
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Table C.3.3.I (cont’d.) Region Namelist Variables.

Nanie Default

Description

IPRINT 0

IREG (n)

$ ITRI 0

¢ KMAX  none*
O KREG1 none*
¢ KREG2 none*
$ LMAX  none*
¢ LREG1 none*
$ LREG2 none*

If IPRINT = 1, special diagnostic printout is provided by
the “logical path-finding” routine. Logical and physical
coordinates are also printed for any non-zero value of
IPRINT. This information is in file OUTAUT. (IPRINT
here is not the same as CON(32) in Table C.3.2.1.)

An arbitrary pumber identifying the region. The default
value is 1 for the first entered REG NAMELIST and is
incremented by 1 for each succeeding REG NAMELIST.

The type of triangle to be used for the mesh in the region.
ITRI = 0 means equal weight; I'T'RI = 1 means isosceles;
and I'TRI = 2 means.right. The distinction between equal
weight and isosceles is the way that the relaxation is done
from the logical mesh to the physical mesh.

Used to refine the mesh in a user-defined rectangle of the
problem area. When these values are entered, they asso-
ciate a logical mesh mumnber with a physical position.
Thus, KMAX corresponds to XMAX, LMAX corresponds
to YMAX, KREG1 to XREGI, etc. This allows the user
to force a smaller mesh step in a given region. For exam-
ple, suppose XREG1 = 10.0, XREG2 = 20.0, KREG1

= 10, KREG2 = 110. This gives (KREG1 - 1) = 9 mesh
steps in the X-direction of length 10.0/9 = 1.111 up to
the location X = XREG = 10, giving a very coarse mesh.
From X = 10.0 to X = 20.0 there will be (KREG2 -
KREG1) = 100 mesh steps of length DX = 10/100 = 0.1,
giving a finer mesh. The size of the mesh beyond X =
20.0 will depend on the difference between KMAX and
KREG2, and between XMAX and XREG2. The same
principle applies to the Y-direction. The values of these
variables are global and hence should be entered for the
first region and not changed in subsequent regious.

*If these values are not entered, the code assigns proper values (see under

XREG1, XREG2, etc., below).
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Table C.3.3.I (cont’d.) Region Namelist Variables.

Name

Default

Description

& LINX

o LINY

MAT

¢ NCELL

& NDRIVE

NPOINT

0

none

A special indicator for vertical line regions.

LINX = 0 produces vertical line regions at the locations
where mesh size changes occur (XREG1 and XREG2).
LINX = 1 produces no vertical line regions at the locations
where mesh size changes occur. This parameter was intro-
duced into the code in April of 1986. LINX = 1 can help
LATTICE converge u~nder some circumstances.

A special indicator for horizontal line regions. It works
the same way as LINX above, but for horizontal line
regions at locations where mesh size changes occur

(YREG1 and YREG?2).

The material code for the region. MAT = 0 means that
all points in the region are to be omitted from the prob-
lem and requires the use of the special boundary indicator
IBOUND. The other possible values of this parameter are:
MAT = 1, air or vacuum.
= 2, 3, 4, 5; Regions with different values of dielec-
tric constant k. and relative permeability Km,.

The number of cells in a multicell SUPERFISH problem.
It is not needed in AUTOMESH or LATTICE, but is

passed through the CON array to SF01. It corresponds
to CON(37).

Special indicator for drive points.

If NDRIVE = 0, AUTOMESH is to assign the drive point.
If NDRIVE = 1, AUTOMESH expects the user to even-
tually supply a one point (NPOINT = 1) region. When
AUTOMESH detects NPOINT = 1, it automatically sets
CUR = 1 and IBOUND = -1 for that region. This special
indicator was installed in the code in July of 1986 to cor-
rect a problem. Previously the code might assign two
drive points and use its own in place of the user-supplied
point.

The number of segment endpoints to be entered in the
PO NAMELIST that follows this REG NAMELIST.
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Table C.3.3.I (cont’d) Region Namelist Variables.

Name Default

Description

$ NREG none

O XMAX none

O XMIN none

¢ XREG1 XMAX

¢ XREG2 XMAX

¢ YMAX none

O YMIN none

¢ YREG1 YMAX

¢ YREG2 YMAX

The number of sets of REG NAMELIST data to be en-
tered for this run., This must be entered in the first REG
set and should not be changed in subsequent REG sets.

Maximum physical X value in the problem. For
3-dimensional problems with cylindrical syminetry where
the coordinates are denoted by (7, = 0,z) XMAX is
the maximum value of z.

Minimum physical X value in the problem. For
3-dimensional problems with cylindrical symmetry where
the coordinates are denoted by (r,¢o = 0,z) XMIN is

the minimum value of z.

A line region is added at XREG1. If KREGI1 is not set,
the width of the triangle will approximately double to the
right of XREG1. If KREG1 is set, the triangle width will
be determined as described under KMAX, etc. above.

A line region is added at XREG2. If KREG?2 is not set,
the width of the triangles will approximately double to
the right of XREG2. If KREG2 is set, the triangle width
will be determined as described under KMAX, etc., above.

Maximum physical Y value in the problem. For
3-dimensional problems with cylindrical symmetry where
the coordinates are denoted by (r,p = 0,2) YMAX is
the maximuin value of r.

Minimum physical Y value in the problem. For
3-dimensional problems with cylindrical symmetry where
the coordinates are denoted by (v, = 0,z) YMIN is

the minimum value of r.

A line region is added at YREG1. If LREG1 is not set,
the height of the triangle will approximately double above
YREG1. If LREGL1 is set, the triangle height will be deter-
mined as described under KMAX, etc., above.

A line region is added at YREG2. If LREG2 is not set,
the height of the triangles will approximately double above
YREG2. If LREG2 is set, the triangle height will be deter-
mined as described under KMAX, above.
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A point is specified by giving its coordinates relative to the origin point (X0, Y0).
The default value of (X0,Y0) is (0,0). A point can be specified either in cartesian
coordinates (X, 1) relative to (X0,Y0) or in polar coordinates relative to (X0, ¥ 0).
When defining an arc of a circle between the beginning and ending points of a
boundary segment, the origin point (X0,Y0) must be moved to the location of the
center of the circle. See Fig. C.3.3.2. If the endpoint is specified by cartesian coor-
dinates, the radius of the circle is calculated by the program to be

R= /(X — X0)2 + (Y - Y0)? (C.3.3.1)

Alternatively, the endpoint may be specified by polar coordinates. The user en-
ters the radius R and the angle THETA in degrees relative to the X-axis.

The only hyperbolas defined by the program are symmetric about -the line
X =Y, i.e., are defined by the equation

R? =2XY (C.3.3.2)
HEW i SEGMENT QF
Y ENOPOINT BOUNDARY CURVE

o)

¢ Yp)

—mececsvcrreheccsefonve

]
]
.
3
3
t

0,0 X

©.0) ®

Figure C.3.3.2: Meaning of X0, Y0, R, and # for circular segment of regional bound-
ary. (X —X0)>+(Y —Y0)? = R* 6 is in degrees. Note that X and Y are relative to
the origin (X0, Y0). X0, YO0, and R must be calculated self-consistently with X, ¥,
using Eq.(C.3.3.1) to an accuracy of one part in a thousand when the endpoint is
in polar coordinates R, 6.

U, -
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Y SEGMENT OF
(Z) BOUNDARY CURVE
\‘ ,
\ //
\ /
/
NEW — ] ’
END POINT
45°
PREVIOUS
END POINT
X
(R)

Figure C.3.3.3: Meaning of X, Y, R for hyperbolic segment of regional boundary
R? = 2XY; the choice of X and Y must keep the hyperbola in the first quadrant.
The quantities R, X, and Y, must be calculated self-consistently to one part in a
thousand, and likewise R, X and Y must be self-consistent to the same accuracy.

Figure C.3.3.4 gives an example of AUTOMESH input. It is the file used to generate
the three cell cavity LATTICE input in Figs. C.3.2.3. and C.3.2.4
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1 lattice input example

$reg xreg=b,dx=.5,xmax=39.,ymax=29. ,npoint=13,ncell=3$
$po x=0.,y=0.$

$po x=0.,y=1.%

$po x=3.,y=1.%

$po x=3.,y=4.%

$po x=0.,y=4.%

$po x=0.,y=29.$

$po x%=39.,y=29.%

$po x=39.,y=4.%

$po x=31.,y=4.%

$po x=31.,y=1.$

$po x=39.,y=1.$

$po x=39.,y=0.%

$po x=0.,y=0.$

$reg npoint=5,mat=2,den=9. $
$po x=0.,y=15.%

$po x=0.,y=29.%

$po x=5.,y=29.$

$po x=5.,y=165.$ -
$po x=0.,y=16.%

$reg npoint=5,mat=2,den=21.5$
$po x=34.,y=29.%

$po x=39.,y=29.%

$po x=39.,y=15.$

$po x=34.,y=15.%

$po x=34.,y=29.%

$reg npoint=5,mat=0, den=0.$ .
$po x=5.,y=1.%

$po x=5.,y=4.%

$po x=13.,y=4.$%

$po x=13.,y=1.%

$po x=5.,y=1.%

$reg npoint=5,mat=0%

$po x=16.,y=1.$

$po x=16.,y=4.%

$po x=27.,y=4.%

$po x=27.,y=1.%

$po x=16.,y=1.%

Figure C.3.3.4: Example of AUTOMESH input for three-cell cavity shown in
Fig. C.3.2.2.
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The input variable NEW was introduced to fix small glitches in the logical mesh
caused by an inherent limitation of AUTOMESH. Unless corrected, these glitches
can affect LATTICE and cause inaccuracies in SUPERFISH. If the glitch occurs
where two regions abut or where a region comes close the the mathematical bound-
aries of the problem, then sometimes the use of NEW will help.

C.3.3.3 Boundary Condition Data Set Up by AUTOMESH.

The ordinary boundary condition indicai.o.rS, CON(21) through CON(24) are set
to their default values for SUPERFISIH problems:

CON(21) = NBSUP = 1
CON(22) = NBSLO = 0
CON(23) = NBSRT = 1
CON(24) = NBSLF = 1

The region special boundary indicators C(6) = IBOUND have been discussed in
Sec. C.3.2 above.



Chapter C.4
OUTPUT FROM LATTICE

The function of LATTICE is to find the physical mesh on which the problem is
to be solved and to write the necessary mesh and problem information onto a file
called TAPE35. LATTICE also produces an output file called OUTLAT.

The information contained in OUTLAT is usually not needed but may some-
times be helpful if something goes wrong in the solution process. OUTLAT contains
for each region, the region material number, the total current, the current density,
the region boundary indicator IBOUND, and a list of the region’s logical and physi-
cal boundary points. This is followed by a history of the mesh relaxation interation,
which consists of the z-residual, 7., pz, y-residual, n, and p,. The quantities 7, and
7y are the x and y rates of convergence of the relaxation process. The quantities p,
and p, are the over-relaxation factors. -

After the iteration history, a table is printed giving the area of each region and
the current density in each region. This is followed by a printout of the problem
constants, that is, the CON array. Those CON’s that have been changed in the
input to LATTICE are flagged. '

In addition, any error messages generated by running LAT'TICE are also recorded
in this file. Finally, if CON(32) = IPRINT = -1, LATTICE prints a map of the
z and y vectors, that is, it gives the coordinates of each mesh point. Figure C.4.1
illustrates an OUTLAT file.

P2 R S Ak T A ~ Ay Py
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beginning of lattice execution

dump 0 will be set up for superfis

ssuperfish dtl test problem

region number = 1 material = 1

total current = 0.0000 current density = 0.0000 0-zoning
region boundary indicator= 1

k 1 b 4 y
1 1 0.00000 0.00000
i 78 0.00000 5.00000
1 93 0.00000 7.00000
1 146 0.00000 21.10080
B8 146 4.,28430 21.10080
58 93 4.28430 7.00000
68 78 4.28430 5.00000
§8 63 4,28430 4.03020
13 58 9 o -1 68 i
14 - E8 1 -1 0 1 i

relaxation parameters, 5582 unknown points.

elapsed time = 0.7 sec.
cycle residx etax rhox residy etay rhoy
i 1.3897e-02 1.0000 1.6000 1.7218e-04 1.0000 1.6000
2 1.6932¢-02 0.6661 1.6000 2.0059e-04 0.6466 1.6000
3 1.1466e-02 0.6772 1.6000 1.34140-04 0.6687 1.6000
4 7.63060e-03 0.6666 1.6000 9.1041e~06 0.6787 1.6000
5 5.1861e-03 0.6795 1.6000 6.2746e-05 0.6892 1.6000
6 3.4363e-03 0.6626 1.6000 4.3637e-05 0.6955 1.6000
7 2.3603e-03 0.6871 1.6000 3.0665e-06 0.7004 11,6000
81 1.0057e-05 0.9437 1.9003 3.0921e-11 0.7928 1.7676
82 9.47270-06 0.9419  1.9003 2.4441e-11 0.7904 1.7676

iteration converged
elapsed time = 2.6 sec.
generation completed

calculated current densities and areas

region current density area
number (amps/cm**2) (cm#**2)
1 0.0000 78.9743
2 0.0000 0.0000
3 0.0000 0.0000
4 0.0000 0.0000
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dump number O has been written on tape35.

input or default value
problem constants and variables

con( ) = » superfish dtl test problem
( 2)= 4, nreg
con{ 6) = 0, mode
( 9) = 1.000e+00, conv
(18) = 0, nperm
(19) = 1, icylin
( 20) = 1.000e+00, xm
(21) = 1, nbsup
con( 22) = 0, nbslo
(23 = 1, nbsrt
con( 24) = 1, nbslf
con( 29) = 0, limtim -
( 30) = 10, maxcy
( 32) = 0, iprint
( 34) = -1, inact
(38) = 0, nodmp
con( 36) = 14, nseg
(107) = 0.000e+00, zctr

(108)

1.800e+02, dphi

solution
problem constants and variables

( 3 = 146, 1lmax

( 4) = 58, kmax

( B) = 60, imax

( 11) = 6122, nair
(12) = 0, nfe

( 13) = 0, ninter
(109) = 8880, itot
(118) = " 10000, maxdim
(119) = 5000, nwdim

Figure C.4.1: Sections of the file OUTLAT for the problem
“superfish dtl test problem.”
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Input to SUPERFISH

Since SUPERFISH gets most of its required input from TAPE35, the user has
little to input except CON’s. SUPERFISH asks for a dump number and for CON

changes.
The following list gives the CON’s that affect the SUPERFISH calculation.

CON(18) = NPERM Number of sets of relative permittivity and permeability

(ke and k,,) data to be read in. NPERM is used when
regions have material codes (MAT) not equal to 0 or 1
in the REG NAMELIST. After entry of NPERM, the
code will ask NPERM times for an input line of the
form: “MATER EPSIL FLOMU”, where MATER is
the material code number in the region having relative
permittivity EPSIL and relative permeability FLOMU.

CON(19) = ICYLIN A flag to indicate the symmetry of the problem.
ICYLIN = 1 (default) means the problem has cylindri-
cal symmetry.
ICYLIN = 0 means the problem has two-dimensional
cartesian symmetry.

CON(30) = MAXCY Maximum number of iterations to find resonant
frequency. Default value is 10; it can be changed if
convergence is slow.

CON(32) = IPRINT If IPRINT is odd, a map of the solution array A is
written on OUTFIS file. Default value is 0. This may

be useful in debugging.
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CON(34) = INACT

CON(35) = NODMP

CON(62) = NSTEP

CON(63) = DELKSQ

CON(65) = FREQ

CON(66) = XKSQ

CON(73) = IPIVOT

A flag to allow interactive control during SUPERFISH
frequency iterations. If INACT # —1, calculation is
stopped at end of each iteration and user is asked to type
“e0”, “no”, or “in”. If “go”, iteration continues; if “no”,
iteration is ended; if “in”, user is asked for new iteration
values of numbers in the CON array and iteration contin-
ues with the new values. The number of iterations is still

limited by CON(30). The default value of INACT is -1.

A flag which indicates whether the output of the

SUPERFISH run is to be written on TAPE35.

If NODMP = 0 (default value), a new dump is written
to TAPE35.

If NODMP = 1, no dump is written.

Number of steps in k. If NSTEP # 0, SUPERFISH
makes a search in k? to aid the user in locating possible
resonant frequencies. The program makes NSTEP steps
through a range of k? = euw? determined by CON(63)
and CON(65) or CON(66) defined below. The default
value of NSTEP is 0.

The size of the steps to be taken in k? during the search

for a resonant frequency. This nuinber is used only when
CON(62) # 0.

An estimate of the resonant {requency to start an iter-
ative convergence to a final resonant frequency or a
starting frequency for a step search in k? . If making a
step search and CON(65) is not zero, then CON(66) is
ignored.

Starting value of k* to be used in the search for a reso-
nant frequency. This number is used only when CON(62)
# 0 and CON(65) is zero.

A flag to indicate the type of pivoting desired in the
numerical procedure to find the fields. The default is 0,
no pivoting,.

IPIVOT = 1 gives partial pivoting, and

IPIVOT = 2 gives complete pivoting,.

See Sec. 13.4 for an explanation of the pivoting procedure.
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CON(86) = EPSIK

CON(87) = IRESID

PART C CHAPTER 5

Convergence criterion for SUPERFISH iteration. When
|Ak? / k* < EPSIK iteration stops. See also CON(30).
Default value is 1.0E-04.

If IRESID = 1, the code calculates the residual of the
solution matrix A and writes the result to the OUTFIS
file. The default is 0.

3



Chapter C.6

Output from SUPERFISH

SUPERFISH writes information to TAPE35 and an output file called OUTFIS
as well as the information it writes to the terminal. Examples of terminal output
are given in Chapter 12. The principal information on the solution is written to
TAPE35 as dump 1 (or higher). The analysis of the solution information is done by
the output routine SFO1, which reads the proper dump information from TAPE3S5.

The output file OUTFIS contains a list of the CON’s values used for the solu-
tion, a list of the material properties x. and k,, for each region, and an iteration
history. The history is the same as that sent to the terminal.

The dump that SUPERFISH writes to TAPE35 can be read by TEKPLOT and
used to plot field lines.




Chapter C.7
Input and Output for TEKPLOT

C.7.1 Input for TEKPLOT

TEKPLOT will plot the physical boundaries and mesh resulting from a LATTICE
output. It will also plot the field lines from SUPERFISH output. More than one
plot can be made in the same run by repeating the first two input data groups. The

structure of the input is shown in Fig. C.7.1.1.

STOP

READ:
XMIN
XMAX
YMIN
YMAX

RUN

r

Figure C.7.1.1: Flow diagram for Read Statements in TEKPLOT.
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This program uses the special free format described in Sec. C.3.1. The meaning
of the parameters is given in the table below.

Name Default

Description

NUM 0
ITRI 0
NPHI 0
INAP 0
NSWXY o*

XMIN XMIN
XMAX XMAX
YMIN YMIN
YMAX YMAX

The TAPE35 “dump” nnmber on which the (X, Y) coordi-
nates of the mesh, and (if NUM > 0) the field values have
been written.

An indicator to specify whether the triangular mesh is to be
plotted or only the physical boundary lines of regions.
ITRI = 0 means do not plot the triangular mesh.

= 1 means plot the triangular mesh.

The number of field lines to be plotted. The program does
not plot lines for the smallest and largest field values, one

of which is usually just a point. For TM modes with cylin-
drical geometry the program plots lines of constant

7 % Hy(z,7), which are parallel to electric field lines. For
cartesian geometry it plots contours of constnt H,. For most
problems a good number for NPHI is between 20 and 50.

An indicator for an additional Read statement.
INAP = 0 means do not read AMIN and AMAX,

— 1 means read (on the next data line) the minimum
and maximum values (AMIN and AMAX) of the equipoten-
tial lines to be plotted. The values plotted are
(AMAX-A),(AMAX — 2% A),..., (AMIN + A),
where A is (AMAX-AMIN)/ (NPHI+1).

An indicator allowing an interchange of the X and Y axes.
NSWXY = 0 means no interchange;
NSWXY = 1 means interchange.

The limits of the plot, which may be any part of the problem
rectangle. The variables XMIN, XMAX, YMIN and YMAX
should not be confused with variables of the same name

that are entered in AUTOMESH and determine the size of
the problem rectangle, however, if allowed to default, they
will take on the values defined in AUTOMESH.

*Or last input value.



December 30, 1986 PART C CHAPTER 7 SECTION1 3

After making the plot, TEKPLOT waits for a carriage return before prompting
the user for more input. Upon receiving the carriage return, TEKPLOT asks for a
dump number with accompanying input. To terminate the run the user enters -1 S
for the dump number. An example of TEKPLOT input is given in Fig. C.7.1.2.

tekplot

7type input data- num, itri, nphi, inap, nswxy,

f 8

input data

num= 0 itri= 0 nphi= 0 inap= 0 nswxy= 0

plotting prob. name = full size cavity cycle = 0

7type input data- xmin, xmax, ymin, ymax

7 80. 125. 0. 25.

input data

xmin= 80.000 xmax= 125.000 ymin= 0.000 ymax= 25.000

7type go or no
7 go

Figure C.7.1.2: An example of interactive input to TEKPLOT.

C.7.2 Output of TEKPLOT

In addition to providing the plots described above, TEKPLOT also makes an
output file named OUTTEK, which contains a list of the contour values that were
plotted. TEKPLOT will only plot closed regions.

C.7.3 System-dependent Plot Routines in TEKPLOT

TEKPLOT uses PLOT10 commands. If PLOT10 is not available at the user’s
installation, then the user will have to go into the FORTRAN code and substitute
commands from his own graphics system. The calls to PLOT10 and their functions
are listed at the beginning of the source code to facilitate substitutions.
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Further SUPERFISH Output
Routines — SFOn :

Presently there is no standard program to display the auxiliary properties of an
rf cavity. The reason for this is that one is interested in different things for different
designs. The useful quantities for a drift-tube linac (DTL) and a radio-frequency
quadrupole (RFQ) are not the same. Even in a DTL, the desired output would be
different for single cell and multiple cell problems. We are working on a universal
SFO routine, but at present there are only SIFO’s for particular problems. Below we
give an example of an SFO that works for one half of a DTL cell and for multicell
problems.

SFO1 is a routine used to extract.information from the solution produced by
SUPERFISH for a DTL. Thus, the inputs to SFO1 tell the code what sort of answers
are wanted. The code asks the user to specify the SUPERFISH output “dump
number” and then asks for changes in the problem constants. There are eight
problem constants that can be changed meaningfully at this stage. These are listed
below.

The auxiliary quantities printed out by SFO1 have been described in Sec. C.1.2.
There is no universal agreement on these definitions and therefore comparison with
the output of other codes such as URMEL, CAVIT, etc., should be done with care.

There exists another postprocessor called SHY which calculates the value of the
electric field in the TM mode over an area in the XY-plane. It has been deactivated
but will be activated again in the near future.



2 PART C CHAPTERS8

CON(37) = NCELL

CON(50) = NPEG

CON(78) = LINT

CON(81) = RSTEM

CON(100) = VSCALE

CON(106) = BETA

CON(107) = ZCTR

CON(108) = DPHI

December 31, 1986

Number of cells in multicell problems. See Secs. C.3.2.
or C.12.4

Number of boundary segments on which power and
frequency perturbations are to be calculated. Default
value is 0. If the user enters a nonzero number into
CON(50), the program will ask for a list of segment
numbers. The segment numbers are separated by
spaces. A negative segment number indicates that it
is to be calculated as if it were a drift tube stem of
radius RSTEM = CON(81).

The logical L-coordinate of the line along which the
normalization integral [ E.dz is calculated. The
default. is LINT = 1, the bottom line of the logical
mesh. If the z-component of the electric field vanishes
on this line, the normalization is ill-defined, and the
user must choose some other line. If LINT # 1, or
the line L = 1 is not the horizontal axis (Y = 0) the
transit-time factor and related quantities are not cal-
culated.

Radius in centimeters of the assumed drift tube stem.
Default value is 1.0. It is used in the calculation of the
power dissipation and frequency perturbation.

Normalization factor for average axial electric field.
VSCALE is the user-desired, average electric field on
the cylindrical (z) axis in volts/meter. The default
value is 1.0E406 V/m.

The particle velocity divided by the velocity of light.
If no value is entered, BETA will be calculated from
ZCTR = CON(107) and DPHI = CON(108) on the

assumption that the accelerated particle is a proton.

The z-coordinate (cylindrical coordinates) of the
“synchronous particle” when the electric field is max-
imum. Usually, this is the same as the geometric center
of the gap between two drift tubes in an Alvarez linac.
The default value is zero.

The change in the rf-phase in degrees as the
“synchronous particle” crosses the portion of the cavity

defined by LATTICE. The default value is 180 degrees.



Chapter C.9
PAN-T

PAN-T is a code that calculates the temperature distribution in the walls of an
rf-cavity given the electric field at the walls, the thermal conductivity of the wall
materials, and the temperature at the outer surface of the wall. The code was written
around 1982 and has been used both at Los Alamos and at Chalk River Nuclear
Laboratories in Canada. Presently it is not compatible with the standard versions
of AUTOMESH, LATTICE, and SUPERFISH, which are required to produce the
input for this program. As soon at this code is available for use with the standard
versions of the POISSON Group Codes, users will be notified and a more detailed
description of its usage will be given.

C.9.1 The Basic Physics of PAN-T

Let us assume that the heat flow in the walls of an rf-cavity has come to equilib-
rium, so that the temperature T'(z,y, z) and the heat flow vector H(z,y, z), mea-
sured in units of (watts/cm?) are independent of time. It is well known that the
heat flow is proportional to the gradient of the temperature, namely,

H = -K(=z,y,z)VT, (C.9.1)

where K is the thermal conductivity of the wall material, which will be allowed to
depend on position in space.

The source of heat is the dissipation of the rf-field in the walls of the cavity.
This can be calculated from the field at the walls and the electrical resistivity of the
wall material. Let this source be called Q(z,y, z). Its units are watts/cm®. Energy
conservation requires that the amount of heat crossing the surface S of a closed
volume V must be equal to the amount of heat generated in the volume. This gives
the integral relation

fs H.dS = / Qdv. (C.9.2)

1
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Using Green'’s Theorem, we immediately get the differential relation
V-H=Q. (C.9.3)

When Eq.(C.9.1.1) is inserted into this equation, one obtains the generalized Poisson
equation,

V. (KVT) = -Q. (C.9.4)

It is easily seen why the solution of this problem is an obvious extension of the
POISSON Group Codes. In fact, the author of the codes has used a modification
of PANDIRA to obtain the solution. This is probably the source of the name for
the program (PANdira for Temperature.) The thermal conductivity function K
in PAN-T corresponds to the reluctivity function v of the magnetic problem. In
PANDIRA ~ can be a function of the magnetic field. This makes the generalized
Poisson equation nonlinear. In PAN-T, the author of the code has restricted the
function K to be a linear function of position. We are further restricted to two
cartesian dimensions or to cylindrical symimetry in three dimensions. This means
that either

K(z,y) =A+ Bz +Cy (C.9.5)

in cartesian coordinates, or
K(z,7)=A+Bz+Cr (C.9.6)

in cylindrical coordinates. In most applications, the wall is metallic and we can set
B = C =0 in the input data.

The specialization of Eq.(C.9.1.4) to cartesian, two-dimensional space requires a
slight redefinition of the source term and the thermal conductivity. One must define
the source Q(z,y) as having dimensions of watts/ cm?, and the conductivity K as
having dimensions of watts/deg C. The heat equation is written

or

8, 6_98T 8
5;(1-{-6-:13-) + @(Kgy‘ = Q (097)

In cylindrical coordinates, with all functions independent of the cylindrical angle
0, the heat equation can be written

0 .oT e oT
57: (rK 5;) + a (TIX —a-z-) =rQ. (C.9.8)

The code replaces K and Q by 7K and rQ when finding the solution. These quan-
tities likewise have reduced dimensions of watts/deg C and watts/cm?.
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C.9.2 Preparation of Input File

> PAN-T requires as input either file TAPE37 created by LATTICE, or-file TAPE3S
prepared by SUPERFISH. If the user is going to work from TAPE37, then he must
somehow generate and include in this file the heat source term Q. If working from
the output of SUPERFISH, the source term is generated automatically and included
in TAPE38.

PAN-T recognizes cavity walls by the material numbers assigned to the regions
containing. the wall material. A region with material number MAT having values
between 6 and 10 is assumed to be wall material. The material number for the vac-
uum or air portion of the cavity is given as MAT = 1. The normal way of entering
MAT numbers is in the SREG NAMELISTS$ input to AUTOMESH. Figure C.9.2.1
shows an example of an input to AUTOMESH for a drift-tube linac that specifies
two wall regions. :

When AUTOMESH is executed with this as an input file, it generates an out-
put file called TAPE36 that hecomes the input file to LATTICE. LATTICE in
turn produces a file called TAPE37 that becomes the input for SUPERFISH. The
user runs SUPERFISH in the normal way and this generates an output file called
TAPE38. TAPE38 contains most of the information needed by PAN-T, except for
the boundary conditions for the thermal problem, the thermal conductivities of the
wall materials, and the fixed temperatures on the outer walls of the cavity. The
format for entering this information is.described in the next section.




4 PART C CHAPTER9 Section 2 December 19, 1986

xcell 31 lampf tank 1
$reg nreg=3, mat=1, dx=0.5, xmax=7.845, ymax=50.0,
yregl=12.0,yreg2=24.0, npoint=9 $
$po x=0.0, y=0.0 $
$po x=0.0, y=47.0 $
$po x=0.0, y=50.0 $
$po x=7.845, y=60.0 $
$po x=7.845, y=47.0 $
$po x=7.845, y=9.0 $
$po x=7.845, y=0.75 $
$po x=7.845, y=0.0 $
$po x=0.0, y=0.0 $
$reg mat=6, npoint=5 $
$po x=0.0, y=47.0 $
$po x=0.0, y=50.0 $
$po x=7.845, y=50.0 $
$po x=7.845, y=47.0 $
$po x=0.0, y=47.0 $
$reg mat=7, npoint=7 $
$po x=7.845, y=9.0 $
$po x=4.135, y=9.0 $
$po nt=2, x0=4.135, y0=7.0, r=2.0, theta=180.0 $
$po x=2.135, y=1.25 §
$po nt=2, x0=2.635, y0=1.25, r=0.5, theta=290.0 $
$po x=7.845, y=0.75 $
$po x=7.845, y=9.0 $

Figure C.9.2.1: Input to AUTOMESH for a DTL cell containing two regions with
different wall materials denoted by MAT= 6 and 7.
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C.9.3 Special Input to PAN-T

PAN-T uses the special FREE format described in Section C.3.1 above. When
running interactively from the terminal, the program prompts for all data with self-
explanatory messages. Figure C.9.3.1 shows an example of an interactive session.
The computer response numbers are fictitious, but this should give the idea.

The printed output is saved in a file called OUTPANT. The user can get a visual
idea of the temperature isotherms by running TEKPLOT just as he would for any
SUPERFISH problem. Since we do not have a recenl run of PAN-T, we cannot
show a plot of the problem: “xcell 31 lampf tank 1.”
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?type "tty" or input file name

7 tty
?type input dump number
7 1

beginning of pant execution from dump number 1
problem name= xcell 31 lampf tank 1

7type input values for con(?)

*21 0 1 01 s

input for conductivity, mater = 6 k=atb*z+c*r (w/cm-degc)
Ttype a b ¢
7?7 4.00.00.0
input for conductivity, mater = 7 k=atb*z+cxr(w/cm-degc)
?type a b ¢
? 4.0 0.0 0.0
maté}ial properties
region no. material no. a b c
(w/cm-degc) )
2 7 4.000 0.000 0.000
3 6 4.000 0.000 0.000

7type input for mat. no. and upper bound. fixed temp.
? 7.30.0

7¢type input for mat. no. and right bound. fixed temp.
? 6.40.0

elapsed time = 1.0 sec.
cycle amin amax
0 +1.0000e-06 +1.2345e-02
i +1.0000e-06 +1.2345e-02
solution converged in 1 iterationms.
elapsed tim= 2.0 sec.
?type input dump number.
7 1
all done

Figure 9.3.1: An example of an interactive session with PAN-T.
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Diagnostic and Error Messages

C.10.1 Messages from AUTOMESH

Diagnostic and Error messages printed from AUTOMESH can be broken into three
categories: 1. those starting with the word “ERROR”, 2. those starting with the
word “TROUBLE”, and 3. two additional messages. In the sections below, we list
the messages, briefly define the problem and give a possible solution.

The following five conventions make the explanations simpler to write.

1.

CHANGE THE MESH SIZE — usually the mesh is too coarse; user should rerun
the problem with a finer mesh; sometimes a slight mesh size change will suffice.

(X1,Y1)/(R1, THETA1) — the Cartesian/polar coordinates of the previous
point (from).

(X2,Y2)/(R2, THETA2) — the Cartesian/polar coordinates of the present
point (to).

R --- (printed as the value of a variable) means that this variable has been set
out of range and not supplied by the user.

(--) means computer prints out the value.

REGION (--)/0.XK. — AUTOMESH has successfully found paths for all boun-
dary points in this, (--), region; if errors occur in one region, AUTOMESH
proceeds to the next.
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C.10.1.1

1, M-

5. "--—-

6. Me--

Messages containing “ERROR”

ERROR --- DATA FOR THIS CIRCLE FROM (X1,Y1)/(R1, THETA1)"

TO (X2,Y2)/(R2, THETA2) IS INCONSISTENT ...

Either one or both coordinates are not given or the two points with
center at (X0,Y0) do not lie on the same circle to a relative accuracy of
1073, Correct the input data for the listed coordinates. The user should
check that the coordinates are given RELATIVE to (X0,Y0). Message
from subroutine DATUPS.

ERROR --- DATA FOR THIS LINE ARE INSUFFICIENT ..."
Either one or both coordinates are not given. Correct the input data
for the listed coordinates. Message from subroutine DATUPS.

ERROR --- DATA FOR THIS HYPERBOLA FROM (X1,Y1) TO (X2,Y2) IS
INCONSISTENT" ...

Either one or both coordinates are not given, R is not given, or the two
points do not lie on the same hyperbolic branch to a relative accuracy

of 1073, Message from subroutine DATUPS.

ERROR --- X/Y IS OUT XMIN, XMAX/YMIN, YMAX LIMITS ..."
The X or Y point printed is less or greater than the given minimum or
maximum value for X/Y in the first REG input line. Correct input.

Message from DATUPS.

ERROR --- (KMAX + 2) x (LMAX + 2) = (~-) IS GREATER THAN
PROGRAM DIMENSIONS OF (--) ..." .

The total number of mesh points have exceeded the maximum value
dimensioned. Cut mesh size or increase parameter MXDIM and recom-
pile as directed by the complete diagnostic message. (Note: Versions

of the code received from us before June 1986 have a different diagnos-
tic message and do not give directions for changing MXDIM.)

Message from subroutine SETXY.

ERROR --- TROUBLE IN FINDING THE PATH OF A POINT ..."
AUTOMESH encountered trouble in both “forward” and or “backward”
pass in subroutine LOGIC. To correct, decrease mesh size near the
point and try again. Message from main program.
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C.10.1.2 Messages containing “TROUBLE”

"--- TROUBLE --- DIMENSIONS FOR THE NSEG ARRAYS, EXCEEDED NSG OF

1.

3

a.

(==) ..."

AUTOMESH has exceeded the maximum number of boundary segments
dimensioned in the program. Increase parameter NSG and recompile

as directed. Message from subroutine FISHEG. (Note: Versions of the
program received before June 1986 have no directions for increasing
NSEG. The user can only decrease the number of segments in the input.)

TROUBLE --- NPOINT = (--), EXCEEDS DIMENSION OF (--)"

The number of PO entries for this region has exceeded the maximum
number dimensioned. To correct, decrease the number of points or in-
crease parameter NPTX and recompile as directed. (Note: Versions of
the program received before June 1986 have no directions for increasing
NPTX. The user can only decrease the number of points in the input.)
Message from main program or subroutine INSERT.

TROUBLE --- THE PROGRAM FOUND THE SAME (X, L) COORDINATES
FOR THE FIRST AND LAST POINT OF THIS CURVE ..."

The program has assigned the same mesh point in either vertical or
horizontal direction for (X;, Y1) and (X, Y3). This usually means mesh
size is not fine enough.

Message is printed from subroutine LOGIC. The last line of the message
prints the phrase “FORWARD PASS” or “BACKWORD PASS.”
AUTOMESH executes subroutine LOGIC twice—first in a “forward”
search, and a second pass in a “backward” search—to find the path of
the current segment. Then the program chooses the path with the small-
er nummber of segments with no errors. A fatal error occurs if BOTH
directions encounter “TROUBLE.” To correct, change mesh size.

TROUBLE --- PROGRAM DIMENSIONS 1000 FOR THE KL ARRAYS ARE
INSUFFICIENT"

The program has difficulty in finding the path for this segment and thus
has exceeded the dimension allocated for storage of the path array.

See 3a. above.

"---~ TROUBLE --- LOGICAL PATH IS TRAPPED AT K = (--), L = (--)"

The program cannot find the path for this current segment. See 3a above.
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6.

10.

"--- TROUBLE --- A POINT WITH (K
"--- TROUBLE --- A POINT WITH (L

"——- TROUBLE --- CANNOT FIND A FIXED H-PHI POINT"

Message from subroutine POTREG. The code cannot find a point in
the problem region with coordinates that agree with the assigned
magnetic drive point coordinates. In principle you should not get this
message unless you assign your own drive point and make an error in
the input. In practice, we suspect a logic error in older versions of
the code. Please call us if you cannot find the source of the error.

In versions of the code received after Septemeber, 1986, the message
means that AUTOMESH had difficulty assigning the drive point at
the upper lefthand corner of the ¢avity. To correct, input your own
drive point region by setting NDRIVE = 1 in the first region and later
defining a point region where you want the drive point. AUTOMESH
will automatically set CUR = 1 and IBOUND = -1 as required.

“——- TROUBLE --- TOO MANY END POINTS FOUND FOR THE LINE"

The program has trouble adding a vertical/horizontal line region.

AUTOMESH could encounter a number of problems in subroutines
XLINER/YLINER while attempting to add vertical/horizontal line
regions. To correct, CHANGE MESH SIZE or in versions of the program
received after April, 1986 set LINX/LINY = 1 in the first REG entry.
(This latter option deletes the addition of all vertical /horizontal line
regions at horizontal/vertical mesh change locations.)

"--- TROUBLE --- NO END POINTS FOUND FOR LINE"

The program has trouble finding a mesh point for the end point of the
added line region. See Ta. above.

"--- TROUBLE --- ONLY ONE END POINT FOR THE LINE"

The program has trouble finding an end point for this added line region.
See Ta. above.

KREG) HAS X NOT = TO XREG"
LREG) HAS Y NOT = TO YREG"
The program has difficulty adding a vertical/horizontal line region. -
See 7a. above.
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C.10.1.3 Additional Diagnostic Messages

1. "DIMENSION OF 2000 FOR KR, LR ..."
The program has run into difficulty and has exceeded the maximum num-
ber of points dimensioned for a region. CHANGE MESH SIZE and try again.
Message from subroutine LOGSEG.

2. "DIMENSION OF 3000 INSUFFICIENT FOR KG, LG ..."
The program has run into difficulty and has exceeded the total number
of points dimensioned for all regions. CHANGE MESH SIZE and try again.
Message from subroutine SAVAGE."
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C.10.2

LATTICE writes all of diagnostic and error messages to the output file, OUTLAT,
and some to the terminal if run is interactive. An explanation of the common ter-
minology used in these messages is listed below.

1.

2.
3.
4.

Messages from LATTICE

k, I  The mesh point numbering for the horizontal and vertical coordi-

nates.

x, y The horizontal, vertical coordinates, respectively.

, ' The mesh point numbering for the second of the two points.

(--)  Means the computer prints out the value.

C.10.2.1 Messages Containing “ERROR EXIT?”
1. "--- ERROR EXIT --- TWO MESH DATA POINTS WITH A DIFFERENT K, L

HAVE THE SAME X, Y COORDINATES"

followed by values of k, I, k’, I’, z, and y. This message is from the
function ANGLF. The code has found the same physical coordinates
assigned to two different logical points. Check input data; try reducing
mesh spacing if input looks correct.

ERROR EXIT --- IN SUB. ANGLE COST = (--) AT K0 = (--) LO =
)"

Message from function ANGLF. The code has a cosine value greater
than 1.0 at the logical point (KO, LO). Check input data, try reducing
mesh spacing.

ERROR EXIT --- NWMAX EXCEEDS PROGRAM DIMENSIONS OF (--) ..."
Message from subroutine PRELIM. The storage for recalculating coup-
lings has been exceeded. This storage has dimension of 1/2 of the para-
meter MXDIM. Increase MXDIM and recompile.

C.10.2.2 Messages Containing “INPUT DATA ERROR”
1. "--- INPUT DATA ERROR --- ILLEGAL CHARACTER",

followed by a print of the input line. Message from subroutine FREE.
The code has found a character it does not recognize in the line
printed. Correct input.

2. "—-- INPUT DATA ERROR --- NO MANTISSA WITH EXPONENT",

followed by a print of the input line. Message from subroutine FREE.
The code found an exponent standing alone in the line printed. Correct
the input line.
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C.10.2.3 Messages Containing “DATA ERROR”

These messages are issued whenever LATTICE encounters any errors in reading
the input file. Mostly, such errors occur when a user creates his own input file
for LATTICE. If the input file for LATTICE has been generated by a successful
AUTOMESH run, it is unlikely there would be any errors of this type. In any case,
the errors issued are self-explanatory. The user need only correct the identified error
in the input file and rerun.

1. "--- DATA ERROR --- THE NO. OF BOUND DATA VALUES (K, L, X, Y) =

(--) FOR THIS REGION IS NOT A MULTIPLE OF 4"

Message from subroutine REREG. The code has found that the coor-
dinate data on the input file is incomplete. Correct the input file
(Usually TAPE 73). If generated by AUTOMESH, try changing
mesh spacing.

DATA ERROR --- THE FIRST AND LAST POINTS OF REGION HAVE
SAME K, L BUT DIFFERENT X, Y COORDINATES"

Message from subroutine REREG. Meshing has been done incorrectly.
Correct input file. If generated by AUTOMESH, try changing mesh
spacing.

DATA ERROR --- NEGATIVE OR ZERD L"
Message from subroutine REREG. The input file has an illegal value
for the logical coordinate L. Correct input file.

DATA ERROR --- NEGATIVE OR ZERO K"
Message from subroutine REREG. The input file has an illegal value
for the logical coordinate K. Correct input file.

DATA ERROR --- L, K AND LPRIME, KPRIME NOT ON SAME LOGICAL

LINE"
Message from subroutine REREG. There is an error in the boundary
input to LATTICE. Check input file.

DATA ERROR --- L EXCEEDS LMAX"

Message from subroutine REREG. The code has found a boundary
point in the input file with a logical L coordinate greater than the
maximum L coordinate. Correct input.

—— —— e
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7.

10.

11,

12.

"--- DATA ERROR --- K EXCEEDS KMAX"
Message from subroutine REREG. The code has found a boundary
point in the input file with a logical K coordinate greater than the
maximum K coordinate. Correct input.

"--- DATA ERROR --- YOU HAVE EXCEEDED THE MAXIMUM NUMBER OF
REGIONS ALLOWED = (--)"
Message from subroutine REREG. Too many regions. Increase para-
meter NRGN and recompile.

""'--- DATA ERROR --- YOU HAVE EXCEEDED THE MAXIMUM NUMBER OF
INPUT BOUNDARY POINTS PER REGION = (--)"
Message from subroutine REREG. The storage for single region boun-
dary points has been exceeded. Increase parameter NPMX and recom-
pile.

--- DATA ERROR --- TWO CONSECUTIVE DATA POINTS IN THIS REGION
HAVE SAME K, L COORDINATES"
Message from subroutine REREG. The code has found two consecutive

boundary points assigned the same logical coordinates. Correct input
data.

-~- DATA ERROR --- TWO CONSECUTIVE DATA POINTS IN THIS REGION
HAVE SAME X, Y COORDINATES"
Message from subroutine REREG. The code has found two consecutive

boundary points assigned the same physical coordinates. Correct input
data.

"-—— DATA ERROR --- (KMAX+2)*(LMAX+2) EXCEEDS PROGRAM DIMENSIONS
OF (--)"
Message from subroutine REREG. There are too many mesh points in
the problem. Increase the parameter MXDIM and recompile.

C.10.2.4 Messages Containing “TROUBLE” and “WARN-

ING”

"--- TROUBLE --- DIMENSIONS FOR NO. OF SEGMENTS EXCEEDED NSG OF
(--) ...»
Prints to OUTLAT and terminal and immediately aborts. Message from
main program,; follow instructions given in the complete error message
and recompile.
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2, "—-- WARNING ---THE MESH HAS NEGATIVE AND/OR ZERO AREA TRIANGLES"
LATTICE writes to the file OUTLAT, a message whenever it encoun-
ters negative or zero area in subroutine FILPOT, followed by the
three coordinates that make up this triangle. The program processes
the triangles of all regions before printing above message to OUTLAT
and terminating. Message from main program; follow instructions or
remesh the problem with a different mesh spacing.

3. "--- WARNING ---THE NUMBER OF INTERIOR POINTS = O ..."
Message from subroutine SETTLE is self-explanatory in versions
released after April 1986. For previous versions, the user has somehow
set up the problem wrong. All points are boundary points and hence
the potential is determined everywhere.

C.10.2.5 Miscellaneous Messages

1. "THE ABOVE REGION IS NOT CLOSED."
This message is output to OUTLAT from subroutine REREG and is only a
warning. User should check to see that the same values for the first and last
coordinates for this region are specified if a closed region with interior points
is desired.

2. "“ITERATION TERMINATED---MAXIMUM NUMBER OF CYCLES."
This message is output to OUTLAT from subroutine SETTLE and is only
a warning. The mesh generation did not converge to the required accuracy
after 100 iteration cycles. Run is continued with present mesh. User could
try running the problem with this mesh or CHANGE MESH SIZE and rerun.

3. "THE LAST CORRECT POINT IS K = (--), L = (--)"
Message from subroutine REREG. This message occurs after INPUT DATA
ERROR messages numbers 3, 4, 5, 6, 7, 10, and 11. The logical coordinates
are an aid in finding the error.

4, "ITERATION CONVERGED"
Message from subroutine SETTLE. The mesh relaxation process was successful.
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C.10.3 Messages from SUPERFISH

C.10.3.1 Messages with “ERROR EXIT”

1. "--- ERROR EXIT --- NO DATA FOR EPSILON/MU MATERIAL"
Message from subroutine EPSIN. The code found a region with MAT >
2 but found NPERM = CON(18) equal to zero. Rerun with CON(18)

set equal to the number of different set of x./k,, lines to be input. See

CON(18).

2. "--- ERROR EXIT --- EPSILON = 0.0 FOR MATERIAL NO. (--)"
Message from subroutine EPSIN. The code found an error in the K./km
input for one of the materials with material number > 1. See CON(18)
for proper input format.

3. "--- ERROR EXIT --- 2ND TRY --- IMPROVEMENT FAILED"
Message from subroutine FROOT. The root finder rejected an improve-
ment for the 2nd time and ended the run. Try rerunning with a different
initial frequency.

4., "--- ERROR EXIT --- DIMENSIONS OF 10 FOR FREQ. ITERATION
EXCEEDED" _
Message from subroutine FROOT. The code did not find a resonance
after 10 tries and has stopped the run. Rerun with a better guess for
the resonant frequency.

5. "--- ERROR EXIT --- (KMAX+2) (LMAX+2) EXCEEDS PROGRAM DIMENSIONS"
Message from subroutine SRDUMP. Too many points in the problem
mesh. Increase the MAXDIM parameter and recompile.

6. "--- ERROR EXIT --- THE MESH HAS NEGATIVE AND/OR ZERO AREA
TRIANGLES"
Message from subroutine SRDUMP. The mesh has a region where the
triangles have collapsed or where logical lines have crossed. Remesh
the problem. If using LATTICE try changing the mesh spacing.

7. "--- ERROR EXIT --- NROW = MINO(KMAX, LMAX) = (--) EXCEEDS
MATRIX DIMENSIONS OF (--)"
Message from subroutine STRIBES. The storage needed for the matrix
inversion is greater than allowed. Increase parameter IMX in all places
it occurs and recompile SUUPERFISH and POILIB. (Note: there may
be other dimensions statements to change in early versions of the code.)
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C.10.3.2 Messages with “INPUT DATA ERROR”

i.

2.

#ee— INPUT DATA ERROR --- ILLEGAL CHARACTER"
Followed by a print of the input data line. Message from subroutine
FREE. The code has found a character it does not recognize in the
line printed. Correct input.

"———~ INPUT DATA ERROR --- NO MANTISSA WITH EXPONENT"
Followed by print of the input data line. Message from subroutine
FREE. The code has found an exponent standing alone in the line
printed. Correct input line.

C.10.3.3 Miscellaneous Messages

i.

"—~~ SOLUTION TERMINATED --- MAXIMUM NUMBER OF ITERATIONS"
Message from main program. The code has performed the number of
iterations requested by CON(30) = MAXCY and stopped the iter-
ation. Restart with better guess for resonant frequency.

"ewwe WARNING --- CC = (--) SET = 0.0 IN FROOT"
Message from subroutine FROOT. This is a warning that the root
finder is having some trouble. If the run continues and converges, it
may be ignored. If the iteration does not converge try a better guess
for the resonant frequency.

W--- TROUBLE WITH THE LAST IMPROVEMENT"
Message from subroutine FROOT. The root finder doesn’t like its
answer. This print will be followed by message numnber 4 (below) or
by ERROR EXIT message number 3.

"THE PREVIOUS D(K = *2) WILL BE DISCARDED"

Message from subroutine FROOT. The root finder has discarded the re-
sults of the last iteration. If the iteration converges this can be ignored.
If the run is stopped, try a better guess for the resonant frequency.

“NO. OF REGIONS INPUT, (--) GREATER THAN NRGN."
Message from subroutine SRDUMP. The region storage is too small.
Increase parameter NRGN and recompile.

"NO. OF SEGMENTS, (--) GREATER THAN NSG."
Message from subroutine SRDUMP. The number of segments input
exceeds storage. Increase parameter NSG and recompile.
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C.10.4 Messages from SFO1
C.10.4.1 Messages with “ERROR EXIT”

1.

"-~-- ERROR EXIT --- RSUM = 0.0 IN SUB. HELINE"

Message from subroutine IIELINE. The code is doing an integral and
has found two adjacent points with average radius (or average y coor-
dinate) equal to 0. In a cylindrical geometry this will result in a divide
by 0 so the run is stopped. Check to see if segment numbers requested
for power and frequency shifts are correct. Don’t ask for power and
frequency shifts on the offending segment.

ERROR EXIT --- KPATH, LPATH DIMENSIONS OF 500 EXCEEDED"
Message from PATH. The storage in COMMON/PATB/ has been ex-
ceeded. In most cases this means that the code cannot find the path
for this segment. For a very long segment an increase in storage may
help but this is rare. Sometimes a change in mesh spacing will help.
The rest of the problemn can often be done by not requesting power on
this segment.

ERROR EXIT --- (KMAX+2)(LMAX+2) EXCEEDS PROGRAM DIMENSIONS
OF (__)n

Message from subroutine ZRDUMP. Too many points in problem.
Increase parameter MAXDIM.

ERROR EXIT --- THE MESH HAS NEGATIVE AND/OR ZERO AREA
TRIANGLES"

Message from subroutine ZRDUMP. The mesh has a region where the
triangles have collapsed or where the logical lines have crossed. Remesh
the problem. If using LATTICE, try changing the mesh spacing.

C.10.4.2 Message with “INPUT DATA ERROR”

1.

2.

"--- INPUT DATA ERROR --- ILLEGAL CHARACTER"

Followed by a print of the input line. Message from subroutine FREE.
The code has found a character it does not recognize in the line printed.
Correct-input.

"=-- INPUT DATA ERROR --- NO MANTISSA WITH EXPONENT"

Followed by a print of the input line. Message from subroutine FREE.
The code has found an exponent standing alone in the line printed.
Correct input line.
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C.10.4.3 Messages with “DATA ERROR”

1. "--- DATA ERROR --- THE STARTING K,L MESH POINT IS NOT A

REGION BOUNDARY POINT"
Message from subroutine PATH. The code has found that an interior
point has been passed as a segment end print. Probably a code bug.

C.10.4.4 Messages with “ERROR RETURN?”

4. “-—— ERROR RETURN --- CAVITY LENGTH IS NOT CORRECTLY DEFINED"
Message from subroutine EZAXIS. The code found no boundary or
interior points along logical line given by CON(78) = LINT or the
value of ZLONG was 0. LINT should be 1 on entry to EZAXIS.

C.10.4.5 Messages with “WARNING”

1, "--- WARNING --- RO = 0.0 in SUB. TRASIT"
Message from subroutine TRASIT. The code is calculating transit time
integrals and has found a point whose right upper neighboring point
is not in the problem. This would result in a divide by zero so the con-
tribution of the point to the integral is ignored.

2, "--- WARNING --- YO = 0.0 IN SUB. TRASIT"
Message from subroutine TRASIT. The code is calculating transit time
integrals and has found a point whose right upper neighboring point
is not in the problem. This would result in a divide by zero so the con-

tribution of the point is ignored.

C.10.4.6 Miscellaneous Messages

1. "“INTEGRATION ON THE Z-AXIS IS NOT ALLOWED"
Message [rom subroutine HEPOW. The user has asked for power on a boun-.
dary segment that lies on the Z axis in cylindrical geometry. This will result
in a divide by zero so the code stops. Remove the request for power on the

offending segment.

2. "NO. OF REGIONS INPUT, (--) GREATER THAN NRGN"
Message from subroutine ZRDUMP. The number of regions to be input ex-
ceeds the storage. Increase parameter NRGN and recompile.

3. "NO. OF SEGMENTS (--) GREATER THAN NSG"
Message from subroutine ZRDUMP. The number of segments being input
exceeds the storage. Increase parameter NSG and recompile.
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C.10.5 Messages from TEKPLOT

1. '"--- INPUT DATA ERROR --- ILLEGAL CHARACTER"
Followed by a print of the inpul line. Message from subroutine FREE.
The code has found a character it does not recognize in the line
printed. Correct input.

2. "--- INPUT DATA ERROR --- NO MANTISSA"
Followed by a print of the input line. Message from subroutine FREE.
The code has found an exponent standing alone in the line printed.

Correct the input line.

3. "NUMBER OF REGIONS ON TAPE35 = (--) LARGER THAN DIMENSION

NRGN.RUN STOPPED"
Message from subroutine TRDUMP. The number of regions to be input ex-

ceeds storage. Increase parameter NRGN and recompile.



Chapter C.11

Convergence and Accuracy

C.11.1 Convergence

When searching for a resonance, SUPERFISH checks the value of Ak?/k?
(k = 2mf/c) to see if it is less than CON(86) = EPSIK. Here, Ak? is the change
in k? from the previous iteration. The default value of EPSIK is 10~*. The allowed
number of iterations is set by CON(30), which has a default value of 10. This num-
ber should be enough to find the resonance in most cases. If it is not enough, the
code root finder may be lost. The user should check the printed values of D1(J *%2)
to determine what is going on. If these values are decreasing monotonically, the code
is probably converging and the user should start over with a new starting frequency
near to the iteration’s final frequency. If the D1(K * *2) values are jumping or the
printed frequencies are far apart, it is likely that the code is having trouble and
it might be profitable for the user to run SUPERFISH in the step mode (INACT
# —1) to get a better feel for the location of the zeros of D1(K * x2).

C.11.2 Accuracy

In an early article, Halbach and Holsinger? report errors of 1 part in 10* for the
frequency and 1 part in 3000 for the stored energy when calculating the fundamental
mode of a pill box cavity modeled with 1395 points. Accuracy was less for higher
modes. :

Gluckstern, Ryne, and Holsinger® have shown that 1 part in 10* accuracy in
frequency is obtainable in a pill box cavity with equal length and radius using a
mesh as coarse as 15x15. For a spherical cavity they obtain 1 part in 10* using a
20x20 mesh. Gluckstern, Ryne, and Holsinger® and Gluckstern® have shown that
the convergence goes as N~2 where N is the number of points in the mesh and have
developed a method for improving SUPERFISH results using a postprocessor.
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Several years ago we compared the results of SUPERFISH with the results of
URMEL on standard problems like the pill box and the spherical cavity. URMEL
gave frequencies of the higher modes which were consistently 0.3 to 0.5 % lower
than those of SUPERFISH. We have not benchmarked the more recent version of
URMEL against SUPERFISH and therefore all we can say is that the user should
be cautious when using the frequencies of higher-order modes.

Another more annoying problem has to do with the values of power loss, Q,
and shunt impedance. We find that different cavity codes use different definitions.
Also different versions of SI'O1 out in the user community use different definitions.
Somne, including our current standard version, do not scale properly when the nor-
malization constant VSCALE is changed. Once again, the user should be cautious
until we can clarify this matter.



Chapter C.12
SUPERFISH Examples

C.12.1 Spherical Cavity

This example is a SUPERFISH run of a spherical cavity. The input file SPHI
is shown in Fig. C.12.1.1. A 1 appears in column one of the first card to denote a
SUPERFISH problem. The file is very simple. The calculation requires only half
the sphere and since the code assumes it is working with a figure of revolution about
the z-axis if ICYLIN = CON(19) = 1 (default for SUPERFISH problems), only the
upper half of the half sphere need be modeled.

1 1 spherical cavity

2 $reg nreg=1i, dx=2., xmax=100., ymax=100., npoint=4 $
3 ¢$po x=0., y=0. $

4 $po x=0., y=100. $

5 $po nt=2. r=100., theta=0. $

6 ¢$po x=0., y=0. §

Figure C.12.1.1: Input file for AUTOMESH.

AUTOMESH is run by typing the executable file name, automesh. Figure
C.12.1.2 shows the session at the terminal. AUTOMESH asks for an input file
name; it is given sphi and executes quickly. Typing the LATTICE executible file
name lattice, results in the action shown in Fig. C.12.1.3. On asking, the code
is told that tape73 is the input file. Then LATTICE asks for CON’s; there are no
changes so the reply is “s”. The code then executes.

To run SUPERFISH the executable file name, fish is typed (See Fig. C.12.1.4).
When it asks, the code is told to take input from TTY and to use dump 0. The
only change necessary to the CON’s is an initial frequency value; CON(65) is set to
130.MHz. SUPERFISH finds the resonant frequency in three iterations.
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? automesh
? <type input file name

? sphi
region no. 1
logical boundary segment end points
iseg kb 1b kd 1d ke le
i 1 1 0 1 i 59
2 1 B9 1 0 51 1
3 51 i -1 0 1 1
stop
automes ctss time .287 seconds
cpu= .102  sys= .020 i/o+memory= .165
all done

Figure C.12.1.2: Log of interaction with AUTOMESH.

lattice
? type input file name

? tape73
beginning of lattice execution
dump 0 will be set up for superfis
1 spherical cavity

?type input values for con(?)
? B

elapsed time = 0.6 sec.
Oiteration converged

elapsed time = 1.4 sec.
generation completed

dump number O has been written on tape36

stop )
lattice <c¢tss time 1.615 seconds .
cpu= 1.206 sys= .022 i/o+memory= .388

all done

Figure C.12.1.3: Log of interaction with LATTICE.
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fish

?

?

?

7 type "tty" or input file name
Bty

? type input value for dump num
0
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beginning of superfish execution from dump number 0

prob. name = spherical cavity
? type input values for con(?)
%65 130. s
elapsed time = 1.3 sec.
cycle hmin hmax residual
0 0.0000e+00 0.0000e+00 1.000e+00
k**2 = 7,4234e-04
freq = 1.3000e+02
solution time = 2.297 sec.
1 0.0000e+00 1.052Be+00 1.000e+00
kfix = 1 1fix = 59 deltal = 2.7168e~02 di(k**2)= 1.1284e-05
using slope = -1 formula with rix =1.000
del k%2 = 1,1284e-05 k#*2 = 7.5363e-04 freq = 1.3098e+02
solution time = 2.208 sec.
2 0.0000e+00 1.1319e+00- 1.000e+00
kfix = i1 1fix = 59 deltal = -2.2771e~03 di(k**2)= -8.0543e-07
deltat(k++2)  di(k++2)
ist deriv. -2.6094e+03 -1.0714e+00
using two point secant formula
del k#*2 = -7,5177e~07 Lk**2 = 7.5288e-04 freq = 1.3092e+02
solution time = 2.419 sec.
3 0.0000e+00 1.12616+00 1.000e+00
kfix = 1 1fix = B9 deltal = -1.6309e~04 di(k**2)= -5.83300-08
deltal (k**2) di(k*#*2)
ist deriv. -2.8121e+03 ~9.9379e-01
2nd deriv. -9.6241e+06 3.6833e+03
using three point parabola formula
del k**2 = -5,8344e-08 k#**2 = 7,5282e-04 freq = 1.3091e+02

solution converged in

dump number

3 iterations

1 has been written

Figure C.12.1.4: Log of interaction with SUPERFISH.
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To get information on the performance of the cavity we run SFO1, Fig. C.12.1.5.
SFO1 is told to take input from the T'TY and to use dump 1, which holds the
SUPERFISH solution. When asked, CON(50) is set to 1, indicating that power
and frequency shifts are desired on only one segment. SFO1 asks for the number of
that segment and we give it “2”. This segment is the only one on the boundary of
the sphere. SFO1 asks if a summary is wanted at the terminal and prints it when
answered “go”. Some of the information printed doesn’t apply, for example, STEM
radius, but the user should have no problem separating the wheat from the chaff.

sfol

7type "tty" or input file name
? Ilttyll
7type input value for num
7 1
begining of sfol execution from dump number 1
prob. name = spherical cavity
7type input values for con(?)
? Zpso 1ps

?type input for iseg’
» gp put values for iseg’s

7?type go for output summary at terminal
a3

superfish dtl output summary 10:13:53  84/09/26
problem name = spherical cavity

cavity length = 200.000 cm cavity diameter = 0.000 cm

d.t. gap = 0.000 cm stem radius = 1.000 cm
frequency (starting valus = 130.000) = 130.914 mhz
beta = 0.8734 proton energy = 988.050 mev
normalization factor (e0=1 mv/m) ascale = 7398.1
stored energy (mesh problem only) = 3.7281 joules
pover dissipation (mesh problem only) =  23955.43 watts
t,tp,tpp,s,sp,spp = 0.158 0.150 -0.03¢ 0.650 -0.068 0.042
q = 128012 shunt impedance = 41.74 mohm/m
product z#t»*2 ztt = 1.04 mohm/m
magnetic field on outer wall - = 1952 amp/m
maximum electric field on boundary = 0.543 nv/m
iseg 2bse rbeg zend rend emax power d-fre d-fre

fony  (ed)  lem) (em) (mv/m) (W) (dolz) (delry

2 0.00010 0.00010 0.000 0.000 0.5430 2.40et04 wall -0.0313 -0.1296
. type input value for num

Figure C.12.1.5: Log of interaction with SFO1.
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TEKPLOT can be used to display the field pattern. Fig. C.12.1.6 shows how
it's done. We enter the executable file name TEKPLOT. The program asks for
NUM, ITR1, NPHI, INAP, NSWXY. The answer 1 0 75 s tells the code to set
NUM =1 (use dump 1), ITR1 = 0 (no mesh drawn), NPHI = 75 (draw 75 lines).
The final “s” tells the code to use defaults for the remaining values. The code asks
for z and y limits on the region to be plotted and we answer “s” to tell it to use the
internal values of XMIN, XMAX, YMIN and YMAX. A “go” when asked, causes
the program to produce Fig. C.12.1.7. TEKPLOT is terminated by hitting the
carriage return and entering -1 s when asked for a new value for NUM.

Additional information on the run can be found in the OUTAUT, OUTLAT,
OUTFIS, and OUTSFO files produced by the codes used.

tekplot

?type input data- num, intri, nphi, inap, nwxy,
? 1075 s

input data

num= 1 itri= O nphi= 75 inap= O nswxy= 0

plotting prob. name = spherical cavity

?type input data- xmin, xmax, ymin, ymax

? 8

input data

xmin= 0.000 xmax= 100.000 ymin=0.0000 ymax = 100.000

? ‘type go or no
? g

Figure C.12.1.6: Log of interaction with TEKPLOT.
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prob. name = spherical cavity freq = 130.914

Figure C.12.1.7: TEKPLOT output of electric field lines.
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C.12.2 Synchrotron Cavity with Dielectrics and
Ferrites ~

This example illustrates a SUPERFISH run of a cavity loaded with several dif-
ferent dielectric and ferrite materials.

Figure C.12.2.1 shows the input file, FULLCAV, for the problem. There are 13
regions. The first region defines the extreme boundaries and the remaining regions
define areas inside the extreme boundaries each of which has its own constant but
individual value of permeability ;¢ and permittivity e. In-each region a material
number is set in the REG NAMELIST. Figure C.12.2.2 shows the terminal output
resulting from the AUTOMESH run. The LATTICE run is shown in Fig. C.12.2.3.
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OO ~NDO D WN

full size cavity

December 30, 1986

- 4

$reg mat=1,nreg=13,npoint=15,xmin=0.,xmax=125.00,ymin?0.,ymax=25.00,

dx= .50,dy=1.00%
$po x=0.0,y=0.0%
$po x=116.88,y=0.0$
$po x=116.88,y=8.0%
$po x=5.0,y=8.0%
$po x=5.0,y=9.0%
$po x=96.64,y=9.0%
$po x=116.88,y=13.08
$po x=116.88,y=25.08
$po x=96,64,y=26.0%
$po x=96.64,y=14.0%
$po x=95.64,y=13.0$
$po x=93.0,y=13.0%
$po x=85.0,y=17.5%
$po x=0.0,y=17.5%
$po x=0.0,y=0.0%$
$reg mat=2,npoint=63$
$po x=96.64,y=16.0%
$po x=96.64,y=25.08
$po x=99.18,y=25.0%
$po x=99.18,y=16.0%
$po x=96.64,y=16.0%
$reg mat=2,npoint=5$
$po x=100.18,y=16.008$
$po x=100.18,y=26.08$
$po x=102.72,y=26.08
$po x=102.72,y=16.0%
$po x=100.18,y=16.0$
$reg mat=2,npoint=5$
$po x=103.72,y=16.008
$po x=103.72,y=265.0%
$po x=106.26,y=25.08
$po x=106.26,y=16.00%
$po x=103.72,y=16.00%
$reg mat=2,npoint=5$
$po x=107.26,y=16.00$
$po x=107.26,y=25.0%
$po x=109.80,y=25.08
$po x=109.80,y=16.00$
$po x=107.26,y=16.008
$reg mat=2,npoint=5$
$po x=110.80,y=16.008
$po x=110.80,y=25.0$
$po x=113.34,y=25.0%
$po x=113.34,y=16.008

48
49
50
51
62
63
54
55
56
Y4
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
78
80
81
82
83
84
85
86
87
88
89
90

$po x=110.80,y=16.00$
$reg mat=2,npoint=5$
$po x=114.34,y=16.00%
$po x=114.34,y=25.008
$po x=116.88,y=26.008
$po x=116.88,y=16.00$
$po x=114.34,y=16.00$
$reg mat=3,npoint=5$
$po x=96.64,y=14.0%
$po x=116.88,y=14.0%
$po x=116.88,y=14.758
$po x=96.64,y=14.75%
$po x=96.64,y=14.0%
$reg mat=4,npoint=5%
$po x=99.18,y=16.$
$po x=100.18,y=16.%
$po x=100.18,y=26.%
$po x=99.18,y=25.%
$po x=99.18,y=16.8
$reg mat=4,npoint=5%
$po x=102.72,y=16.$
$po x=103.72,y=16.8
$po x=103.72,y=26.8
$po x=102.72,y=26.8
$po x=102.72,y=16.$
$reg mat=4,npoint=63
$po x=106.26,y=16.%
$po x=107.26,y=16.8
$po x=107.26,y=25.%
$po x=106.26,y=26.%
$po x=106.26,y=16.%
$reg mat=4,npoint=6$
$po x=109.80,y=16.3
$po x=110.80,y=16.%
$po x=110.80,y=25.$
$po x=109.80,y=25.$
$po x=109.80,y=16.$
$reg mat=4,npoint=5%
$po x=113.34,y=16.%
$po x=114.34,y=16.$
$po x=114.34,y=26.%
$po x=113.34,y=26.%
$po x=113.34,y=16.%

Figure C.12.2.1: Input file for AUTOMESH.
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region no. 7

logical boundary segment end points

iseg kb 1b kd 1d ke 1le
36 229 17 1 i 230 26

automesh
?type input file name
? f£ullcay

region no. 1 38 230 28 1 0O 235 28
logical boundary segment end points 37 236 28 o -1 23 17
iseg kb 1b kd 1ld ke 1le 38 23 17 -1 o 239 17
i b i 1 0 236 1
2 23 1 0 i 238 9 region no. 8
3 236 9 -1 ] i1 9 logical boundary segment end points
4 11 9 o 1 11 10 iseg kb 1b kd 1d ke 1le
b i1 10 1 0 195 10 39 194 1B 1 0 235 15
6 185 10 1 0 235 14 40- 235 16 0 1 235 18
7 23 14 0 1 236 26 41 236 18 -1 0 156 18
8 235 26 -1 o 185 26 42 195 18 -1 -1 184 18
® 195 286 -1 -1 194 1§ '
10 194 15 -1 0 193 14 region no. 9
11 193 14 -1 0 187 14 logical boundary segment end points
12 187 14 -1 0 171 19 iseg kb b kd 1d ke 1le
13 171 9 -1 0 1 19 43 199 17 1 o 201 17
14 1 9 o -1 1 1 44 201 17 1 1 202 28
45 202 28 -1 0 200 26
region mo. 2 48 200 26 -1 -1 199 17
logicel boundary segment end points
iseg kb 1b kd 1d ke 1o region no. 10
i6 194 17 1 1 1956 28 logical boundary segment end points
16 186 26 1 0 200 26 iseg kb 1b kd 1ad ke 1leo
17 200 28 -1 -1 199 17 ’ 47 208 17 1 o 208 {7
18 189 17 -1 0 184 17 48 208 17 i 1 209 28
49 209 28 -1 0 207 28
region no. 3 50 207 28 -1 -1 208 17
logical boundary segment end points
iseg kb 1b kd 1d ke 1le region no. 11
- 19 201 17 1 1 202 26 logical boundary segment end points
20 202 26 i 0 207 286 iseg kb b kd 1d ke 1le
21 207 28 -1 -1 208 17 61 213 17 1 o 216 17
22 208 17 -1 o 201 17 52, 216 17 1 1 216 26
63 2186 28 -1 0 214 28
rogion no. 4 64 214 28 -1 -1 213 17
logical boundary segment end points
iseg kb b kd 1d ko 1le region no. 12
23 208 17 1 1 209 28 logical boundary segment end points
24 209 28 1 0 214 26 iseg kb 1b kd 1d ke le
26 214 28 -1 -1 213 17 65 220 17 1 0 222 17
26 213 17 -1 o 208 17 58 222 17 1 1 223 28
67 223 28 -1 0 221 28
region no. b * B8 221 26 -1 -1 220 17
logical boundary segment end points
iseg kb 1b kd 1d ke leo region no. 13
27 216 17 1 1 218 28 logical boundary segment end points
28 216 28 1 o 221 26 iseg kb 1b kd 1d ke 1le
29 221 28 -1 -1 220 17 69 227 17 1 o 229 17
30 220 17 ~1 0o 216 17 60 229 17 1 1 230 26
61 1 1 0 235 1 1
region no. 6 . stop
logical boundary segment end points xauto ctss time 1.636 seconds
iseg kb 1b kd 1d ke 1le cpu= .735 sys= ,033 i/o+memory= . 868
31 222 17 1 1 223 26
32 223 28 i o 228 28 all done

33 228 28 -1 -1 227 17
34 227 17 -1 o 222 17

Figure C.12.2.2: Log of interaction with AUTOMESII.
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lattice

7type input file name
? tape73

beginning of lattice execution
dump O will be set up for superfis
1 full size cavity

?type input values for con(?)
? s

olapsed time = 1.9 sec
0 iteration converged

elapsed time = 2.2.sec
generation completed

dump number 0 has been written on tape35.

stop
lattice ctss time 2.417 seconds
cpu= 1.895 sys= .031  i/o+memory=
all done

Figure C.12.2.3: Log of interaction with LATTICE.

December 30, 1986
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No CON’s are changed since the only changes needed can be postponed until
the SUPERFISH run. Figure C.12.2.4 shows the right end of the cavity where all
the regions with different 1 and € are situated. This figure was obtained by using
TEKPLOT and setting XMIN to 95. and XMAX to 125. so that only part of the
region would be plotted. The full cavity is shown in Fig. €.12.2.5.

prob. name = fulsz cy o freq = 67.799 7

Figure C.12.2.4: TEKPLOT output for right end of cavity.

Figure C.12.2.6 shows the result of running SUPERFISH. As usual, we answer
tty for the input and 0 for the dump number. For the CON changes we input
*18 3 %66 57.77 s. The change in CON(18) tells the program there are to be
3 sets of relative ¢ and relative p values to be input. CON(65) is, of course, the
starting frequency. Because CON (18) was set to 3, the program asks for MATER,
EPSILON, MU three times. Each time the reply consists of the material number,
-the relative dielectric constant «. and the relative permeability x,. After the third
line, the code runs the problem. Using TEKPLOT, we can look at the field pattern
in the cavity. Figure C.12.2.7 shows a blowup of the right end of the cavity and
C.12.2.8 shows the whole cavity.
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prob. name = fulsz cy freq = 57.799 ?

Figure C.12.2.5: TEKPLOT output for full length of cavity.
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fish

7type "tty" or input filename
7 sty

?type input value for dump num
?7 0

beginning of superfish execution from dump number 0
prob. name = full size cavity

?type input values for con(?)
? %18 3 *65 67.77 8

?type input for mater, epsilon, mu
? 2.14.5 1.5

?type input for mater, epsilon, mu
? 3.10.0 1.0

7type input for mater, epsilon, mu
? 410.0 1.0

elapsed time = 3.7 sec.

cycle hmin hmax residual
0 0.0000e+00 0.0000e+00 1.0000e+00
k*x2 = 1,4660e-04
freq = 65.7770e+01
solution time = 9.312 sec.
1 0.0000e+00 2.2981e+00 1.0000e+00

kfix =236 1fix = 26 deltal = 1.53100-03 di(k**)= 1.4885e-07

uging slope = -1 formula with rix =1.0000
del k#*2 = 1,4885e-07 k#**2 = 1.4676e-04 freq = 5.7799e+01
solution time = 9.876 sec.

i 0.0000e+00 2.3089e+00 1.0000e+00
kfix =236 1fix = 26 deltal = -7.0304e-06 di(k**)2= -6.7742e-10

deltal(k**2) di(k**2)
1st deriv. -1.0332e+04 -1.0045e+00
using two point secant formula
del k*#*2 = -6.7417e~10 k*x2 = 1.,467e~04 freq = 5.7799e+01

solution converged in 2 iterations
dump number 1 has been written.

?type input value for dump num
?

Figure C.12.2.6: Log of interaction with SUPERFISH.
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prob. name = fulsz cy freq = 57.790 ?

Figure C.12.2.7: TEKPLOT output for field in right end of cavity.
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prob. name = fulsz cy freq = 57.790 7

Figure C.12.2.8: TEKPLOT output of field in full cavity.

Figure C.12.2.9 shows the terminal output resulting from running SFO1. We
tell the program to get input from “tty” and SUPERFISH output data from dump
1. CON(50) is set to 10 to get power and frequency shifts on 10 segments in the
problem. The program requests the numbers of the segments and is given 10 seg-
ment numbers. The program then executes.

More information on the results of running the various codes can be found on
the output files OUTAUT for AUTOMESH, OUTLAT for LATTICE, OUTFIS for
SUPERFISH and OUTSFO for SFO1.
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fol

?type "tty" or input file name

7 tty

?t;ﬁg input value for dump num

? 1

?beginning of superfisch execution from dump number 1

7prob. name = full size cavity
?type input value for con(?)

7 %50 10 s

?type input value for iseg’s

? 3,4,5,6,7,8,9,10,11,12,13

1

superfish output summary 10:23:39 84/09/24

problem name =

cavity length = 233.760 cm, diameter
frequency (starting value= 57.770)

beta= 0.4507 proton energy
normalize factor (e0=1.0 mv/m) ascale
stored energy (for problem geometry)
stored energy (full cavity)

power dissipation (for problem geometry)

power dissipation (full cavity)

t,tp,tpp,s,sp,spp = 0.984 0.005 0.001
q= 10393 shunt impedance
product =*tx%2 *tt

magnetic field 'on outer wall

maximum electric field on boundary

PART C CHAPTER 12 SECTION2 15

50.000 cm

57.799 mhz

112.792 mev

81167.6

38.7417

77.4834

1353630.48

2707260.95

0.137 0.021

0.863

0.837

21545

54.844

Figure C.12.2.9: Log of interaction with SFO1.

e s —,

joules
joules
watts
watts
0.000
mohm/m
mohm/m
amp/m

mv/m
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C.12.3 Electron Linac Cavity

This example calculates the resonant frequency and other properties of a cavity
proposed for an electron linac. Figure C.12.3.1 shows the AUTOMESH input file
named ECELL. In this problem, the units are inches so the variable CONV is set
to 2.54, the nunber of centimeters per inch, in the REG NAMELIST. The height
of the mesh triangles is approximately doubled at 1.75 inches by setting YREG1 =
1.75. The eleven PO NAMELIST cards give the successive endpoints of the bound-
ary segments.

1 electron linac cell
$reg nreg=1,dx=.035,xmax=2.3,ymax=3.35,npoint=11,
conv=2.54,yreg1=1.75 $

$po x=0., y=0. $

x=0.0, y=3.2384 $
$po x=.4967, y=3.2365 $
$po nt=2,x0=.375,y0=1.5542,x=1.675,y=-0.1937 $
$po nt=2,x0=1.8,y0=1.36056,x=0.128,y=-0.2147 $
$po x=1.008,y=0.6 $

10 $po nt=2,x0=1.006,y0=.56,r=.05,theta=270. $

11 $po x=2.269, y=0.5 $

12 $po x=2.269, y=0.0 $

13 $po x=1.006, y=0.0 $

14 $po x=0.0, y=0.0 $

Figure C.12.3.1: Input file for AUTOMESH.

D©OO~NDNDWN -
g
[«

The next step in solving the problem is to run AUTOMESH. We type automesh,
the name of the AUTOMESH executable file. T'he code asks for the input file name
and is given ecell. AUTOMESH runs producing Fig. C.12.3.2 at the terminal.

automesh

?type input file name
ecell

region no. 1
logical boundary segment end points
kb 1b k 1d

ise d ke le
1 i 0 1 1 59

2 i 59 0 i 1 84
3 1 84 1 0 i6 84
4 16 84 i 0 60 59
5 60 69 0 -1 60 46
6 60 46 0 -1 66 39
7 66 39 0 -1 30 21
8 30 21 -1 0 30 18
9 30 18 i 0 66 17
10 66 17 0 -1 66 1
i1 66 i -1 0 30 1
12 30 1 -1 0 i 1

stop

automesh ctss time .365 seconds

cpu= 172 s8ys= .023 i/o+memory= .169

all done

Figure C.12.3.2: Log of interaction with AUTOMESH.



December 30, 1986 PART C CHAPTER 12 SECTION 3 17

To finish setting up the mesh, we run LATTICE. Figure C.12.3.3 shows the
LATTICE execution listing.

lattice

?type input file name
tape73

beginning of lattice execution
dump 0 will be set up for superfis
1 electron linac cell

?type input values for con(?)
2

elapsed time = 0.8 sec.
Oiteration converged

elapsed time = 2.3 sec.
generation completed
dump number 0 has been written on tape35

stop

lattice ctss time 2.597 seconds

cpu= 2.150 sys= .028  i/o+memory= .419
all done

Figure C.12.3.3: Log of interaction with LATTICE.

When asked, the code is told that the input is from TAPE73. When it asks for
new values for the CON’s, no changes are necessary so the code is told to proceed by
typing an “s” followed by a carriage return. LATTICE executes with no problems.

We decide to look at the mesh to make sure we have set up the proper problem.
We type the TEKPLOT executable file name tekplot (See Fig. C.12.3.4). The
code asks for input data and we reply that we want dump NUM = 0 and to show
the mesh (ITR1 = 1). The line is terminated by an “s” to tell the code to use the
default values for the remaining input. The code then shows the values it is going
to use and asks for the £ — y limits on the plotting area. The reply “s” tells the

tekplot
7type input data— num, itri, nphi, inap, nswxy,
? 01s
input data
num= O itri= 1 nphi= 0 inap= 0 nswxy= 0
plotting prob. name = electron linac cell

??type input data~ xmin, xmax, ymin, ymax,

input data
xmin=  0.0000 xmax= 2.269 ymin= 0.0000 ymax= 3.238

7type go or no

)

Figure C.12.3.4: Log of interaction with TEKPLOT for mesh.
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code to use the minimum and maximum values in the mesh. The code prints these
values and asks if it should proceed. We reply “go;” the code blanks the screen and
produces Fig. C.12.3.5. To end TEKPLOT hit the carriage return and type -1 s.

e s S

prob. name = electron linac cell freq = 0.000

Figure C.12.3.5: TEKPLOT output showing mesh.
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To proceed with the solution, we type fish (See Fig. C.12.3.6), which is the
executable file name of SUPERFISH. The program asks for “tty” or the name of
an input file and is told tty. The designation “tty” is short for “teletype”, which
means typing input from the terminal.

fish

?type "tty" or input file name
7?7 tty

?7type input value for dump num
70

beginning of superfish execution from dump number 0
prob. name = electron linac cell

?7type input values for con(?)
? %65 1240. s

elapsed time = 1.7 sec.
cycle hnmin hmax residual
0 0.0000e+00  0.0000e+00 1.000e+00

k**2 = 6.7540e-02
freq = 1.2400e+03
solution time = 3.804 sec.

1 0.0000e+00 1.3929e+00 1.000e+00
kfix = 60 1fix = 59 deltal = 1.0906e-03 di(k**2)= 9.6243e-05

using slope = -1 formula with rlx = 1.000

del k**2 = 9,6243e-05 k**2 = 6.76368-02 freq =  1.2409e+03
solution time = 3.623 sec.
2 0.0000e+00  1.3973e+00 1.000e+00
kfix = 60 1fix = 59 deltal = -4.1411e-06 di(k**2)= -3.6272e-07
deltal (k**2) di(k**2)
ist deriv. -1.1375e+01 -1.0038e+00
using two point secant formula
del k**2 = -3.6136e-07 k*¥*2 =  6.7636e-02 freq = 1.2409e+03
solution converged in 2 ijterations

elapsed time = 9.4 sec.

dump number 1 has been written.
7type input value for dump num

?

Figure C.12.3.6: Log of interaction with SUPERFISH.

It asks for the dump number and is told 0. The next request is for CON-
changes and we type *65 1240. _s to tell it to start its iteration at 1240 MHz.
The program requires two iterations to find the resonant frequency at 1240.9 MHz.
We exit SUPERFISH by typing -1 s.

B —— — - e rar— " - — - e = o — —
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To use dump 1 to determine properties of the cavity we type sfol. SFO1 asks
for either “tty” or an input file name. Given “tty,” the program asks for a dump
number; we enter 1. When the program asks for CON’s we change CON(50) to 9
and indicate this is all by typing a s.

CON(50) is the number of boundary segments (See iseg in Fig. C.12.3.2) on
which we want power and frequency shifts calculated. SFO{ prints a summary of the
results at the terminal when we answer its question with a “go” (See Fig. C.12.3.7).
More details of the results can be found in OUTSFO,
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sfol
?type "tty" or inpuit file name
7 tty

?type input value for num
? 1

beginning of sfol execution from dump number i

prob. name = electron linac cell

?type input values for con(?)
7?7 %509 s

?type input values for iseg’s
? 23456789 10

?type go for output summary at terminal

? g0

superfish dtl output summary 10:03:09 84/09/25

problem name = electron linac cell

cavity length = 11.527 cm cavity diameter = 0.000 cm

d.t. gap = 10.414 cm stem radius = 1.000 cm

frequency (starting value =1240.000) = 1240.880 mhz

beta = 0.4771 proton energy = 129.335 mev

normalization factor (e0=1 mv/m) ascale = 8555.7

stored energy (mesh problem only) = 0.0021 joules

power dissipation (mesh problem only) = 950.41 watts

t,tp,tpp,s,sp,spp = 0.583 0.109 0.004 0.640 0.045 0.022

q = 17080 shunt impedance = 60.64 mohm/m

product z*t**2 ztt = 20.60 mohm/m

magnetic field on outer wall = 1623 amp/m

maximum electric field on boundary = 7.156 mv/m

iseg zbeg 1rbeg =zend rend emax pover d-freq d-freq

(em)  (em) (em) (em)  (mv/m) (w) (delz)  (delr)

2 0.000 4.445 0.000 8.226 0.7396 2.30e+02 wall -6.7080 0.0000
3 0.000 8.226 1.262 8.219 0.0158 7.82e+01 wall -0.0155 -3.2060
4 1.262 8.219 5.206 4.445 0.2704 3.68e+02 wall -9.1618 -9.7270
5 5.206 4.445 5.207 3.456 0.3011 6.77e+01 wall -2.4970 -0.1441
6 5.207 3.456 4.897 2.885 0.3682 5.16e+01 wall -1.6527 -0.9099
7 4.897 2.885 2.555 1.524 3.6447 1.52e+02 wall 3.6095 6.2115
8 2.555 1.524 2.555 1.270 7.1559 2.81e+00 wall 12.1550 0.0000
9 2.555 1.270 5.763 1.270 2.3364 2.38e-01 wall 0.0000 0.9841
10 5.763 1.270 5.763 0.000 0.0107 9.38e-06 wall 0.0000 0.0000

7?type input value for num

-——input data error--- illegal character

retype line

=is
stop

sfol ctss time .786 seconds

cpu= .209 sys= .037 i/otmemory= .540
all done

Figure C.12.3.7: Output of SFO1 for electron linac problem.
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TEKPLOT can be used to look at the field pattern in the cavity. This time
dump 1 is used and NPHI is set to 75. The results are shown in Figs. C.12.3.8 and
C.12.3.9.

tekplot

7type input data- num, itri, nphi, inap, nswxy,
?7 1075 s

input data

num= 1 itri= 0 nphi= 75 inap= 0 nswxy= 0
plotting prob. name = electron linac cell

7type input data- xmin, xmax, ymin, ymax,
?7 8

input data
xmin= 0.000 xmax= 2.269 ymin= 0.000 ymax= 3.238

?type go or no
? go

Figure C.12.3.8: Log of interaction with TEKPLOT.

1

=4

prob. name = electron linac cell freq = 1240.880 7

Figure C.12.3.9: TEKPLOT output for field distribution.



Chapter C.13
APPENDICES

C.13.1 RF Cavity Theory

This section summarizes the theory behind SUPERFISH. The problem is to find
the electromagnetic resonance frequencies and evaluate the field components in a
cavity surrounded by perfectly conducting walls. As with POISSON, there are two
geometries that can be handled: three-dimensional with cylindrical symmetry and
two-dimensional cartesian symmetry. The theory will be presented for cylindrical
symmetry; at the end we will indicate the modifications for cartesian coordinates.

Although there are no real currents or charges in the cavity, we are going to
introduce a fictitious magnetic current density K, and magnetic charge density o
which will “drive” the fields in the cavity. At resonance, the amount of current
needed to drive the cavity should approach zero. Something like this is used to
determine the resonance frequency in the iteration scheme.

We shall assume that the medium in the cavity is homogeneous, isotropic, non-
conducting, with piecewise constant permittivity and permeability so that

D = ¢E, (C.13.1.1)
B = uH. (C.13.1.2)

With cylindrical symmetry E, H, K, and o must be independent of 6.

Maxwell’s equations can be written in two sets, which are

9z "ot

=K, (C.13.1.3)

[ BB] K, or — OF, O0H,
ot

VxBE4+—| =
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By 18(rEy) 0H,
[V x E + 5 ]z =K, or S +p el K,, (C.13.1.4)
oD 0H, OH. O0F; .
[V xH — —5;]0 =0 or 5 " o o 0, (C.13.1.5)
V-B=o or 19(rH,) + 98, = f_, (C.13.1.6)
r Or 0z @
and 6D 0H OF
[} r v
[V xH-— —a’t—‘]r =0 or — —éz— — € ot = 0, (61317)
oD} 18(rHy) OE,
[VxH— at]z—Oo e T a =0, (C.13.1.8)
oB i 8E, OE; OHy .
[V x B4+ —67]9 = g O 82 or 1 Bt = I(a, (6.13.1.9)
18(rE,) K OB, _
V-D=0 or e T E = 0. (C.13.1.10)

Note that the first four equations involve the field components (H,, Eq, H.),
while the last four are nearly identical but involve (E,, Hy, E.). This corresponds
to a separation into transverse electric (TE) modes for which Eg # 0 and transverse
magnetic (TM) modes for which Hg # 0. It is usually the TM modes of the cavity
that are of interest to accelerator designers, because they have E, # 0 on the cylin-
drical axis.

Equations (C.13.1.3) through (C.13.1.5) can be combined to give a second-order
partial differential equation for Ey alone. Differentiate Eq. (C.13.1.3) by z; differen-
tiate Eq. (C.13.1.4) by r; subtract the two results; and make use of Eq. (C.13.1.5)
to eliminate the combination (8H, /82 — 8H,/0r).

The result is
8|18 8° E, 62E9 oK, oK,
[ ]_ 022 + pe Bt2 _<8z - &«)‘WXK]G' (C.13.1.11)

Similarly we can obtain an equation for Hy by using Egs. (C.13.1.7) through
(C.13.1.9); the result is

o [12 (rHe)] -

#Hy, H, 0K,
r 8r )

52 THer T

or

(C.13.1.12)

We are interested in solutions that are periodic in time. Let us arbitrarily as-
sume that
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K(r,z,t) = K(r, z) sinwt. (C.13.1.13)
It then must follow from Egs. (C.13.1.11) and (C.13.1.12) that we can write
Eg(r, 2,t) = Eg(r, z) sin wt, (C.13.1.14)

and

Hy(r, z,t) = ﬁﬁg(r, z) cos wt. (C.13.1.15)
This definition of Hg makes Eg and Hg have the same dimensions. As a result,

the same coding can be used for both the TE and TM modes in SUPERFISH.

When these assumptions are put into Eqs.(C.13.1.11) and (C.13.1.12), the re-
sults are

AU D —
V2E, — ~EBo +KEy= - [V x K]e, (C.13.1.16)
VHo~ ST+ KTy = —ewTo = ._\/Em, (C.13.1.17)
where
k= \/pew (C.13.1.18)
is called the eigenvalue and
18 ( 8f &f
Vi = —— ( — 13.1.
f=> 5 \rar> + 5 (C.13.1.19)

is the two-dimensional Laplacian in cylindrical coordinates. Given Eg and Hy from
these equations, one can use E¢s. (C.13.1.3) through (C.13.1.8) to find H,,H, E,,
and E,. The integration over time is trivial. The constants of integration just de-
termine the initial phase of the fields at ¢ = 0 and can be set equal to zero for our
purposes. The results are

H, = —\/El (% +'K",) cos wt, (C.13.1.20)

pk\ 0z
H,= €llo (T‘E)—F os wit (C.13.1.21)
*Aupk|ror # = © ! e
€ laﬁg .
E, L% 0z sinwt, (C.13.1.22)

el|10, — |.
E, = —\/g—’; [;gr—(rﬂg)] sinwt. (C.13.1.23)
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It is easily seen that Eq. (C.13.1.10) is identically satisfied and that Eq. (C.13.1.6)
is satisfied if
8o(r, z,t)
5
This is just the equation of continuity for magnetic current with the magnetic charge
given by

V. .Ksinwt = — (C.13.1.24)

o(r, z,t) = &(r, z) cos wt. (C.13.1.25)

Note that in the TM mode, the electric field lines are parallel to the lines of con-
stant rHg, which can be seen as follows. A field line is a curve r(z) whose tangent
is proportional to the ratio of the electric field components, thus

dr E,. =0H,

— = = C.13.1.26
dz Ez %% (TH@) ( )
This implies that
10 OHy
- ——dz = - (C.13.1.
e (rHe)dr + 5 dz =0, (C.13.1.27)
or, multiplying through by r,
V (rHg)-dr =0, (C.13.1.28)

which implies that rHy is a constant along an electric field line. This result is used

in TEKPLOT.

It is helpful in understanding the Halbach and Holsinger paper® to apply the
Poynting theorem!® to the cavity fields. Poynting’s theorem in this case can be
written as

fE x H - da + gt-/% [¢E? + uH?) dv = /H - Kdv, (C.13.1.29)

where the first term on the left is interpreted as the flow of energy out across the
cavity surface a, enclosing the volume v. The second term on the left is the change
in energy of electromagnetic fields in the enclosed volume. The term on the right is
the rate of work being done on the field by the magnetic current. Let us introduce
the time-dependence and carry out the time derivative. Since the cavity is closed,
the surface integral must vanish. The result is

/ \/Eﬁﬁ o [e(F-T) o, (C.13.1.30)

where o =2 =3  —2
E'=E.+E;+ E,, (C.13.1.31)
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and similarly for H’. This is the generalized version of Eq. (8) in Ref. 2 for cavities
containing dielectrics or permeable material. This differs from the result of Ref. 2
in that it is no longer possible to take k out of the integral because € and p need
not be constant; only w can come out of the integral.

Equation (C.13.1.30) gives us an w-dependent quantity proportional to the ficti-
tious magnetic current that can be used to determine when resonance occurs. The
program uses the normalized quantity

D (wz) = w/ﬁ . Kdv//eﬁzdv =R (w2) —w?. (C.13.1.32)
From Eq.(C.13.1.30), it is easily seen that
R(w*) = o / B dv/ / eH’dv. (C.13.1.33)

Resonance occurs at a value of w for which D(w?) = 0, which implies that no
magnetic current is required to maintain fields in the cavity. It also means that
R(w?) = w?, which implies that the energy stored in the electric field is equal to the
energy in the magnetic field.

It turns out that this criterion is not sufficient to determine the resonances. It
is also necessary that dD(w?)/dw? = —1. Between each true root of D(w?) there is
a false root where the slope is + 1. This can be seen as follows. Let the derivative
with respect to w? be denoted by a prime,

df

dw? ~

_ In vector form, after the time dependence has been removed, Maxwell’s equa-
tions become

£ (C.13.1.34)

V xE ~ /ep wH =K, (C.13.1.35)
VxH- /ep wE =0. (C.13.1.36)
This implies that
VxE - /e (% + wﬁ') =¥/, (C.13.1.37)
==/ —E- =/
VxH — e (—2; + wE) =0. (C.13.1.38)

If now we calculate

V. (—E xH —-E x ﬁ) —H.VxE-E.-VxH-H.VXE +E.VxH, (C.13.1.39)

QQQQQQQ
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one finds that
V- (ExH-ExH) =H -K-HK - g (E°+H").  (C.13.1.40)
If now we integrate over the volume of the cavity and note that
/v. (ExH -E xH)do = f (ExH -E xH) da (C.13.1.41)
can be made to vanish with the proper boundary conditions, then

/\/-i' (T‘I—-KI —ﬁl 'I—{) dv = _/é% (_Ez +F2) dv. (0.13142)

If we let the fictitious current K vary with w? in such a way that H’ is not

changed as we approach resonance, then H' =0and we get the formula

€ == = 1 =2 | 32 .
f\/g H -Kdv= —Efé(E +H )dv. (C.13.1.43)

With the same assumption, take the derivative of D(w?) in Eq. (C.13.1.32); the
result is

oy L CH.Ka [
D' () = 2w2D+w/\/;H Kdv//eH dv, (C.13.1.44)
or :
p 1 1 =2  ==2 =2
D'(w) = 55D - 5/e(E +H )dv//eH dv. (C.13.1.45)

At resonance, D = 0 and the electric energy equals the magnetic energy so that

D' (wres) = —1. (C.13.1.46)

The program uses the fact that D' < 0 to improve convergence and to discrimi-
nate between real and false resonances.

Suppose w; and w, are two adjacent resonant frequencies. At these frequencies,
D = 0 and D' = —1. This is illustrated in Fig. C.13.1.1. If D is a continuous
function, somewhere between w;, and w, there must be a place where D = 0 but
D’ > 0, which is the false resonance root.

The modifications to the above theory for application to waveguides and cross
sections of a Radio-Frequency Quadrupole (RFQ) are straightforward. All that must
be done is to replace the Laplacian given in cylindrical coordinates by the Laplacian
given in cartesian coordinates. Figure C.13.1.2 shows a waveguide of arbitrary but
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D(w?)

.....

Figure C.13.1.1: Demonstration that D(w?) must have false zero.

uniform cross section. The directions of the coordinate axes are indicated on the
figure.

L

Figure C.13.1.2: The coordinate system for a waveguide with arbitrary but uniform
cross section.

The only waveguide modes that can be calculated by SUPERFISH are the TE
and TM cutoff modes, namely, those modes that have zero propagation vector along
the z-axis. Fortunately these are the modes of interest in the design of an RFQ. Let
us repeat the derivation given at the beginning of the section with a slight variation.
Once again, we start with Maxwell’s equations
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v xH_%]t? —o, V.D=0, (C.13.1.47)
VxE+ %? ~ K, V.B=o. (C.13.1.48)

To see more clearly what Holsinger and Halbach have done in the code, we write
the material relations in the following form

1 € 1 € €
H= ;B = ; (\/e_ﬁB> = \/g(cB) = \/EF, (C.13.1.49)

D = ¢E. (C.13.1.50)

The field F has the same physical dimensions as those of the electric field E. In
terms of E and F, Maxwell’s equations take the form

10E
= = V-E=0 5.13.1.
UxF--=0=0, E=0, (C.13.1.51)
VxE+ -1-%? =K, V. F = co. (C.13.1.52)
c

In the usual fashion, we can derive the wave equation for F by taking the curl of
first equation and substituting for the curl of E from the third equation. This leads
to the following sequence of equations

10 10F

VxVxF-— z-ét—(K - 2—67) =0, (C.13.1.53)
V(V-F)-VF - %%If— + -61;%?- =0, (C.13.1.54)
V(co) — V*F — %%Itg + %a—;—tf— =0, (C.13.1.55)

VF — %%2; = V(co) — %%% =T (C.13.1.56)

By taking the curl of the third equation and substituting for the curl of F from the
first equation, one can derive a wave equation for the electric field E, which takes
the form

1 8°E

V2E - Sas =V xK=-S. (C.13.1.57)
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A trial solution for the TE propagating wave mode in cartesian coordinates takes
the form

F.(z,y,z,t) = F,(z,y) cos(k,z — wt). (C.13.1.58)

When this is substituted into the z-component of the wave equation, one obtains
the equation

Ox? + Oy?

277 5F 2 —_—
[6 Fz Fz + (% — kz)Fz COS(kzz —_ wt) = Tz(w,y, Z,t). (C.13.1.59)

The z- and t- dependence can be removed from this equation by assuming the
fictitious driving magnetic current and charge take the following form

K.(z,y,2,t) = K.(z,y) sin(k,z — wt), (C.13.1.60)

o(z,y, z,t) = 7(z,y) sin(k.z — wt). (C.13.1.61)

The final equation for F, is

&?F, &°F, w2\ = W '
922 ay? <"67 - kz) F, = ck,o+ zf&z- (C.13.1.62)

It can be shown that, if we assume the following relations for E., I(; and K,

E.(z,y,2,t) = E.(z,y) cos(k.z — wt), (C.13.1.63)
K.(z,y,2,t) = K.(z,y) cos(k.z — wt), (C.13.1.64)
K,(z,y,2,t) = K (z,y) cos(k.z — wi), (C.13.1.65)

then the wave equation for E, reduces to

T 2T 2 7C K
&E. O°E. + (.‘i’; - kf) E, = _(BKy LS (C.13.1.66)

fz2 - Oy? Oz Oy )

One can get a self-consistent set of equations by assuming further the following
relations

E.(z,y,2,t) = Ex(z,y)sin(k;z — wt), (C.13.1.67)

E,(z,Y,2,t) = Ey(z,y)sin(k.z — wt), (C.13.1.68)
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Fy(z,y,2,t) = Fo(z,y)sin(k,z — wt), (C.13.1.69)

F,(z,y,2,t) = Fy(z,y)sin(k,z — wt). (C.13.1.70)

When these relations are put into the first and third Maxwell equations, the result
is

F,= —wc-(%-% — k,E, - K.), (C.13.1.71)
T, = —5— (aafmz — kB, — E,‘) , (C.13.1.72)
B, = —5 (a;;z - k;F"y> , (C.13.1.73)
E,= ;C; <a£ : k;ﬁz) . (C.13.1.74)

Since the quantities F., Fy, E, and E, occur on both sides of the above four equa-
tions, one can further simplify the equations by proper substitutions. The final
result is

O°E,  O°F oK, K.

5+ —5;; + (k2 - E))E, = —( o _53]—)’ (C.13.1.75)
6625:‘ + BS;Z + (k2 — E)F, = ck,7 + koK ;, (C.13.1.76)
F,= %(% — %af:)’ (C.13.1.77)

Fy = —% af: - :_:aaiz)’ (C.13.1.78)

E, = —%(6:; %agi‘ +K,), (C.13.1.79)

E, = %(af; - %66% - K.), (C.13.1.80)

where the quantities k and ko are defined by the relations

k= \/kZ — k2, (C.13.1.81)
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ko = = ' (C.13.1.82)
[

These equations cannot be further separated unless we assume that we are dealing
with the cutoff mode for which the wavevector k. is zero. Under these circumstances,
the equatipns above break into two sets. The first set involves the field components
F,, E., and E,. This is the TE mode. The second set of equations involves the
field components E., F, and F,, which corresponds to the TM mode. There is
no need to be concerned about the magnetic current and charge densities in these
equations, because they will vanish at resonance.

The theory for finding the resonant modes in cartesian coordinates follows very
closely the theory presented above in cylindrical coordinates.



PO RS AR
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C.13.2 Auxiliary Properties of RF-Cavities

The formulas used in SFO1 to calculate auxiliary properties have been displayed
in Sec.C.1.2. These formulas are to some extent based on long-established conven-
tions. Some of them were derived using assumptions appropiate only to proton,
drift-tube linacs and should not be assumed to apply to electron linacs or to RFQ
proton linacs. The derivation of somie of these formulas is not readily available in
the accelerator literature.

The intention of this section is to give the derivations and point out the assump-
tions inherent in the formulas. The expert user will probably find nothing new here,
but the novice may profit from this discussion.

(This section is presently in rough draft stage and will be sent to persons on the
mailing list for the Los Alamos Accelerator Code Group when it is finished.)
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C.13.3 Boundaries and Meshes

This section has not been written. It will closely parallel Sec. B.13.5, which is
in rough draft stage. The intention of this section is to give the user some guidance
on choosing proper boundary conditions for SUPERFISH problems. This is not
a trivial problem because the boundary conditions allowed by the code are only
approximate for some geometries.

The subsection on “meshes” will describe the numbering of mesh points on the
logical mesh and describe ordering used in the code for setting up the equations
to be solved. It will also describe the “virtual” mesh points beyond the physical
boundary of the problem.
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C.13.4 Numerical Methods

This section is only partially written. Persons who have received this manual
directly from the Los Alamos Accelerator Code Group will receive the completed
section when it is finished. The numerical methods have been partially described in
Chapter C.1, and in Sec. C.13.1. The fundamental paper describing the methods
was written by Holsinger.? For the convenience of the reader, it has been reproduced
liere and must serve as a substitute until a more complete description is available.
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The difference equations for axisymmetric fields are formulated in an irregular triangular mesh, and solved with a direct,
noniterative method. This allows evaluation of resonance frequencies, fields, and secondary quaatities in extreme
geometries, and for the fundamental as well as higher modes. Finding and evaluating one mode for a 2000 point problem

takes of the order of 10 sec on the CDC 7600.

1 INTRODUCTION

Over the last 10 to 15 years, a number of computer
programs have been developed that find the
electromagnetic resonance frequency and evaluate
the axisymmetric fields in rf cavities with axi-
symmetric symmetry. The codes that allow this

analysis to be made in an essentially arbitrary. -

axisymmetric geometry (see for instance Refs. 1-3)
have the following in common: For some geo-
metries, like cavities that have a large diameter
compared to their length, and/or for modes
higher than the fundamental mode, the convergence
rate can be extremely small, or convergence may
not be achieved at all. Stated very briefly, the
reason for these problems is the fact that in all these
codes, an overrelaxation method is used to solve
a set of homogeneous linear field equations. The
properties of these equations are such that some
well developed methods for overrelaxation-factor
optimization are not applicable, and it might well
be true that the eigenvalues of the matrices for some
problems are located'in such a way that even an
optimized overrelaxation scheme would still result
in unacceptably low convergence rates.

To eliminate these problems, we developed the
code SUPERFISH that uses a direct, noniterative
method to solve a set of inhomogeneous field
equations. This code is a combination of some parts
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of the code RFISH,* some new ideas, and the
direct solution method used by Iselin in his magnet
code FATIMA.S In order to give a good overall
understanding of SUPERFISH in a limited space,
we do-not present all detailed formulas, but do
include the description of all parts that are con-
ceptually significant, even at the expense of
reformulating and/or condensing parts of the cited
literature.

In Sections 2 and 3 we discuss separately the
structure of the difference equations, and the direct,
noniterative method used to solve a set of in-
homogeneous linear equations. In Section 4 the
basic structure of SUPERFISH is described, and
the remaining sections give some details of the
theory and of the program as it exists today, and an
outline of contemplated future developments.

2 STRUCTURE OF THE DIFFERENCE
EQUATIONS IN AN IRREGULAR
TRIANGULAR MESH

Inspection of Maxwell’s equations shows that for
0E[d¢p =0, dH/o¢ = 0, i.e., axisymmetric fields,
two independent sets of solutions can exist: one
having as only nonzero field components E,,
H,, H,; the other, H,, E,, E,. These two solutions
are, for equivalent boundary conditions, identical;
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we therefore talk only about the latter set.
Assuming, without loss of generality, that the
magnetic field is proportional to cos wt, and the
electric field is proportional to sin wt, and using
suitable units, Maxwell’s equations can be written
as

curl H = kE, (1a)

curl E = kH, (1b)

with k = w/c, and H and E representing the electric
and magnetic fields divided by their respective time
depeundence.

We seek to find numerical solutions for some of
the eigenvalues k"and associated fields of Egs. (1a)
and (l1b) in cylindrical cavities of essentially
arbitrary shapes, with H =0 on the axis and
possibly some other parts of the boundary
(Dirichlet boundaries), and the electric field perpen-
dicular to the remaining boundaries (Neumann
boundaries), implying infinitely conducting walls
there.

2.1 The Mesh

To solve the differential Egs. (1a) and (1b), we
introduce an irregular triangular mesh® in the
z-r plane. Figure 1 shows the logical mesh, with
mesh points identified by labels K and L, assuming
the integer values 1 through K= K3, and 1
through L,. To establish a mesh that can be used
to solve the field equations for a particular geom-

etry, defined by its boundaries, the user first °

assigns boundary coordinates z, r to an arbitrary
but reasonable selection of logical points K, L.
The mesh generator, described in Ref. 6, then
generates a mesh of triangles that is topologically
identical to the logical mesh, but has all boundaries
defined by mesh lines. The mesh generator finds

\VAVAVAVAVAVAVAVAVAVAN
INININININONINININGN/
\VAVAVAVAVAVAVAVAVAVAN
ININININININONININN
\AAANNNNANNANN ¢

FIGURE 1

Logical triangular mesh.

the z, r coordinates of interior points, for a given set
of boundary points, with an iterative process that
is similar to a numerical method used to solve
Laplace’s equation. Figure 2a shows a logical
mesh, and Figure 2b a physical mesh, for one half
of an Alvarez cavity. In Figure 2a, points on heavily
drawn logical lines represent those with assigned
z, r coordinates. The two heavily drawn interior
lines are used to delineate zones with different
mesh point densities. Exterior mesh points, ie.,
points inside the drift tube, are not shown since they
do not affect the field calculations.

2.2 The Difference Equations for Interior Points

We use the quantity H = H, to describe the rf
fields. This somewhat unconventional choice
(usually r - H, is used) has the advantage of not
requiring any special treatment of the region close
to the axis, since H will be proportional to r there,
whereas rH, ~ r? for small r. From Egs. (1a) and

/\
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FIGURE 2a Logical mesh for 1/2-Alvarez cavity.
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FIGURE 2b Physical mesh for 1/2-Alvarez cavity.

(1b) we obtain as the differential equation for H:
curl{curl H) = k?H. )

To derive difference equations for H, we use the
procedure described by WinslowS: we first intro-
duce a secondary mesh by drawing connecting
lines between the “center of mass” of every triangle
and the center of each of the three sides of the
triangle. As a consequence, every mesh point is
now surrounded by a unique twelve-sided polygon.
This secondary mesh of dodecagons covers com-
pletely the whole problem area, and Figure 3
shows the dodecagon surrounding just one mesh
point. The difference -equations for H are now
obtained by integrating Eq. (2) over the area
(in the z-r plane) of one dodecagon at a time.
This yields

f curl(curl H) - da = §curl H.ds = k? f H.ds.
3)

Assuming that H behaves like a linear function of
z and r within every triangle, H inside every
triangle is uniquely determined by the values of H
at the three corner-mesh points of the triangle.

2

FRawd
vaSy,

FIGURE 3 Irregular triangular mesh with secondary do-
decagon.

The integrals in Eq. (3) can therefore be expressed
in terms of the value of H at the “center-mesh
point” of the dodecagon and its six nearest logical
neighbors, giving a relationship of the following
kind

6
%,H..(V;. + kK2W,)) =0, 4)

with ¥, and W, depending only on the coordinates
z, r of the seven mesh points involved.

Identifying each difference equation with its
“center-point,” we therefore get one difference
equation for H at every interior mesh point.

2.3 The Treatment of Boundary Points

Turning now to mesh points on the boundaries
of the problem, it is clear that no difference equa-
tions are needed for H at boundary points when the
boundary conditions require H = O there. Never-
theless, we have to explore whether or not the
difference equations for such points are satisfied.
To this end, we consider first Dirichlet-boundary
points that are not on the problem axis. This kind
of boundary condition can obviously only be
imposed as a symmetry condition along a plane
defined by z = const. This implies that in the real
world a point on one side of this line has an H-value
of the same magnitude, but opposite sign, as the
symmetrically located point, and the difference
equation, Eq. (4), is clearly satisfied for every such
boundary point.

This argument cannot be applied without
elaboration for points on axis (r = 0), and the
difference equations resulting from Eq. (3) are
in fact not satisfied for those points. To see how
this can be interpreted, we can introduce on the
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right-hand side of Eq. (1b) a (magnetic) current
density term j that has only an azimuthal com-
ponent. This gives on the right-hand side of Eq. (3)
the additional term kI, where I represents the total
current associated with the point under considera-
tion, and assumed to be concentrated there. In
our case of axis points, an azimuthal current on
the axis is, of course, without consequences. and
this whole argument could also be used to lend
legitimacy to the application of the symmetry
consideration to axis points.

When E is required to be perpendicular to
boundary-mesh lines, we consider that part of the
dodecagon surrounding a boundary point that
goes through inside problem triangles, i.e., the
polygon 0-1'-2'-3'-4'-0 in Figure 4. Since E =
curl H/k is required to be perpendicular to lines
4-0 and 0-1,

f curl H-ds = 0.
4-0-1"

This means that the difference equation for H at
such a boundary point is identical to that for
interior points except that only contributions from
interior triangles are taken into account.

A very important property of the difference
equation, Eq. (4), is the fact that if we use the logical
coordinates (indices) K, L to identify mesh points,
and if K,, L, are the coordinates of any specific
mesh point for which we write down Eq. (4), then

FIGURE 4 Boundary mesh point with neighboring interior
mesh points. and secondary polygon.

the coordinates of the other mesh points contrib-
uting to Eq. (4) differ from K, and L, by not more
than + 1.

3 DIRECT, NONITERATIVE SOLUTION
OF A SET OF INHOMOGENEOUS
LINEAR EQUATIONS

If one wrote down difference Eq. (4) for all (i.e.,
including all boundary and exterior mesh points)
Hy, of the logical mesh by rows from left to right;
and if one also had some inhomogeneous terms, one
could write the resulting system of equations in the
following form:

ay; Qi
a;; Qz;; Qi3
a3y Q433 Qis

Ara-1.0:-2 Aa-1.0,~1 ALy-1.L,

ar,. Ly-1 ag,.t,
) G,
-’fz GZ
X G
x{ 72 =t (5)
Hier] \Grp-
Hy, G.,

In this matrix equation, 3#, represents a column
vector with the components Hy,, K =1 — K,:
¥ ,, a vector with components Hg,, K = 1 - K,
etc, and the G, represent the corresponding
inhomogeneous terms. The matrix on the left side
of 'Eq. (5) has all zeroes except for the block
matrices a;; of size K, x K,. These blocks are
also sparse, the diagonal blocks containing only
three nonzero elements in every row, and the
off-diagonal blocks not having more than three in
any row. Deferring to Section 4 the discussion of
how we can cast our field evaluation problem in
the form of Eq. (5), involving all points of the
logical mesh as well as inhomogeneous terms on
the right side of Eq. (5), we discuss now the method
used to solve Eq. (5).

We first transform all diagonal blocks into unity
matrices, and remove all blocks to the left of the
diagonal blocks, with the Gaussian block elimina-
tion process: we multiply the equations represented
by the first row of blocks from the left by a7, and
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then subtract from the second row the new first
row after multiplication from the left by a,;.
The new set of equations is then the same as the
original one, except that a;; =0; a;; = I; and
ayz, Gy, a2, and G, are now modlﬁed This
process is repeated, involving rows 2 and 3, then
3 and 4, etc, The very last step in this process is the
multxplxcatxon of the last row (modified by the
previous step) from the left with the modified
block matrix a;} ..

Having Eq. (5) rewritten in this form, the last
row now represents directly the solution for 5.
Using this now numerically known vector in row
L, — 1 yields directly the solution for 5#,,_,,
and continuing this back-substitution process
yields the numerical values of all components of
all block vectors ¢,

It is important to recognize the fact that this
particular fast direct method to solve inhomo-
geneous linear equations can be used only if they
can be cast in the form of Eq. (5), and if the matrix
on the left side of Eq. (5) is nonsingular.

4 CALCULATION OF FIELDS AND
RESONANCE FREQUENCIES IN
SUPERFISH

In order to allow application of the direct linear
equation solution described in Section 3, we have
to include in an artificial way in the system of
equations also those points that are part of the
logical mesh, but are external to the actual field
solution problem. How this is done, and the
treatment of points on Dirichlet boundaries, is
discussed in Section 4.1; the creation of the in-
homogeneous terms is discussed in Section 4.2,
and the resonance frequency determination is
discussed in Section 4.3.

4.1 Treatment of Exterior Points and Points on

Dirichlet Boundaries

The simplest and most practical way to include
exterior points without affecting the actual field
equations, and without causing the matrix on the
left side of Eq. (5) to become singular, is to let the
equation for every exterior point read H g erior = 0,
and to make all couplings to other equations zero
by setting the corresponding coefficients equal to
zero also. In other words, if n, is the index identify-
ing an exterior point (not a block!) in the overall
H-vector on the left side of Eq. (5), one simply sets

217

all elements of row ny and column n, of the matrix
in Eq. (5) equal to zero, with the exception of the
ng, ngy diagonal element, which is set equal to one.
The ny-element of the inhomogeneous contribu-
tion vector on the right side of Eq. (5) is set equal
to zero also. The logic of the equation-solving
routine is arranged in such a way that the thus-
introduced zeroes are actually never used in
multiplications, just as the other zeroes in the sparse
matrices are never used as multipliers either. Points
on Dirichlet boundaries are treated in exactly the
same way. However, in contrast to exterior points,
their z-r coordinates do enter into the expressions
for V,, W, in Eq. (4) involving the other point(s) of
the triangles that have one or more Dirichlet-
boundary points at their corners.

4.2 Generation of Inhomogeneous Terms for Eq. (5)

In order to turn the set of homogeneous difference
equations [Eq. (4)] into a well-posed set of in-
homogeneous field equations, one could be tempted
to introduce at one mesh point a driving (magnetic)
current, as discussed in Section 2.3. That would
be an unwise procedure when one is close to a
resonance, since the matrix in Eq. (5) is singular
for every resonance frequency, leading, as it must,
to infinite fields. Instead, we prescribe that an
appropriately chosen off-axis mesh point has the
field value one and in effect remove the difference
equation for that point from the system of difference
equations. To do this without destroying the struc-
ture of the field equations, we can proceed in one
of the following two ways:

1) If the chosen point is identified by its index
n, in the overall H vector, we set all matrix elements
in row n; of the matrix in Eq. (5) equal to zero,
except for the diagonal element ny, n,, which is
set equal to 1. In the vector G on the right-hand
side of Eq. (5), all elements are set equal to zero,
except the n;-element is set equal to one. Column n,
of the matrix is left unchanged.

2) Every matrix element in row n; and in column
n, is set equal to zero, except the n,, n,.diagaonal
element is set equal to one. The vector on the right-
hand side of Eq. (5) is set to equal minus the
original column n, of the matrix, except for ele-
ment n,, which is set equal to one.

The second procedure treats the point with the
fixed field value in the same way as exterior points
and points on Dirichlet boundaries, and in
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addition nonzero terms are generated on the right-
hand side of Eq. (5). We therefore use that procedure
in the code.

In contrast to the explicit introduction of a
driving current, with procedures (1) and (2) the
matrix on the left side of Eq. (5) is well conditioned
even for resonance frequencies.

If we take the original difference equation for the
point with the prescribed field value and solve for
the field value at that point, using the solution
values of the field at the neighbor points, we will
get a value different from the prescribed value,
except at resonance. This difference can be inter-
preted as being proportional to the current I,
necessary at that point to drive the cavity to the
prescribed amplitude at the point with the pre-
scribed field value. For this reason we will refer to
this point as the driving point.

4.3 Resonance Frequency Determination

The driving current I, introduced above depends
on k? through the coupling coefficients in the
difference Eq. (4), and the resonance condition is
characterized by

Lk*) =0, (6)

since then there is no difference between the value
of H,, as calculated from the difference equation
for that point, and the prescribed value used there
to solve for the fields: i.e., the difference equations
are satisfied for all points of consequence. To
find the value(s) of k? for which Eq. (6) is satisfied,

"ESH e ¥y
CEMETRY L crxsmATOR ™ cascuator 77. UREE S
star AL ¢ FIELD EON.

SOLY

SECOMDARY YES
1 QUANTITIES

OERIVED

FROM FIELDS

FIGURE 5 Flow diagram of SUPERFISH.

we can combine the above-described “function
generator” for I,(k?) with a numerical root-finding
algorithm, such as the secant method, or a parabola
fit method. The latter method is used in the present
stage of code development. But we expect that it
will be useful to use a root-finding algorithm that
takes into account some of the properties of
I,(k?) that are described in Section 5. Figure 5
depicts a flow diagram of the major parts of
SUPERFISH.

5 PROPERTIES OF I,(k?) AND
INTRODUCTION AND PROPERTIES
OF D(k?)

To obtain an understanding of some of the proper-
ties of the function I,(k?), and later D(k?), we will
go back to the differential equations, Egs. (1a) and
(1b), with Eq. (1b) amended on the right side by the
magnetic current density j, assumed to be constant
over a small area surrounding the driving point.
In the process of deriving some formulas, we have
to evaluate integrals like { H - j; - dv, and set this
equal 2nr, - h, - I, where I, is the total driving
current; r,, the distance of the driving point from
the problemaxis; and h,,the magneticficld averaged
over the region where j, # 0. The association
between h, resuiting from this continuum theory
and the value of H at a mesh point in the repre-
sentation by the difference equations is complicated
by the fact that h, has a logarithmic singularity
when the area where j # 0 is reduced to zero (for
fixed I,). While it seems reasonable to set h,
equal to H at the driving point, or the value resulting
from averaging H over the dodecagon associated
with the driving point, it is clear that the quantita-
tive relationships developed below will describe
only approximately the relationships between the
quantities derived from the difference equations.
However, it is also clear that the general behavior
of the functions of interest is correctly described
by the results derived from the continuum theory
below.
Adding the term j, to the right side of Eq. (1b)
gives
curl E = kH + j,. 7

Forming the scalar product of both sides of this
equation with H, and subtracting from that
Eq. (1a), after being multiplied by E, yields:
HcurlE — Ecurl H = div(E x H)
= kH?*+ j,H — kE%
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Ihtegrating this over the whole problem volume
gives

jdiv(E x H)de = I(E x H)-da

= 2nr b, — k f(sz — H¥dv.
(8)

Since E x H is either zero on the problem bound-
ary, or perpendicular to the boundary normal,
{(E x H)da = 0, and we get

» _ JK*E*dv [ (curl H)2dv
REY =T = " THdv (10)

The new function D(k?) has the property that its
value does not depend on the scaling of h,, or I,
if that is the quantity that one wants to consider
as the primary variable.

To obtain more information about the behavior
of I,(k?), we now calculate df,/d(k?) = I}. To this
end, we take the derivatives with respect to k?
of Eqgs. (1a) and (7). Indicating derivatives with
respect to k% by primes, we get

curl H' = kE' + E/2k (11)
curl E' = kH' + H/2k + j;. (12)
It should be noted that for our procedure of field

evaluation, H' = 0 on Dirichlet boundaries, be-"

cause H = 0 there for all k2. Similarly E' is perpen-
dicular to Neumann boundaries since the
component of E parallel to a Neumann boundary
is zero for all k2. We now consider
divExH - E xHy=H -curlE - E-curl '

—H-curl E' + E curl H.

®
Using for the curl expressions the appropriate
right sides of Egs. (1a), (7), (11) and (12) yields
divEx H —E x H =Hj—H.j
— (E* + H¥/2k.

Integrating this over the problem volume gives,
as in Eq. (8), zero on the left side, yielding

2nr k(b 1, — hI}) = f(Ez + H*4dv/2. (13)
We intentionally made no a priori assumptions

whether we consider h, or I, fixed when k? is
changed. However, for the case considered so

far, hy = 0, and we can immediately deduce the
following conclusions from Eq. (13):

h,IY <0 (Foster's theorem). (14)

This means that for fixed h,, between every two
resonances (I,(k?) = 0) I,(k?) must have a singular-
ity such that the sign of I,(k?), and therefore also
of D(k?), changes.

At a resonance, | E2dv = { H? dv [see Egs. (9)
and (10)], giving | H? dvon the right side of Eq. (13).
We therefore get from Egs. (13), (9). and (10) at a
resonance ([, = 0):

Zm’,hlkl'l
{H*dv

Since I,(k?) has a singularity between resonances,
it is more convenierit to study D(k?) in the vicinity
of these singularities. To this end, we first consider
R(k?). According to Eq. (9), R(k?) = k® at every
resonance, and R’ = 0 at resonance follows from
Eq. (15). Since R cannot be negative, R(k?) must
look qualitatively as indicated in Figure 6 and
R — k* = D(k*)asshown in Figure 7. An important
consequence is that between resonances, D(k?)
goes through zero, and this sign change must take
place where I,(k?) has a singularity.

To study D(k?) in the vicinity of this root of
D(k?)that does not represent a resonance, we take
advantage of the fact that D(k?) is independent of
the scaling of the field and current quantities. We
can therefore consider I, as given and kept
constant, and consider h, as the k?-dependent

=Dk} =RKk)-1= -1 (19
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FIGURE 6 Graphical representation of properties of R(k?).
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FIGURE 7 'Graphical representation of propertics of D{k2).

quantity that causes D(k?) = 0. At this “between-
resonance root,” it follows from Egs. (9) and (10)
that { E2 dv = [ H? dv, giving again [ H? dv as the
right side of Eq. (13). We therefore get from that
equation

2mr kI, H,
[ H? dv

A possible use of Egs. (15) and (16) will be briefly
described at the end of Section 6.3.

=D'k*) =Rk -1=1 (16)

6 PROGRAM STATUS AND FUTURE
DEVELOPMENT

The computer program was originally written for
the CDC 7600 operating under the Livermore

Time-Sharing System (LTSS), and we describe

here that particular version.

6.1 Computer Time and Storage Requirements

The CPU time required for a field evaluation is
dominated by the time required to invert the
block matrices. For the system of equations
described at the beginning of Section 3, the time
used for inversion of the block matrices is pro-
portionalto K3 - L,. When K, > L,,thedifference
equations are arranged along columns of the

logical mesh, leading to this expression for the .

CPU time
T = T,N?, (17

with N representing the total number of logical
mesh points, and ¢ the smaller of the two numbers
K,/L,, L,/K,. For the CDC 7600 under LTSS,
T, = 0.75 psec.

With the present system to find the roots of
I,(k?), it takes 3 to 6 field iterations to determine
a resonance frequency accurately.

The storage requirements for the program are
approximately 11-N exclusive of the memory
required for the modified off-diagonal block
matrices, needed for the back-substitution. These
matrices represent N/ - ¢'/2 words, too much to be
accommodated in core for N > 1500. For larger
problems, the disk has to be used. However,
S. B. Magyary (LBL) has pointed out that one
needs to store only two such matrices when one
has to calculate only I,(k?) (and not the complete
field map), provided the driving point is associated
with the last row of block matrices on the left side
of Eq. (5). In that case, the large amount of storage
is not needed until one has a converged resonance
frequency.

6.2 Accuracy

Since we know from our experience with the
RFISH code and the magnet code POISSON that
the program is unlikely to have problems related
to curved boundaries, we have made analytically
testable runs so far only for empty pill-box cavities.

To see whether this code has any problems with
extreme geometrie$, we ran an empty box of 5 cm
length and 150 cm radius with 1267 points. Without
any difficulty, the code returned the fundamental
frequency correct to all five printed-digits.

Much more extensive runs were made for an
empty box 60 cm long and a radius of 88 cm. The

* mesh point separation was 2 cm in both the axial

and radial direction, giving a total of 1395 points.
The fundamental frequency of this cavity is
130.389 MHz and is reproduced by the code with
an error of | part in 10,000, while the stored energy
is reproduced to an accuracy of 1 part in 3000. A
much more severe test is the evaluation of higher
modes. Resonance frequency number eight is
58244 MHz, and is returned by the code as
583.59 MHz; the stored energy calculated by the
code is 3 % smaller than the correct value. Figure 8
shows the pattern of electrical field lines (rH =
const) for this mode. It should be noted that the
distance between an extreme value of rH and the
next axial node is only 7.5 mesh spacings. Modes
29 and 30 represent an even more extreme test:
The analytical frequencies are 1179.9 MHz and
1186.3 MHz, and the code-produced frequencies
are 1183.0 MHz and 1196.6 MHz, while the energ)
of these modes is off by approximately 107
Considering the fact that mode 29 has six radia
and one axial nodes, and mode 30 has three radia
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FIGURE 8 Electric field lines {rH = const) for mode No. 8
in test cavity.
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and four axial nodes, these numbers are sur-

prisingly good. The closeness of the two resonances’

did not cause any problems. “Turning on” the
partial and complete pivoting of the matrix
inversion routines, or iterating on the field re-
siduals of the solution of the difference equations,
did not change any of these numbers. However,
increasing the number of mesh points caused a
marked improvement of the accuracy of the
frequency and the stored energy, indicating that the
numerical errors are diie to mesh size, and not
round-off errors.

6.3 Secondary Quantities, and Near Future
Developments

The program calculates now, or will calculate in
the very near future, the following secondary
quantities: stored energy; transit time factors;
energy dissipated on designated surfaces; | H |,
| E]nax On designated surfaces; shunt impedance;
@, and frequency perturbation by drift tube stems.

We also plan to calculate and print out co-
efficients that indicate how the movement of
designated surfaces perturbs the resonance fre-
quency. These quantities were calculated by RFISH
and proved extremely valuable.

To simplify the work on high-order modes, we
intend to generate printout plots of node lines
(i.e., H = O-lines) and/or plots of ?omts with local
extrema of rH, and I,(k?) and D(k*) plots.

To simplify the design of cavities that have to
have a predetermined resonance frequency, we
intend to run the code with that fixed frequency
(possibly modified by drift tube stems) and to
accomplish I, =0 by moving or deforming a
designated boundary. The techmques necessary
to do this are already used in the magnet desxgn
code MIRT’ and can easily be incorporated in
SUPERFISH.

To reduce the number of iterations necessary
to find a resonance frequency, we plan to employ
a root-finding routine that uses the properties of
D(k?) expressed by Egs. (15) and (16). If this code is
used extensively to find high-order modes, it
might also be profitable to attempt to develop a
mode pattern analysis and prediction routine.t

6.4 Advantages of SUPERFISH

The main advantage of the code is the capability
to solve problems that other codes cannot solve
at all, or only with great expenditure of computer
time. In addition, the code is quite fast, requiring
only about 1 sec per iteration on the frequency for
the test problem discussed above. With five
iterations and the time used to calculate miscel-
laneous other quantities, one has a complete
solution in 6 sec. The irregular triangular mesh,
while not allowing as many mesh points as a
square mesh, has the advantage of allowing the
definition of boundaries by mesh lines, and to
produce a mesh with a large density of mesh
points in regions where the problem requires high
resolution.

6.5 Disadvantages of SUPERFISH

The drawback associated with the irregular tri-
angular mesh is the fact that one has to generate
such a mesh. This extra step can slow down the

t Since submission of this report for printing, the more
sophisticated root-finding routine has been developed and is
working very well. Work on the mode prediction algorithm has
started and looks very promising.
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total process of receiving the desired answers.
This problem has been partly reduced by the
creation of the code AUTOMESH, developed
by one of us (R.F.H.) while at CERN. This code
optimizes automatically the coordination between
space-boundary coordinates and logical coordi-
nates, provided that one is satisfied with a uniform
mesh point density in a limited number of distinct
regions. At the time of writing this paper, an
effort is being undertaken at LASL by D. Swenson,
W. Jule; and one of us (R.F.H.} to improve the
whole process of data input and mesh generation.

There is one basic drawback associated with the
necessity of having a driving point in the problem:
if one happend to choose its location such that it is
on a H = 0 line for the problem under considera-
tion computational problems would result. For
that reason, it is advisable to put the driving point
on a Dirichlet boundary. When the code detects
the computational difficulty, it can switch the
driving point to a more favorable neighboring
point on the boundary, thus eliminating the
problem.
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C.138.5 Table of Problem Constants in Numerical
Order for SUPERFISH

Constant Defanlt Symbol Function

CON(1) 1 KPROB KPROB is used by LATTICE to differentiate
between a SUPERFISH and a POISSON-
PANDIRA run. It is set to 0 or 1 in LATTICE,
depending on the absence or presence of a char-
acter in the first position of the title line.
KPROB = 0 means a POISSON or PANDIRA

run;

KPROB # 0 means a SUPERFISH run.

CON(2) none NREG Number of regions in the problem. Passed by
AUTOMESH to LATTICE and from LATTICE
to SUPERFISH via TAPE73. Note NREG must
be less than 32

CON(3) 1one LMAX Number of points in the L (vertical) direction in
the logical mesh. Determined in LATTICE.

CON(4) none KMAX Number of points in the K (horizontal) direction
in the logical inesh. Determined in LATTICE.

CON(5) none IMAX IMAX = KMAX + 2

CON(8) 0 MODE Not used by the present code. It is being reserved
for later inclusion of dielectric materials.

CON(T) none none  Not used in SUPERFISH problems.
CON(8) none none  Fraction of RFQ cross section actually calculated.

CON(9) - 1.0- CONV Conversion factor for length units. Default units
are centimeters. Set CONV equal to the number
of centimeters per unit desired. CONV must be

changed in LATTICE.
CON(10) 0.004 none  Not used in SUPERFISH problems.
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Constant Default

Symbol

Function

CON(11)

CON(12)

CON(13)

CON(14)

CON(15)

CON(16)

CON(17)

CON(18)

0

0

none

none

0

0

0

NAIR

NFE

NINTER

none

" NPINP

NBND

NSPL

NPERM

Number of “air” points. The default is an initial
value. LATTICE counts the number of mesh points
in the air regions of the cavity and records the
value in CON(11). The user has no control of this
CON.

Number of “iron” points. The default is an initial
value. LATTICE counts the number of mesh points
in the iron regions of the cavity and records the
value in CON(12). The user has no control of this

CON.

Number of interface points. The default is an
initial value. An interface point is a point whose
nearest neighbors are a mixture of air points and
iron points. See CON(11) and CON(12). The user
has no control of this CON.

Not used in SUPERFISH problems.

Total number of poiuts in the problem. NPINP =

NAIR + NFE 4 NINTER 4 NBND + NSPL.
The user has no control of this CON.

Number of Dirichlet boundary points. Default is
an initial value. LATTICE counts these points
and stores the number in NBND. The user has no
control of this CON.

Number of points held at special fixed potential
values. Default is an initial value. SUPERFISH
counts these points and stores the number in
NSPL. The user has no control of this CON.

The number of sets of data defining the relative
permittivity and permeability in regions with

. material code MATER > 1. The program will ask

NPERM times for an input line of the form
“MATER EPSIL FLOMU”, where MATER is the
material code number in the region having relative
permittivity EPSIL and permeability FLOMU,
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Constant

Default

Symbol
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Function

CON(19)

CON(20)

C'ON(21)

CON(22)
C'ON(23)
CON(24)

CON(25)
CON(26)
CON(27)

CON(28)

1

1

1

0

1

1

none
none
none

none

ICYLIN

none

NBSUP

NBSLO

NBSRT

NBSLF

NAMAX

NWMAX

NGMAX

NGSAM

A flag indicating coordinate system to be used.
ICYLIN = 1 indicates cylindrical coordinates
using (horizontal, vertical) = (Z, R). Note that
these axes are interchanged relative to those used
in POTSSON.

ICYLIN = 0 indicates two-dimensional (X, Y)
coordinates. CON(19) nust be changed in
SUPERFISH or earlier.

Not used in SUPERFISH problems.

An indicator for the type of boundary condition
on the upper boundary. NBSUP = 0 indicates a
Dirichlet boundary condition, which means elec-
tric field lines are parallel to the boundary line.
NBSUP = 1 indicates a Neumann boundary con-
dition, which means that, the electric field lines
are perpendicular to the boundary line. The
default value passed by AUTOMESH is shown.
AUTOMESII will pass the other value if IBOUND
on the REG input line is used. See Sec. B.3.3.
The default value il LATTICE is used alone is

ZEro.

An indicator for the type of boundary condition on
the lower boundary. See CON(21) for description.

An indicator for the type of boundary condition on
the right boundary. See CON(21) for description.

An indicator for the type of houndary condition on
the left boundary. See CON(21) for description.

Not used in SUPERFISH problems.
Not used in SUPERFISH problems.
Not used in SUPERFISH problems.

Not used in SUPERFISH problems.
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Constant

Default

Symbol

Punction

CON(29)

CON(30)

CON(31)

CON(32)

CON(33)

CON(34)

CON(35)

CON(36)

CON(37)

0

10

none

0

none

0

none

1

LIMTIM

MAXCY

none

IPRINT

NOT

INACT

NODMP

NSEG

NCELL

Not used in SUPERFISH problems.

Maximnum number of ileration cycles to find the
resonance.

Not used in SUPERFISH problems.

An indicator for print options:

IPRINT = -1 in LATTICE writes the (X, Y) coor-
dinates of mesh points to OUTLAT.

IPRINT = 1 (or any odd integer) writes a map of
the solution matrix A into OUTFIS.

A parameter used in SFO1 to select an output tape
nwnber. The user has no control of this CON.

An indicator to allow the user to interact with the
frequency iteration in SUPERFISH. If INACT #
-1, the calculation is stopped at intervals and the
user is asked to type: “GO”, “NO”, or “IN”.

If “GO”, iteration continues; if “NO”, iteration
stops and final results are written; if “IN”, user is
asked for new values of CON’s.

An indicator controlling the write to TAPE 35.
If NODMP = 0, a dump is written; if NODMP # 0,

no dump is written.

The number of bonndary segments passed to
LATTICE from AUTOMESH by TAPET73. This
CON is used in LATTICE only.

The number of cells in multicell problems. It is
used in SFO1 to calculate the transit time factor.
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Symbol
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FFunction

CON(38)

CON(39)

CON(40)

C'ON(41)

CON(42)

CON(43)

CON(44)
CON(45)
CON(46)

CON(47)

none

none

none

none

none

0.125

KSTART

LSTART

KEND

LEND

none

KTOP

none

none

ITYPE

none

The value of the horizontal logical-mesh coordinate
associated with the starting point of the present
line segment on which power dissipation is to be
calculated. This CON is used in SFO1; the user
has no control of this CON.

The value of the vertical logical-mesh coordinate
associated with the starting point of the present
line segment on which power dissipation is to be
calculated. This CON is used in SFO1; the user has
no control of this CON.

The value of the horizontal logical-mesh coordinate
associated with the end point of the present line
segment on which power dissipation is to be cal-

culated. This CON is used in SFO1; the user
has no control of this CON.

The value of the vertical logical-mesh coordinate
associated with the end point of the present line

segment on which power dissipation is to be cal-

culated. This CON is used in SFO1; the user has
no control of this CON.

Not used in SUPERFISH problems.

A number set in LATTICE but not used in
LATTICE, SUPERFISH, TEKPLOT or SFFO1.
It was probably used in a postprocessor called
SHY.

Not used in SUPERFISH problems.

Not used in SUPERFISH problems.

Not used in SUPERFISH problems.

Not used in SUPERFISH problems.

S e n e wur————
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Constant Default Symbol Function

CON(48) 0 none Not used in SUPERFISH problems.

CON(49) 0 none Not used in SUPERFISH problems.

CON(50) 0 NPEG  The number of boundary segments on which
power dissipation and frequency perturbations
are to be calculated. If entered interactively,
the program will ask for segment numbers.

CON(51) 0 NPONTS In LATTICE this is the number of unknown
relaxation points in the mesh. In SUPERFISH,
NPONTS = NAIR + NINTER.

NPONTS is used as the end-of-a-loop index.

CON(52) 0.001 OMEGAO A parameter used in calculating over-relaxation
factors in LATTICE. 1t is not used in the
remainder of the SUPERFISH problem.

CON(53) 25 IRMAX  An index for checking the progress of the
relaxation process in LATTICE; not used in
the remainder of the SUPERFISH problem.

CON(54) 0.0 none Not used in SUPERFISH problems.

CON(55) 0.0 none Not used in SUPERFISH problems.

CON(56) 0.0 none Not used in SUPERFISH problems.

CON(57) 0.0 none Not used in SUPERFISH problems.

CON(58) 2.997925E+10 CLIGHT The speed of light in vacuum in cm/sec.

CON(59) T Pl PI is given to machine accuracy, namely,
m=4.« ATAN(1.).

CON(60) none KDEL A parameter used in SFO1 in subroutines

PATH and RFOU'T; the user has no con-
trol of this CON.
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Symbol

Function

CON(61)

CON(62)

CON(63)

CON(64)

CON(65)

CON(66)

CON(67)

CON(68)
CON(69)

CON(70)

none

0.0

0.0

none

0.0

0.0

none

none
none

none

LDEL

NSTEP

DELKSQ

FREQS

FREQ

XKSQ

DKSQ

XKO or SMALLK
none

none

A parameter used in SFO1 in subroutines
PATH and RFOUT; the user has no con-
trol of this CON.

The number of steps in the variable k2
used in a search for new resonances.
SUPERTISH makes NSTEP steps
through a range of k2 values determined
by CON(83), CON(65) and CON(66).

The size of the steps taken in the k2
search described in CON(62) above.

The starting value of FREQ = CON(65).
1t is printed in SFO1. The user has con-
trol of this CON.

When entered interactively, it is the
starting value for the iteration to find a
resonant frequency or the starting value
of the frequency used in the k? search
described in CON(62). During the iter-
ation or search, it is the value of the
frequency for the present step.

Initially it is the starting value of k2,
namely,
XKSQ = (2.1 x FREQ/CLIGHT) % %2.

During the run, it is the value of k2.

The change in k2 at the present step of
the search described under CON(62).

XKO = SQRT(XKSQ); only used in SFOL1.
Not used in SUPERFISH problems.

Not used in SUPERFISH problems.
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Default

Symbol
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Function

CON(71)

CON(72)

CON(73)

CON(74)

CON(75)

CON(76)

CON(77)

0

0.0

none

none

0.0

0.0

NEGAT

ERG

IPIVOT

ASCALE

POWER

ERGY or ENERGY

EMAX

A flag indicating a zero or negative area
triangle in the mesh. This may occur in
the relaxation of the mesh in LATTICE
and NEGAT # 0 will generate a diagnos-
tic message.

A number proportional to the energy in
the rf field at the present iteration.

If ICYLIN = 1, ERG = [ H2RdRdZ;

if ICYLIN = 0, ERG = [ H3dXdY.

A control parameter for pivoting during
the block matrix inversion process.

If IPIVOT = 0, no pivoting;

if IPIVOT = 1, partial pivoting;

and IPIVOT = 2; complete pivoting.
See Sec. C.13.4.

A scaling factor for the electric field
chosen in such a way that [ F,dZ/L =
VSCALE, where the integral is along
a path parallel to the Z-axis, L is the
length of the path, and VSCALE =
CON(100).

The power dissipated on the conduct-
ing boundaries defined after entering
a value for CON(50). CON(75) is
calculated in SFOL1.

The energy stored in the rf field con-
tained in the volume defined by the
boundaries of the problem.

The maximum value of the electric field
found on any boundary segment entered
after entering a value for CON(50).



January 5, 1987

PART C CHAPTER 13 SECTION 4 27

Constant Default Symbol Function

CON(78) 1 LINT  The logical L coordinate of the line along
which the the integral [ E.dZ is calculated
for the normalization of the electric field.

See CON(74). Note that if LINT # 1 or if no
vertical coordinate of a point along the logical
line LINT = 1 is zero, then the transit time
factors are not calculated in SFO1.

CON(79) 1.6 RHOXY The initial value of the X and Y mesh
over-relaxation factors in LATTICE.

CON(80) mnone none  Not used in SUPERFISH problems.

CON(81) 1.0 RSTEM The radius in centimeters of the stem
assumed to be sticking into the cavity for the
purpose of holding the drift tube in place.
Used for the power dissipation and frequency
perturbation calculations.

CON(82) none none Not used for SUPERFISH problems.

CON(83) 0 IABORT An abort flag in LATTICE, SUPERFISH, and
SFOi. If IABORT = 1, the run is stopped.

CON(84) 1.0E-05 EPSO A parameter to test for convergence in the
mesh generation. Used in LATTICE only.

CON(85) 5.0E-07 none  Not used in SUPERFISH problems.

CON(86) 1.0E-04 EPSIK A parameter to test for convergence of the
frequency solution; the convergence is satisfied
when |Ak®|/k? < EPSIK.

CON(87) 0 IRESID A flag to indicate whether the residual of the

' solution matrix A should be calculated.
If IRESID = 1, the residual is calculated.
1.0 RESIDA The residual of the solution matrix A.

CON(88)
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Constant Default Symbol Function

CON(89) 1.0 RESIK  The value of Ak?/k? for the present
iteration.

CON(90) 0 ICYCLE The present iteration nnmber; used in
LATTICE and SUPERFISH.

CON(91) 0 NUMDMP Present dump number for writing to

‘ TAPE35.

CON(92)—(99) none none This set of eight words stores the title
of the program, which was read by
LATTICE

CON(100) 1.0E4-06 VSCALE A normalization factor for the average
electric field. See CON(74). VSCALE
is to be entered in V/m.

CON(101) none none Not used in SUPERFISH problems.

CON(102) 600000000 TAMASK A mask used in LATTICE to isolate
bits in certain words.

CON(103) 2000000005 ISCAT A mask used in LATTICE to isolate
bits in certain words.

CON(104) 4000000000g IFILT A mask used in LATTICE to isolate
bits in certain words.

CON(105) 1000005 IDIRT A mask used in LATTICE to isolate
bits in certain words.

CON(106) 0.0 BETA  The velocity of the particles traversing

the cavity divided by the velocity of
light. If BETA is not entered interac-
tively, it will be calculated from
ZCTR = CON(107) and DPHI =
CON(108), assuming the particles are
protons. BETA is used in SFO1.
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Constant Default  Symbol Function

CON(107) 0.0 ZCTR  The longitudinal coordinate of the “synchro-
nous particle” when the electric field is a
maximum. Usually this is the geometric
center of the gap between two drift tubes
in an Alverez linac. ZCTR is used in SFO1.

CON(108) 180.0 DPHI  The change in the phase of the rf field as
the “synchronous particle” crosses the
portions of the cavity defined by the boun-
daries put into SUPERFISH. The units
are degrees; DPHI is used in SFOL.

CON(109) nome  ITOT  ITOT = (KMAX + 2)%(LMAX + 2).

CON(110) none T The trausxt time factor;
T= EOL fLI/jfmc E(z)cos Z2dz
CON(111) none TP TP = 5o Fors LI/:‘}MC 2E(z)sin 2Z2dz

CON(112) none TPP  TPP = gl [11};,0 22E(2) cos 2dz

CON(113) none S S = A Ll/jfmc (z)sin 22dz
CON(114) none SP SP = 5l J217 rac 2E(2) cos B2dz
CON(115)  none SPP  SPP = 5l [11};.. 22E(2) sin 22 dz

CON(116)  37s MASK37 A mask used in LATTICE to isolate bits

in certain words.

-

CON(117) 777773 MASK5 A mask used in SUPERFISH to isolate bits

in certain words.

CON(118) none MAXDIM The maximum allowed value of ITOT =
CON(109).

CON(119) none NWDIM NWDIM = MAXDIM/2, where MAXDIM =
CON(118).
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Constant Default Symbol Function

CON(120) 377s MASKC1 A mask for the eighth character in a
word.

CON(121) 1174004 MASKC2 A mask for the seventh character in a
word.

CON(122) none TSTART The wall clock starting time for the

codes that contains this variable.

CON(123) 2.6544E-3 SQEM  The quantity SQRT(EPSO/FMUO),
which is one over the impedance of
empty space. In spite of being specifi-
cally defined in SUPERFISH, it is not

used in the code.

CON(124) 8.8542E-14 EPSO  The permittivity of free space in “code
units”, i.e., depends on CONV = CON(9);
the default code units are rationalized
CKS. This CON appears not to be
used in SUPERFISH problems. It is
calculated from FMUO and CLIGHT.

CON(125) 4+ *1.0E—09 FMUO The perineability of free space in “code
units.” Not used in SUPERFISH prob-
lems. See CON(124).
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C.13.6 Table of Probcons in Alphabetical Order
For SUPERFISH

ASCALE CON(74)
BETA CON(106)
CLIGHT CON(58)
CONV CON(9)
DELKSQ C'ON(63)
DKSQ CON(67)
DPHI CON(108)
EMAX CON(77
EPSIK CON(86)
EPSOH CON(84)
EPS0 CON(124)
ERG CON(72)
ERGY or ENERGY CON(76)
FMUO CON(125)
FREQ CON(65)
FREQS CON(64)
IABORT CON(83)
JAMASK CON(102)
ICYCLE CON(90)
ICYLIN CON(19)
IDIRT C'ON(105)
IFILT C'ON(104)
IMAX CON(5)
INACT CON(34)
IPIVOT CON(73)
IPRINT CON(32)
IRESID CON(87)
IRMAX CON(53)
ISCAT CON(103)
ITOT CON(109)
ITYPE CON(46)
KDEL CON(60)
KEND CON(40)
KMAX CON(4)
KPROB CON(1)
KSTART CON(38)
KTOP CON(43)

¢ - g ————— —
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LDEL
LEND
LIMTIM
LINT
LMAX
LSTART
MASK37
MASKS5
MASKC1
MASKC2
MAXCY
MAXDIM
MODE
NAIR
NAMAX
NBND
NBSLF
NBSLO
NBSRT
NBSUP
NCELL
NEGAT
NFE
NGMAX
NGSAM
NINTER
NODMP
NOT
NPEG
NPERM
NPINP
NPONTS
NREG
NSEG
NSPL
NSTEP
NUMDMP
NWDIM
NWMAX
OMEGAO
PI
POWER

CON(61)
CON(41)
CON(29)
CON(78)
CON(3)
CON(39)
CON(116)
CON(117)
CON(120)
CON(121)
CON(30)
CON(118)
CON(6)
CON(11)
C'ON(25)
CON(16)
CON(24)
CON(22)
CON(23)
CON(21)
CON(37)
CON(71)
CON(12)
CON(27)
C'ON(28)
CON(13)
CON(35)
CON(33)
CON(50)
CON(18)
CON(15)
CON(51)
CON(2)
CON(36)
CON(17)
CON(62)
CON(91)
CON(119)
CON(26)
CON(52)
CON(59)
CON(75)

January 5, 1987
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RESIDA
RFQ
RESIK
RHOXY
RSTEM
S

SP

SPP
SQEM

T

TP

TPP
TSTART
VSCALE

XKO or SMALLK

XKSQ
ZCTR

CON(88)
CON(8)
CON(89)
CON(79)
CON(81)
CON(113)
CON(114)
CON(115)
CON(123)
C'ON(110)
CON(111)
CON(112)
CON(122)
CON(100)
C'ON(68)
CON(66)
CON(107)
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