skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

Technical Report ·
DOI:https://doi.org/10.2172/10130291· OSTI ID:10130291

Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for JANUS fission-spectrum neutrons when comparing expression of either a-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Cycloheximide, however, repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposures. Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation and that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
10130291
Report Number(s):
ANL/CMB/PP-81485; ON: DE94007670
Resource Relation:
Other Information: PBD: [1993]
Country of Publication:
United States
Language:
English