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Abstract

1980 data from up to 149 metropolitan areas were used to define cross-sectional associations be-
tween community air pollution and "excess” human mortality. The regression model proposed
by Ozkaynak and Thurston (1987), which accounted for age, race, education, poverty, and
population densxty. was evaluated and several new models were developed. The uew raodels also
accounted for migration, drinking water hardness, and smoking, and included a more detailed
description of race. Cause-of-death categories analyzed include all causes, all "non-external”
causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). Both
annual mortality rates and their loganthms were analyzed. Air quality data were obtained from
the EPA AIRS database (’I'SP SO » Mn, and ozone) and from the inhalable particulate aetwork
(PM, PM, 5 and SO,", for 63 locanons) The data on particulates were averaged across all
momtonng statxons avaﬁnble for each SMSA and the TSP data were restricted to the year 1980.
The associations between momlxty and air pollution were found to be dependent on the
socioeconomic factors included in the models, the specific locations included in the data set, and
the type of statistical model used. Statistically significant associations were found as follows
between TSP and mortality due to non-cxternal causes with log-linear models, but not with a
linear model; betweon estimated 10-year average (1980-90) ozone levels and 1980 non-external
and cardiovascular deuths; and between TSP and COPD mortality for both linear and log-linear
models. When the sulfate contribution to TSP was subtracted, the relationship with COPD
mortality was strengthened. Scatte, { plots and quin.ile analyses suggested a TSP threshold for
(annual average). SO . Mn, PM, 5 and PM2 § were not
significantly associated with mortality using the new models The report identifies a number of
important uncertainties in the analysis, 1nclud1ng possible effects due to the 1980 hgt wave.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, not any of their
contractors, sub- contractors, or their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not Infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manutacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency, contractor or subcontractor thereof.
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Executive Summary

Data from up to 149 metropolitan areas were analyzed in a study of the relationships between
community air pollution and "excess” human mortality for the year 1980. Several socioeconomic
models, including the model proposed by Ozkaynak and Thurston (1987), were used in cross-
sectional multiple regression analyses to account for non-pollution effects such as age, race,
education, poverty, migration and smoking. Cause-of-death categories analyzed include all
causes, all causes except accidents-suicide-homicide (i.e., "non-external® causes), major car-
diovascular diseases, and chronic obstructive pulmonary diseases (COPD). The patterns for the
first three groupings were quite similar but differed markedly from the patterns of COPD mor-
tality. Regressions were performed for these cause-of-death groupings as annual mortality rates
("linear” models) aud as their logarithms ("log-linear® models).

Two different sources of air quality data were utilized: data from the EPA AIRS database (TSP,
SO , Mn, and ozone) and data from the inhalable particulate (PM, 5) network; the latter data
(PMJS PM2 5 and SO from the IP filters) were only available for 63 locations. The data on
particulates were averaged across all monitoring stations available for each SMSA and the TSP
data were restricted to the year 1980. The associations between mortality and air pollution were
found to be dependent on the socioeconomic factors included in the models, the specific loca-
tions included in the data set, and the type of statistical model used.

For each mortality variable, a “parsimonious® model was developed that had statistically sig-
nificant coefficients for the non-pollution variables; most of these coefficients also agreed with
exogenous estimates of the "correct” magnitude. Using these models, statistically significant as-
sociations were found between TSP and mortality due to non-external causes with the log-linear
models evaluated, but not with a linear model. Sulfates, manganese, inhalable particles (PM; $)
and fine parnclw (PM, 5) were not significantly (P < 0.05) associated with mortality with any
of parsimonious models

Suatistically significant associations were found between estimated 10-year average (1980-90)
ozone levels and 1980 non-external and cardiovascular deaths, using log-linear parsimonious
models for 149 SMSAs. Ozone was just significant for major cardiovascular deaths using a
linear model. One-hour measured peak ozone data were available for 1980 for 72 SMSAs;
peither peak nor long-term average ozone was consistently significantly associated with mor-
tality with this data set. Scatter plots and quintile analyses suggested that the ozone dose-
response relationships were dominated by variations among the lower to mid-range ozone loca-
tions, rather than those at the upper end of the range. The regression results for ozone must be
considered problematic because of the unavailability of appropriate data on ozone concentra-
tions,

Significant associations were found between TSP and COPD mortality for both linear and log-
linear models. When the sulfate contribution to TSP was subtracted, the relationship with
COPD mortality was strengthened.  Scatter plots and quintile aaalyses suggested that a TSP
threshold might be present for COPD mortality, at around 65 ug/m” (annual average).

Additional major uncertainties remaining in this analysis include the type of regression model to
be used, relationships among those cities which have not been included in the analysis, and the
effects of weather, differences in life-style, indoor air quality and the use of air conditioning,
and differences ia the age distributions among those 65 and over. Expanding the analysis to be
more inclusive might result in different conclusions regarding which types of models fit best,
the significance of air pollution, and the levels of air quality thresholds present (if any). In
addition, examination of additional causes of death might provide insight into the plausibility of
causal relationships. Finally, since 1980 was an anomalous year in several ways (drought, heat
waves, and a major volcanic eruption), extension of these findings to a more general case must
be considered problematic pending resolution of these uncertainties and testing of the models
against data from other years.



INTRODUCTION

Control of air pollution in the United States is intended primarily to protect public health. This
goal has been supported repeatedly by public surveys and is reflected in the language of the
Clean Air Act, which mandates the achievement of health-related ambient air quality standards
without regard to costs of the pollution controls required to do so. In the 1970s, the costs of air
poliution control in the United States were estimated at $500 million per year (Eisenbud, 1970).
The annual cost is now estimated to be about $33 billion; when the 1990 Amendments to the
Clean Air Act are fully implemented, this figure may rise to over $60 billion (Portney, 1990;
O'Neal, 1991). The total costs of health care, however, reached $620 billion in 1989, or more
than 11% of the gross national product (Ginzburg, 1990); it is thus important to estimate the ex-
tent to which air pollution may contribute to ill health. This report uses annual mortality rates
as a measure of public health and attempts to derive statistical associations between their spatial
patterns and the spatial patterns of air pollution. If reliable "dose-response”™ relationships could
thus be defined, they could be useful for estimating t'e external costs of the various sources
(anthropogenic and natural) that produce air pollution,

ives of the Anal

The purpose of this report is explore the sensitivity of statistical mortality/pollution relation-
ships to analysis technique, geographic scale, functional forms, and confounding variables, based
on cross-sectional analysis of SMSAs for the year 1980. It is mot intended to try to establish
"right" and "wrong" results or to attempt to establish causality (which can never be done with
statistics alone). The general technique is that of defining regression models which explain the
spatial variability of mortality rates by incorporating variables for the known effects of demog-
raphy and socioeconomics, and testing for effects of environmeat. The success of such models
is judged by the statistical significance of the independent variables, the plausibility of the im-
plied associations, and the robustness to variations in model specification and data input.

Previous Studies of Air Polluti { Mortali

The literature on this topic extends back to the 1950s and earlier, beginning with accounts of
the major air pollution disasters (Lipfert, in press). These events remain the best evidence that
air pollution can hasten mortality at levels then found in community air. Much of the literature
deals with the period before the 1970 Clean Air Act was fully implemented, and thus it is not
clear whether these findings apply to the cleaner urban atmospheres currently enjoyed in the
United States. Some of the more recent studies dealing with air quality, ca. 1980, are discussed
briefly below.

Time-Series Studies. Studies examining short-term (daily or weekly) mortality variations are
similar to those analyzing air pollution disasters in that both types of studies deal with the
timing of death. Table 1 summarizes time-series studies that have been published in recent
years for U.S. cities; note that all of the criteria pollutants except lead have been associated with
short-term fluctuations in mortality and that most of the studies include some measure of par-
ticulate air pollution. In contrast to cross-sectional studies (discussed below), no time-series
study has found a significant association with the sulfate fraction of suspended particulate mat-
ter (hereafter referred to as "sulfates® or SO,").

Lipfert and Wyzga (1992) examined long-term temporal variability of mortality and air pollution
in New York City, Steubenville, Ohio, and Los Angeles, using a variety of methods to attempt
to control for exogenous trends. They concluded that the relationships deduced from long-term
trend analysis were consistent with those being reported from time-series and cross-sectional
studies, but that many important uncertainties remained.



TABLEL SUMMARY OF SELECTED TIME-SERIES STUDIES OF DAILY MORTALITY AND AIR POLLUTION

Authors (ret.) Locetlon Ume period control varlables spscles coefficient olasticity fag
+/- old o1
Schwarlz Detrokt 1973-82 weather lime,yr dummies TSP* 0.548+/0.145# 0.048 1 day
(1991) (city) weather,lime,yr dummies $02 0.330+/0.12 0.010 1 day
SchwartzkDockery Steubenville,ON  1974-84 weather,lime,yr dummies TSP 0.381+/-0.082 0.04) 1 day
(19929) (SMSA) weathertlime,yr dummies SO2 0.40+/-0.18 0.029 1 day
Wyzga (1977) Philadelphia 1957-88 season, hoal waves, flu TSP 0.17+/0.092 0.028 1 day+
{city) winters dally temperature S02 0.035+/0.037 0.009

COH 0.35+/0.12 0.04¢
NO 0.28+/-9.09 0.022
NO2 0.20+/-0.18 0.013
HC 0.031+/-0.014  0.048
co 0.0024+/-0.0018 0.021

Schwartz&Dockery Philadelphla 1973-80 weather,time,yv dummies TSP 0.681+/-0.131  0.051 0-1 day avg

(1992b) (ciy) waather time,yr dummles $02 0.50+/-0.1% 0.028 0-1 day avg
Dockery&Schwarte St Louls -1-85to weather, season dummies, PM-10  1.50+/-0.69 0.041 1,2 daye
(Torthcoming) (SMSA) &-.31-86 Interactions PM-2.5  1.71+/-0.98 0.030

S04 8.08+/-8.77 0.049

E. Tennesces %-1-8510 weathes, season dummiee, PM-10  1.60+/-1.49 0.048 1,2 daye

(11 countles) 8-31-88 Interactions PM-2.8 2.28+/-1.88 0.048
S04 8.0+/-12 0.070
Falrley San Joss, CA 1980-88 weathar,time,yr dummies COH 0.48+/-0.17 0.027 1-2 days
(1990) (Sama Clara Co) (winters) -
Pope ot &l Prove, UT 1985-89 weather time,yr dummies PM10 1.47+/-0.31 0.089 S-day avg
(1992) (Wah Co)
Kinney and Los Angeles 1970-79 weather, day-of-week, ozone 0.040 1 day
Oxzkaynak {county) long-term cycles, years NO2 (combined) none
(1991) smoke / Ronhe
Shumway of ol. Los Angeles 1970-79 weather co 0.088 weeldy
{oounty) HC 0.084 date
smoke 0.052

*TSP was eslimaled from dally alrport visibiilty
#coefficients and sid errore are glver *sr relative risk per mg/m3



Cross-Sectiopal Studies for 1980. Cross-sectional studies examine patterns in the places of
death. Ozkaynak and Thurston (1987) found associations between mortality and various forms
of particulate air pollution in up to 98 U.S. metropolitan areas (SMSAs). They found that the
associations were more statistically significant for sulfates and fine particles than for the coarser
particles and concluded that this difference was consistent with causal respiratory mechanisms.
The authors (O&T) expressed cautions as to the limitations of their data base and the sensitivity
of the mortality/pollution relationship to model specification and the selection of locations.
Nevertheless, their results have been a candidate for the basis of calculations estimating the ex-
ternal costs of fossil fuel use. However, the O&T study has been criticized (Lipfert and Morris,
1991, 1992) on grounds that the statistical model used was not well established and that the
results did not clearly establish that the relationship for sulfates could be distinguished with
confidence from the relationships with other pollutants.

Lipfert et ¢l. (1988) studied pollution, demographic and mortality data at the city level for over
900 cities for the 1980 time period. Their study included data on several additional
socioeconomic variables, drinking water hardness, and cigarette consumption data at the state
level. Unfortunately, none of the air pollution variables they used was ideally suited to the
task. In an attempt to circumvent problems with some of the ca. 1980 measurements, notably
sulfates, they used data from a long-range transport model to estimate city-wide averages for
804', 802, and NOx. While these variables displayed statistically significant relationships with
city mortality, subsequent analysis employing more recent air quality measurements, including
some from research campaigns, shows that the computed air quality variables may have been
influenced by regional bias, which makes these regression results difficult to interpret.

i -Seri ross-Secti . Time-series studies cannot test
for the degree of prematurity of death; it is possible that death may have been advanced by
only a few weeks or months, because of the general poor state of health of the decedent at the
time. Since cross-sectional studies deal with annual rates, they must include the annual (net)
sum of short-rerm variations, by definition. If a cross-sectional study finds a weaker relation-
ship than found by the corresponding time-series study, it may indicate that the short-term
respoises vore premature by less than one year. If it finds a stronger relationship, it may indi-
cate the presence of chronic effects which relate to poilution from earlier years. Of course, in
either case, such comparisons between studies may also be affected by flaws in the various
studies. Unfortunately, neither of the "1980" cross-sectional studies used pollution data specific
to the year 1980, so that it has not been possible to make such comparisons with confidence.

Organization of the R

Introductory material continues with discussions of epidemiological methods, statistical models,
and measures of risk. The variables used in the study are discussed next, with emphasis on the
air quality data and the difficulties entailed in deriving representative values for 1980. The
regression analysis begins with relatively simple models, including that used by Ozkaynak and
Thurston for sulfates and various particulate measures, and then proceeds to more complicated
models and additional pollutants. The findings are then summarized in a concluding discussion
and recommendations are offered for addressing the remaining uncertainties.

METHODS, VARIABLES, AND DATA
Enidemiological Methods (after Lipfert, in press)

Epidemiology differs from clinical medicine or biomedical research by virtue of its study of
populations rather than individual cases or specimens. In many cases, this emphasis stems from
a fundamental objective of epidemiology: to improve public health (Kleinbaum et al., 1982.)
However, the study of the effects of air pollution usually involves relatively subtle effects (i.e.,



weak associations) that can only be observed in large populations, for which consideration of
individual cases is clearly impractical.

For example, the daily mortality rate in a typical U.S. city of one million people is about 20
deaths per day. If this rate were to double for a few days due to an air pollution disaster, only
about 0.005% of the population would have been affected. Since we cannot identify those in-
dividuals most at risk a priori, a very large number of people would have to be monitored in
order to determine the individual air pollution exposures of the decedents.

Population Considerations and the Ecological Fallacy. Studies of population health responses to
air pollution are thus necessarily observational, i.e., involving naturally occurring rather than
manipulated environmental conditions (Kleinbaum et al., 1982). Since the characterization of
individual environmental exposures is clearly impractical, such an epidemiological study is
likely to be ecological as well as observational, i.e., involving the study of groups rather than of
individuals (Piantidosi et al., 1988). According to Kleinbaum er al. (1982), the primary feature
of an ecologic study is the lack of knowledge of the joint distribution of the study factor (i.e.,
exposure to air pollution) and the disease within each group. The primary objections to
ecologic studies relate to the lack of specificity of the affected individuals and the exposed in-
dividuals, because groups are used in the regression analysis. This objection is most valid when
the pollutant is very localized (such as emissions from a toxic waste dump) or when the disease
is relatively rare (such as leukemia). However, this objection diminishes for regional pollutants,
such as fine particles or sulfates, and for mortality from all causes or from very common causes
(such as heart disease).

Time-Series Studies. For a time-series analysis, the group is the single city or other geographic
entity whose temporal responses are being studied and the "within-group® variation is temporal.
Since each day a different subgroup is likely to respond (die, be admitted to hospital, etc.), the
ecological hypothesis is that the same set of air monitoring locations faithfully represents the ac-
tual exposures of these different subgroups, on all days. The term "ecological fallacy" refers to
a situation where this hypothesis is not supported. The likelihood of such support depends
strongly on the size of the area being studied and the spatial coverage of the air monitoring net-
work. Time-series studies vary substantially in the numbers of air monitors used to estimate
exposure; errors in exposure can affect the magnitudes and statistical significance of the regres-
sion coefficients derived.

Cross-Sectional Studijes. For cross-sectional analyses, the within-group spatial variance is at
issue with respect to the ecological fallacy. We desire that each of the cities or locations we are
studying have the same within-city spatial distribution of air quality (assuming that adequate
monitoring networks are not always available) and also the same within-city distributions of
potential confounding variables such as age, race, poverty neighborhoods, etc. This is not likely
to be true in general, but these considerations favor the use of the smallest possible units for
geographic analysis. As larger geographic units are used for analysis, for example, Standard
Metropolitan Statistical Areas (SMSAs), which are groups of counties surrounding a central city
of 50,000 or more, the representativeness of air monitoring is likely to diminish, especially
when only one station is used, as many previous studies have done. Also, many of the in-
dividuals who succumb in a given year are likely to have been hospitalized during the year or to
have been otherwise limited in outdoor activities, such that their primary exposure to air pollu-
tion may have been from indoor air poliution sources.

There can be important regicnal biases in the spatial distributions within SMSAS or counties.
Tho large urban centers of the Northeast and West Coast often contain contiguous SMSAs, and
tney may be more homogeneous than the isolated SMSAs often found in other parts of the
country. These characteristics are not independent of air pollution, which varies both regionally
(more sulfur in the East, more ozone in Southern California) and according to the economic ac-
tivities of the area. Industrial SMSAs may have centrally located poor neighborhoods, while in
the South, poverty pockets are often found in the outskirts of cities. Some pollutants are higher
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in central cities (CO, particulates) while some may be higher in the suburbs (ozone, aerosol
acidity). Use of successively larger geographic units of analysis surrounding an air monitoring
station can create a bias since the population characteristics are averaged over the entire area,
but the air pollution data used in the analysis usually remain unchanged, as larger areas are
considered. Thus, the nature of the central city with respect to i*s suburbs is an important
parameter to consider when selecting the geographic unit of analysis. However, Cohen (1990)
argues that there is safety in numbers, i.e., that using large numbers of observations in a
geographic study reduces the chance for serious ecological bias.

Interactions Between Air Pollution and the Size of Geographic Unii. The accuracy of estimat-
ing exposure to air pollution will also vary with the nature of the pollutant. Some primary pol-
lutants, such as TSP, CO, and SO,, tend to be distributed very locally, and concentrations may
vary substantially within a few city blocks, in addition to varying between indoors and out-
doors. Secondary pollutants, such as NOZ. oxidants, and sulfate particles, may exhibit less spa-
tial variability, although ozone can be strongly attenuated locally by the presence of NO
sources. Most cross-sectional studies have had to work with data from a few air pollution
monitors and have made arbitrary assumptions about the size of the area that each monitor is
assumed to represent. The lack of true representation of the air pollution exposure of the
population constitutes an important source of error in the independent variables for ecological
studies. :

This source of error is also associated wich the choice of the type of political subdivision for the
observational unit, since the larger its area, the larger the chances for errors in estimating true
population exposures (assuming a fixed number of monitors and that local pollution sources are
present). For example, assume that there is a true relationship between particle concentration
and mortality (this need not b~ 2 causal relationship, since there may be other aspects of the
pollution source to consider, < .. as occupational factors). Often there have been available two
measures of particle concentraiica: total suspended particulate matter (TSP), which tends to be
somewhat local because the measurement may include particles u:* to 50 um in diameter; and
the sulfate portion of the particulate catch, which is usually distributed regionally since the par-
ticles are much smaller and tend to travel further. Recently, particulate monitoring in the
United States has separated fine and coarse particles, initially by collecting particles with a
median diameter of 15 um (PM,¢) and currently with a median diameter of 10 um (PMo)-
When relatively small areas (such as cities or portions of cities) are used as the observational
units, TSP exposures may be reasonably well-represented. On the other hand, if larger units are
used with the same monitoring network, such as entire counties or metropolitan conurbations,
any “true” TSP effect on mortality is likely to be masked by the exposure error, since many of
the people "assigned® to the TSP monitor live so far away that they are not actually exposed to
the pollution measured there. Now, if at the same time there is a regional trend towards higher
mortality in the region of high sulfates (or any other regionally-distributed pollutant), the
regional pollutant will become the significant variable. This result may appear to be a health-
based causal finding, since small particles can penetrate deeper into the lung, but, in this case,
the result appeared as a statistical artifact because a regionmally-distributed pollutant was
matched with a regionally-distributed mortality trend. An analysis based on large geographic
units is unlikely to capture local pollution effects, only regional ones, but a city-based analysis
should be able to detect either type. This distinction is similar to separating the high-frequency
(short-term) effects from the seasonal effects in a time-series analysis. Richardson ef al. (1987)
recommends checking the stability of results from ecological analyses in relation to geographic
scale.

However, mortality rates may be statistically unstable if the population base is too small. One
solution to this problem is to use small geographic areas (i.e., central cities) with data pooled
over several years, which will improve the stability of estimates of both mortality and air pollu-
tion exposure. If the analysis is intended for comparison with time-series findings, it is impor-
tant to maintain the matching between pollution and mortality data by year.



Confounding. The term confounding refers to the incorrect assignment of an effect 10 an agent
- when in fact a third variable (the confounder) is responsible. Such a situation requires that the
conifounder have an effect on the outcome variable and be correlated with the first agent. In
other words, a confounder must have the property of different distributions for exposed and
nonexposed subjects (Miettinen and Cook, 1981). A hypothetical example might be a situation
in which smokers are more likely 0 be exposed to air pollution because they work outdoors.
According to Stellman (1987), confounding is the "cause of great angst among epidemiologists.”
In ecological case-control studies of environmental factors, in which a single exposed city is
compared to an unexposed city, the opportunity for confounding is very large since there are
many other ways in which two such population groups may differ. As the number of locations
or time periods increases and multiple regression methods come into play, the opportunities for
serious confounding are diminished.

Population migration patterns can cause errors in estimated pollution exposures, as well as con-
founding of regression results. Confounding results from either selective migration of sick
people or of the more economically advantaged. For example, Bultena (1969) reports that
reti-ees moving from the Midwest to Florida and Arizona tended to be better educated and had
higher status occupations than the average; in such cases, the population left behind may be in
worse health, on average, than the populations of the destination cities (for reasons that have
nothing to do with air pollution). Although there may be anecdotal reports of people with
respiratory ailments moving to the Southwest to seek improvements, we are aware of no analyses
of the actual extent of such migration. In either case, current (local) air quality may not repre-
sent the true long-te:m exposures of current residents; thus it may be unreasonable to try to in-
terpret the findings of cross-sectional regressions based on same-year air quality as representing
long-term effects. Polissar (1980) gives some examples where migration biases the estimation of
cancer risk based on geographic comparisons. However, Cohen (1992) recently estimated, based
on a telephone survey, that as a national average, people spend over 70% of their lives within 25
miles of the location of death. These percentages are higher in the Northesst up to 90%) and
lower ie Florida, California, and Arizona (ca. 50% in these high migration siates).

Other problems can arise when unadjusted total mortality data are used (all causes, sges, races;
both sexes). Often, for smaller geographic subdivisions, only this type of data is available. Age
adjustment is the most important correction to make, since the probability of dying in a given
year increases exponenticlly with age above about age 35. If mortality rates are available for
detailed age groups, they can be combined into cne age-adjusted total rate by reference to the
age distribution of a standard population. If, on the other hand, only total deaths are available
but details are available on the population's age distribution, then the expected total number of
deaths may be computed on the same basis. In many cross-sectional studies, neither procedure
was followed, but surrogate age adjustments were attempted by using a population age descrip-
tor as an independent variable in the multiple regression or "model." “Percentage of population
aged 65 and over® is a common choice, for example. If all populations have similar age dis-
tributions, such a choice may be acceptable, but simple algebra shows that the regression coef-
ficient for "Percentage of population aged 65 and over® should be numerically equal to the mor-
tality rate for this age group minus the rate for the under-65 group (Lipfert et al., 1988).
Many studies do not meet this simple test, which suggests that the "Percentage of population
aged 65 and over” variable may have captured some other effects. Similar considerations apply
to other explanatory variables employing percentages of the population, such as "percent non-
white® or *percent poverty". Such checks are tantamount to comparing the ecological regression
results with studies on individuals.

Statistical Model

Some studies of air pollution health effects have been content to identify the existence of as-
sociatioas, primarily by means of calculating correlation coefficients. In general, bivariate cor-
relations are not only inadequate to define the relationships which are ultimately of interest,
they caa be misleading because of confounding variables (Lipfert and Hammerstrom, in press).



Furtheraore, at this stage in our knowledge of air poliution health effects, in many cases the
existence of associations is no longer an important issue. This report is thus largely concerned
with establishing consistency or coherence and in estimating the relative magnitudes of the im-
portant relationships.

When temporal variability is at issue, both confounding variables (such as weather patterns) and
intervening variables (such as seasonal or day-of-week effects) must be taken into account in
order to derive the true associations with air pollution. Meteorological factors can confound be-
cause they can affect both health status and air quality. For example, breathing cold air can
precipitate respiratory distress and viral infections are more common in winter; lower outside
temperatures call for increased space heating and poilutant emissions. Cold weather may also
cause some people (especially those in poor health) to remain indoors, where some fraction of
tihem may be exposed to indoor air pollution sources or to contagious disease. Similar confound-
ing can occur in the summer with heat wave distress and increased ozone Seasonal and day-
of -week effects can exert independent influences on health (viral cutbreaks) and on the report-
ing of health-based events (availability of clinics and physicians). When air pollution patterns
correspoad to these exogenous temporal patterns, spurious correlations result.

For spatial or .ross-sectional analysis, there are more opportunities for confounding, since the
same sources that create more air pollution in a given location can hr .. .nary other effects on
the population. Industrial neighborhoods are generally less desirable ;or residential purposes;
hence their populati~nz may be less economically advantaged or educated. Many other life-style
differences accompany such socioeconomic gradients, including smoking, alcohol consumption,
diet, access to medical care, etc. On the other hand, industrial workers per se are often heal-
thier than :he general population, because of seif-selection. It should thus be evident that
analysis of air pollution health effects by means of spatial gradients must include many factors
in addition to the obvious demographic adjustments for age, sex, and race.

There can also be interactions between temporal and spatial factors. Those cities with older,
poorer, and more highly-stressed populations (including a higher percentage of smokers) would
be expected to exhibit sironger temporal effects of air pollution. Similarly, when comparing
across cities for a specific year, short-term phenomena such as flu epidemics or heat waves,
which 40 not occur everywhere in 8 given year, could confound the spatial air pollution
relationships. For example, Mt. St. Helens erupted in May, 1980, and the resuiting ash may
have been responsible for some of the high TSP levels recorded in the West for that year.

The ways in which a researcher chooses to deal with the need for multivariate analysis con-
stitutes his/her statistical model. The literature varies greatly with regard to these methods and
models, and some data sets have been subjected to several different types of analysis. One of
the first decisions to be made is whether to pre-adjust for a potentially confounding variable
(this may be thought of as two-stage analysis) or to perform a multivariate analysis which al-
lows the confounding variable to interact with the gir pollution variables. This dichotomy oc-
curs rost often with time-series analyses and the need to account for simuitaneous weather ef-
fects. if the data are pre-adjusted without recourse to exogenous data to define the adjust-
ments, there is a risk that some portion of the poliution effect may have been assigned to the
weather effect. We may have more confidence in such procedures if the weather "adjustments”
are consistent with known physiological responses.

For cross-sectional data, we must distinguish between the process of trying to define a model
and that of estimating its coefficients. These two processes have often been combined unwit-
tingly, and it should be obvious that two independent data sets are required to do justice to
both tasks. This is one of the motivations for quantitative comparisons of independent data
analyses. Since we have no basis for a “true” model of the spatial variability of health indices
(especially for mortality) and the data available for analysis are always limited, we must resort
to empirical "specifications” of the important terms. It follows that there can be any number of
such models, and the prudent researcher will investigate whether his/her findings of effects due



to air pollution are robust to plausible variations in these models. Further, he/she may wish to
test the distributions of residuals to determine whether similar models result in statistically sig-
nificant differences in their assignments of pollutant effects (Lipfert et al., 1988).

Researchers also differ in the types of multivariate analyses conducted. Two-way contingency
tables were used to display the interactions of variables in some of the earlier studies
(Winkelstein er al., 1967), but muitiple regressions seem to be the current method of choice.
Some researchers use stepwise variable selection methods; some of these are sensitive to the or-
der of variable entry. Others have pre-defined their models and used "forced" variabie entry.
In cross-sectional studies, models with up to ten variables are not uncommon and collinearity
can be very important as the last few variables enter. Suffice it to say that the burden of proof
remains with the researcher to show that his findings vis-a-vis air pollution and health are
robust to changes in model specifications and data set.

Regionat va. Local Relationshi

Time-series studies often go to great lengths to separate long-term (such as seasonal) variability
from short-term variability, reasoning that most seasonal trends are caused by factors other than
air pollution, and that sharp (daily) mortality increases and decreases in phase with air pollution
perturbations are more likely to be causally related. Similar problems exist with respect to the
spatial patterni of interest to the cross-sectional analyst; regional trends are analogous to
seasonal patterns and local variability to daily perturbations.

Figures | and 2 show regional patterns in heart and respiratory disease mortality, for example.
Heart dis~ase is highest in the East and Midwest, and COPD is highest in the West. We also
know from air munitoring data that sulfur oxides tend to be higher in the East and suspended
particulate matter in the West (much of it from fugitive dust). These regional trends will
prevail in a cross-sectional regression unless compensating factors interfere on the local level,
such as smoking, education, income, migration, for example. For this reason, models which

have ont accounted for all of the local factors will tend to associate all-cause and heart disease -

deaths with 804' and COPD with particulates. The challenge to the analyst is to know when
his model is "complete” and not "over-specified. The approach takan in this report is to try all
reasonably conceivable variables (for which data are available) and then to trim down to that set
of variables that are significant or nearly so. These trimmed-down models have been called
“parsimonious” (Mendelsohn and Orcutt, 1979). This analysis is concerned with spatial varia-
tions; a similar approach was used by Schwartz and his coileagues to account for seasonal trends
and weather variables in time-series analyses.

IMeasures of Risk

Risk can be quantified as the probability of an event occurring within a given time. If ten

members of 2 group of one thousand die within a year, the observed annual mortality rate is 10

per thousand population, which is a statement that each person in that group had a 1% chance

of dying in that year. Of course, we also know that the individual risk increases exponentially

with age, above about age 35. The annual risk to those aged 65 and over is about 6%, for ex-

ample (Lipfert, 1978). In this report, we are primarily interested in how exposure to air pollu-
tion might also increase the risk within such a group.

For contributory factors like air pollution, we are interested in the incremental or "excess” risk
associated with given levels of ambient sir concentrations. The fundamentals of excess risk
must be developed from various statistical measures of association, such as correlation or regres-
sion coefficients. The classical linear regression equation is given by

y=8,+ Z bix;+u (1
i

b o
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Figure la; Observed/expected white male deaths due to acute myocardial infarction, 1979-85.
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where the b, are the regression coefficients for the independent variables x, and u is the
residual error. For a linear dose-response model such as Eq. I, which is the simplest form, the
excess risk (b;x; (where i refers to air pollution variables) may be expressed per unit of air con-
centration regardiess of concentration level. For example, some time series analyses have
derivsd daily risk factors for smoke exposure (bgy.ke) Of about 4% excess deaths per 100
ug/m” of smoke (Table 1). Thus, if the normal risﬁ o? gying is 6% per year (0.0164% per day),
in a populaticn of 125,000 persons aged 65 and over, the expected death rate of this group is
about 20 per day. On a day with a smoke concentration of 125 ug/m”, this risk would be in-
creased by 5%, so that one "excess® death would be expected on that day. This analysis
methodology presumes that the agents and exposures of concern have been identified (in this
case, smoke).

Since the regression coefficients in Eq. 1 must be expressed in units consistent with the depend-
ent and independent variables, it is often difficult to assess their practical importance based on
numerical values. A useful concept is that of the elasticity (at the mean), a term taken from
economics defining a nondimensional regression coefficient as

¢ = bx;fy )

Elasticities are often expressed in percent and offer another measure of attributable risk, based -
on the mean values of the x.. Elasticities for nonlinear models are discussed below. The elas-
ticity concept based on mean values breaks down when independent variables are subjected to
certain transformations which alter their mean values. For example, adding (or subtracting) a
constant changes the means but not the standard deviations. The regression coefficients will not
change correspondingly (as they would due to a change in scale factors), so that the elasticities
are aiso changed as a result of the transformation. One must thus be careful in the application
of the elasticity concept.

The absolute excess risk in the above example is seen to be 1:125,000, but this figure depends
on the baseline level since the fundamental dose-response relationship was expressed as a per-
centage increase. Obviously the absolute risk from air pollution is much less for a group of
healthy teen-agers than for a group of senior citizens.

Comparison of Models

According to the exacerbation model of air pollution effects on health, air pollution seldom, if
ever, is the only factor contributing to the prevalence of a health effect. In the muitiple
regression model given above

y=3,+ £ bx;+u 1
i
air pollution variables will account for only some of the x;.

If we desire to evaluate Eq. 1 for alternative pollutant species which are highly correlated, such
as smoke versus SO,, the only practical method is to evaluate the model for each species
separately, which may give rise to models which may differ very little from one another. There
is always a temptation to declare the model with the highest adjusted correlation coefficient (R)
value or the highest t statistic for the pollution variable as "best," however close its competitors
might be. This practice ignores the fact that a given data set represents only one realization
from the universe of possible data sets, and that its regression statistics thus all carry confidence
limits. When alternative models are independent, the conventional confidence limits for R may
be used as as a guide towards defining statistically significant differences between models.
However, in the cases of interest here, models generally only differ in the poliution variables
chosen and thus are not independent, and special techniques are required in order to test the
differences for statistical significance (Lipfert et al., 1988).



When guantitative estimates of the effect of an independent variable are required, the regression
equation or some portion thereof becomes in effect a dose-response function (def). The mathe-
matical form of such a function can be very important, especially when extrapolating beyond
the range of the original data (which is always dangerous).

For a simple linear regression model, there are two parameters, the slope and the intercept. If
the x-intercept is positive (negative y-intercept), the function is said to have a threshold,
which, in the case of ambient air pollution, is a basis for air quality standards. Such a function
has a constant slope, but the elasticity is usually defined at the mean. Obviously, the function

e=gy x
dx y

takes on different values along the curve of y = mx + b if b is not zero. Thus two different
drfs having the same slope may have very different elasticities if the ranges of the x values are
greatly different.

Some investigators have found that logarithmic transforms provide a better fit to their data.
For the model

In(y) = m In(x) ' (3)

the elasticity is simply ¢ = m =_dv x = d[In(y)]
dx y d[In(x))

and is constant along the entire length of the drf. Obviously, the slope of Eq. 3 increases near
the origin (in cartesian coordinates). A model which fits this definition provides the same per-
centage response régardless of the absolute value of x and implies increased toxicity per unit of
dose at low doses, which seems physiologically implausible. However, when dealing with
heterogeneous populations, applications of the concepts of toxicology derived from relatively
uniform populations may not be immediately obvious.

The final model paradigm considered here is the log-linear model
logy=a,+ I b;x; +u,ory=lexp(a, +. L b;x; + 1) 4)
i i

in which only the dependent variable has been transformed to logarithms. The elasticity of this
moudel is given by

ei = Bl;i- . . (S)

when natural logarithms are used, and B;x./ln (e) when base 8 is used; the logarithmic models
employed in this report use base 10 logarithms. The log-linear model postulates an exponen-
tially increasing effect per unit of increased dose, which is consistent with an increasingly sen-
sitive fraction of the total population, as concentration levels increase.

For data sets of limited range in x and smill values of e, these three types of models may be es-

sentially equivalent. For data sets with substantial variability, plots of the regression residuals
may be required to establish the best form of model.

The Air Quality Data Base

As discussed above, cross-sectional studies have usually been intended to study long-term dif-
ferences among locations. For this reason, it has not generally been regarded as particularly im-



portant to use environmental data taken exclusively during the nominal year of study (1980, in
this case), although clearly this would be desirable from the standpoint of uniformity and in or-
der to deal with specific attributes of that year, including the heat wave that occurred in the
central and eastern portions of the nation (Bair, 1992). Missing or incomplete air quality data
are 2 common prodblem with observational epidemiological studies; for example, Mendelsohn and
Orcutt (1979) used 1974 air quality data in their study of 1970 mortality patterns, arguing that
the geographic patterns were stable in time and that the later measurements were more com-
plete. Others have averaged over several years in order to obtain more reliable long-term
averages (Lipfert, 1978; Lipfert e al., 1988).

Sulfate Aerosol Data. 1980 was an especially problematic year for particulate pollution
measurements. Size-classified measurements were being explored but the PM o network had
not yet been established; PM,¢ data were being acquired on a research basis ? Watson e al.,
1981). The glass fiber filters used in the routinely operated high volume samplers for total
suspended particulates (TSP) and their chemical constituents (SO,", NO.~, etc.) were found to
be unusually alkaline for the years 1979-81 (U.S. EPA, 1984). One of the well-known charac-
teristics of such filters is their tendency to convert SO, (gas) in the ambient air being sampled
to 504 particles on the filter (Stevens, 1981); this problem was thought to be especially acute
dunns 1979-81. The outcome would be values reported for TSP and 504 that would be biased
high in locations with appreciahle ambient SO, levels. -

For the present study, all the sites assigned to a given SMSA, as defined by the 1980 Census,
were combined to provide SMSA-wide estimates. These data were retrieved from the EPA
AIRS data base (Link, 1991); AIRS is the successor to SAROAD. Annual median SO, values,
which tend to run 10-20% lower than annual mean values, were used because of the typically
skewed frequency distributions and the relatively sparse frequency of measurement found in
most Jocations. Data were assembled separately by year for the purpose of comparison. The
following summary statistics were derived:

Year No. of SMSAs Mean SO, “(ug/m?)
1978 111 8.95
1979 97 9.20
1980 95 9.80
1981 100 9.86
1982 38 9.17

However, the differences by year were more pronounced when compared for the 33 SMSAs that
had adequate data in each year, especially when the reduction in natxonwnde SO, emissions is
taken into account. Fxgure 3 plots the ratio of average median SO concentration divided by
annual SO, emissions in million tons (U.S. EPA, 1986). 1980 and 1981 stand out as higher than
the other three years, by about 10%. Since the suspect high-volume sampler filters were also
used in 1979, it is difficult to assign all the blame to the filters. An alternative explanation is
the low rainfall that occurred in the summers of 1980 and 1981, since precipitation tends to
remove both SO, and SO from the atmosphere. If meteorological factors are the main reason
for the high sul? tes recorded in 1980 and 1981, then the data should be regarded as valid for
those particular years (but not necessarily representative of the long term).

Since one interpretation of a long-term cross-sectional study is that of the sum of short-term
effects (Evans et al., 1984a), differences among years were explored further by regressing 1980
(crude) mortality against each of the five years, in turn. The slopes and correlations were
higher for the years 1979, 1980, and 1981, with the highest values occurring in 1981. The dif-
ference in slope between 1982 and 1981 was not quite statistically significant. Thus no special
relationskip was apparent for the 1980 measurements, leading to the hypothesis that artifacts
formed on the filters used in 1979-81 resulted in the improved correlation, rather than coin-
cidence in time.
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The sulfate data used for multiple regressions in the present study (149 locations) were then ob-
tained by averaging all the observations available for the period 1978-82. Missing locations
(Chicago, Savannah, Eugene, OR, Chico, CA, Richmond, VA, Green Bay, Wi, Jackson, MI, At-
lantic City, NJ, Augusta, GA, Macon, GA, Beloit, Wi, Rockford, IL, Wheeling, WVY) were es-
timated either from nearby locations or from alternate time periods. Figure 4 plots the final
data set against the 1980 measurements. There is appreciable scatter but appears to be little
bias.

Other sources of sulfate air quality data include measurements from the PM, < (also referred to
as "IP*, for inhalable particulate), and estimates made with computer models. The IP data were
obtained with unreactive (Teflon) filters and are thought to be more reliable than data obtained
with high volume samplers using glass fiber filters; the correlation between the two measures
was 0.63 (Lipfert et al., 1988). The two 804' measures were related by

AIRS [TSP] SO, = 3.5 + (1.18 +/- 0.23) * (IP] SO4" (two-sigma CLs). (6)

Thus, the slope was not significantly different from unity, which implies that a single unit of
sull‘atg had the same meaning in both measurement systems.* However, the AIRS data were 3.5
ug/m"” higher than the IP data, on average, presumably because of the filter artifacts. Equation
6) uapl:es that both measures should derive the same regression coefficient, and that the 3.5
ug/m” intercept should not play a role in the effects attributed to AIRS sulfate. Thus, the in-
tercept should be subtracted from the AIRS mean value when estimating elasticities and previ-
ous estimates of air pollution effects based on SO, obtamed from hi-vol filters should be
reduced accordingly. The overall levels of the [IP) gO values were in better agreement with
804 values obtained from various air quality research efforts carried out during this period
than the SAROAD values. In most cases, there was only one IP monitor per city.

Given the apparent superiority of the [IP] SO measurements, the regression given by Eq. 6
could also be used to estimate the variance due to measurement error associated with the [}SP]
SO data. The standard error of estimate from Eq. 6 provndes such an estimate (2.28 ug/m
Accordmg to Snedecor and Cochran (1967 p. 1625), a regression coefficient based on an mde-
il 5( variable measured with error variance Se will be biased low by an amount given by 1+
Although the formula given by Snedecor and Cochran is not strictly applicable to mui-
Uple regracsnons, it suggests that sulfate regression coefficients based on the [TSP] SO4 '
measurements are likely to be biased low by as much as a factor of 1.4.

In their study of 1980 momlity and air pollution in U.S. cities, Lipfert et al. (1988) extensively
used modeled ambient air quahty values derived from a long-range transport computer model
(Shannon, 1981). Modeled SO , and NO_ were all found to be important predictors of
excess mortality in that study 0.1" about 900 locations. However, as mentioned above, subsequent
evaluations of these modeled air quality estimates cast some doubt on their validity. Scatter
plots against the IP data and against data from the SURE (Mueller and Hidy, 1983) show good
agteement within some regnons but differences between regions. The correlation between com-
puted SO,™ and [IP) SO was 0.70. Since the long-range transport model is essentially a trans-
fer function between source emissions and ambient air, averaged over grid cells of about 120
km on each side, a correlation between health and computed air quality may also represent a
correlation wnth industrial activity and the various accompanying socioeconomic factors. The
computed SO values are based only on combustion and smelter emissions, and thus do not in-
clude sull‘am from natural sources or particles such as CASO4. The grid-averaged values are
mcapable of reﬂecung local phenomena that might affect SO, oxidation rates or local primary
emissions of SO,".

® A similar relationship was found by comparing SO4 data from TSP filters with 804 data
obtained from PM;q filters in New York State, on a temporal basis.
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Total Suspended Particulate Data. Lipfert et al. (1988) made only a few cursory regressions
employing TSP. That data base consisted of 1978 and/or 1982 values for each city, with no at-
tempt to derive city-wide averages. A similar approach was used by Ozkaynak and Thurston
(1987), in that a single monitoring site was used to represent each SMSA.

In an effort to improve the estimation of actual exposures to particulates within each SMSA,
data from the EPA AIRS database were used to construct spatial averages for 1980. All TSP
monitors with at least 11 observations for 1980 were used; the annual means were averaged
(without weighting) to provide an SMSA-wide estimate. There were a few cases of source-
oriented networks in the data base (Granite City, IL [St. Louis SMSA] and networks surrounding
some of the TVA power plants). These subsets were averaged separately and then entered into
the dataset for the SMSA in question as a single observation, in order to preclude undue weight-
ing because of the large number of monitors representing a limited geographic area. Separate
files were constructed for the jnain central cities of each SMSA and the surrounding area; the
overall means were 72.5 ug/m” and 64.4 ug/m” for 112 SMSAs. City and SMSA averages are
compared in Figure 5. The standard deviation of the 112 SMSA averages, was 14.9 ug/m"~; this
compares with the average within-SMSA standard deviation of 13.9 ug/m3. which suggests that
there is typically almost as much variation within SMSAs as between SMSAs,

The overall mean for 149 SMSAs was 68.4 ug/m3. A total of 1581 momtoring stations w%s used
in this effort. The maximum annual mean value for an individual Tomtor was 280 ug/m- (East
Chncago. IN, near a car wash). the minimum value was_22 ug/m° (near Portland, OR). The
maximum SN:‘SA average was in Spokane, WA (142 ug/m3). the minimum was in Atlantic City,
NJ (41 ug/m"~)

Yur-by-year TSP comparisons were made on the basis of the maximum annual means recor, ed
in each SMSA fos the years 1978-82. The averages for 112 SMSAs decreased from 90 ug/m
1978 to 69 ug/m” in 1982. However, when compared to the national estimates of partxculate
emissions (U.S. EPA, 1986), it appears that tlie ambient data for 1980 and 1981 were about 5%
higher than expected. As was the case with sulfates, this could have resulted from either sulfate
artifacts on the filters or from the low rainfall that occurred in those years (U.S. EPA, 1986).

wi i i nak . Ozkaynak and
Thurston (1987) did not tabulate the air quality values they used for individual SMSASs in their
paper, but their plots of mortality rates vs. TSP and SO (their Figures 1 and 2) provide this
information, albeit mdnrectly Data were obtained from these plots and compared to the inde-
pendent estimates used in this re-analysis (Figures 6 and 7). The major outliers (deviations
from the diagonal 1:! line) were examined on a case-by-case basis.

For SO , major differences between O&T and the five-year average SAROAD data were
found fOI' Gary, IN, Wilmington, DE, Houston, Baltimore, Richmond, VA, and Toledo. Most
of these could be explained by O&T's use of incomplete seasonal data; sult‘ate has a strong
seasonal cycle and if either winter or summer data are missing, a biased estimate of the annual
mean will result. The high value that O&T used for Houston was not found among the 29
measuring stations listed in the AIRS data base for Harris County, TX, and thus could not be
explained.

For TSP, major differences between O&T's data and the SMSA-wide averages were found for
Cleveland, Denver, Portland, OR (O&T values were high) and for Houston (O&T value was
low). The value they used for Houston was the lowest of the 44 stations that reported data in
that SMSA for 1980. The plots indicate that large differences can result from selecting in-
dividual monitoring stations to represent an entire SMSA, as opposed to averaging them all.

In assembling their air quality data base for U.S. cities, Lipfert et al. (1988) limited the high
volume sampler-based SO," data (which they labeled "SAROAD,") to the years 1978 and 1982.
By individual city, these data retrievals ranged from single monitors with as few as five obser-
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vations to Houston, TX, where 30 monitors recorded over 5000 observations during this period.
The mean values for 1978 and/or 1982 for each sampler were then averaged by site, and the
median of these means was used to obtain an estimate of the city-wide average.

Other Pollvtants

Ozone (ppm): two separate sources of ozone data were utilized in this aralysis. Peak 1-hr values
were available for 1980 for 72 SMSAs (U.S. EPA, 1984), which were generally the largest
SMSASs in the nation. These data represented the highest readings for cach SMSA, and are not
necessarily representative of average exposure across the entire SMSA. Seasona! average 8-hr
maximum values were available for the entire data set, as obtained for a smooth isopleth map
based on interpolated measurements taken from 1980-1990 (Figure 3a), ca. 1978 (McCurdy,
1992). These data represent the average from April to October of the highest 8-hr period of
the day, regardiess of the time at which it occurred. However, the probability of outdoor ex-
posure varies with time of day, so that it is not clear that this is an appropriate metric for
human health effects. In addition, 1980 was known (0 be a8 high ozone year and the relation-
ship between annual exposure and these April-October averages will probably vary with
latitude. The resuits from the long-term average ozone variable should thus be used with cau-
tion. .

Most of the analysis was conducted for the seasonal average data set, because of its complete-
ness and the likelihood of better representing spatial averages across each SMSA. However, it is
also possible that use of the same definition of "season” in all locations, regardless of latitude or
climate, has created a bias with respect to the true annual average ozone level. On the other
hand, since most of the short-term peaks are likely to have occurred during these months, this
metric could represent an operational average of peaks. Figure 8b plots peak values as obtained
from individual monitoring stations vs. seasonal average ozone levels for the larger SMSAs; a
reasonsbly-consistent relationship is seen. Note also the large number of locations in violation
of the NAAQS.

Mznganese (ug/m3): based on analysis of high-volume sampler filters. Data were estimated
from previous years for several SMSAs.

Particle data from the dichotomous sampler (IP or "Q‘:s’ network (1979-83): Total mass and
fine particle mass, total sulfate, fine lead (Pb) (ug/m~); samples taken every 3 or every 6 days.
IP data for SMSAs with more than one IP monitoring site were averaged over all the sites in
that SMSA. The size-fractionated particulate (IP) data, described by Watson er al. (1981), were
based on Teflon filters and show systematically lower sulfate values; these values are generally
regarded as the "true” sulfate measures. The differences between the two sulfate measures are
not consistent and presumably depend on a number of site-specific environmental factors.
These measurements were replaced by PM,q, which begen with a few sites in 1983, too late to
be used with the 1980 census and mortality data.

Other Variables Used in the Stud

Mortality Data (dependent variables). Mortality counts were taken from Vital Staiistics, 1980,
Part B (Table 8-6), for which the SMSA boundaries were based on the 1981 definitions, which
is consistent with the State and Metropolitan Area Data Book, from which population data were
taken. (In New England, death counts are given only for New England County Metropolitan
Areas (NECMAS), which are comprised of whole counties. We therefore based our deniographic
data for New England on NECMAs. New England SMSAs are comprised of cities and towns,
which are sometimes only parts of counties.)

Four different groupings of causes of death were analyzed. Rates were computed by dividing
the nsmbers of desths in each group for the calendar year 1980 (all ages, races, both sexes) by
the population estimated by the US. Census as ¢’ April 1, 1980. Thus, small errors would be
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Figure 8a. Smoothed average ozone data for 1980-90, based on maximum daily 8-hr averages,

averaged from April to October (values in ppb). Source:

Protection Agency.
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entailed by any population changes which took place during the year; an independent variable
for percentage population change was included in the regressions, in part for this reason.
Deaths were assigned to locations on the basis of usual residence rather than on the basis of the
location at which the death actually occurred. In this report, the term "mortality” should be in-
terpreted as the crude (unadjusted) figure, unless otherwise specified.

The causes of death analyzed and their mean values and standard deviations (deaths per
thousand population) are listed below, based on 149 SMSAs. ICD9 codes refer to the Ninth
Revisions of the International Classification of Diseases. These selections were made to
eliminate causes of death which are unlikely to have resulted from air pollution (external causes)
and to specifically examine those major causes which have previously been linked with air pol-
lution (heart and lung disease). No distinctions were made by age, race, or sex.

Non-external Causes: all causes less accidents, homicides, and suicides (ICD9 1-800).
Mean = 7.82, standard deviation = [.48.

Maior Cardiovascular Diseases: includes acute heart attacks, chronic heart disease, hy-
pertension, and stroke (ICD9 390-448). Mean = 4.19, standard deviation = 0.935.

Chronic_Qbstructive Pulmonary Disease (COPD): Includes bronchitis, emphysema, and
chronic airways obstruction, but not acute respiratory disease, pneumonia, influenza, or
occupational pneumoconiosis (ICD9 490-496). Mean = 0.251, standard deviation = 0.075.

All_ Causes: included primarily to facilitate comparison with other studies which did not
remove external causes of death. Mean = 8.50, standard deviation = 1.48.

In terms of the coefficients of variation, COPD was the most variable grouping and all-cause
mortality was the least variable.

Demosraphic/Socioeconomic Variables. Population descriptive data were obtained for 149 US
SMSAs from the 1982 State and Metropolitan Area Data Book (SMADB), as follows. A brief
rationale for each variable is also given. Variable names, as used below, are given in bold in
parentheses.

1. Percent of population 65 years of age or more (65+). Above about age 35, mortality
rates are exponentially related to age, but this variable is the only useful age statistic
available from SMADB. "Median age” was used by Ozkaynak and Thurston but tends to
be collinear with "percent > 65.° Median age statistics add little new information where
it is most needed: the age distribution within the 65-and-oider group.

2. Racial and ethnic distribution: percent black (BLACK), percent other nonwhite
(OTHERNW: Asian, American Indian, etc.), and percent Hispanic (HISP). Each of these
groups tends to have mortality rates different from whites and thus cities with higher
than average percentages of these groups would be expected to have correspondingly
different mortality rates for the total population. Race was self-defined in the 1980
census, which leads to a certain amount of confusion, mainly in heavily Hispanic cities
in the Southwest. We consider three groupings: whites, blacks, and others; they sum to
100%. “Hispanics® are a separate grouping not defined by race. In most cities, the frac-
tion of "other" is small, but in El Paso, TX, it is about 38%, apparently because many
Latinos do not consider themselves white. However, the classification of deaths by race
uses a different criterion, since the 1980 deaths for El Paso were listed as 97% white.
This means that death rates cannot be computed accurately by race for these locations.
Ozkaynak and Thurston used the combined nonwhite population percentage (NW).

3. Percent of individuals below poverty level (POOR). We feel this is 8 better income
variable than, say, median income, since if ;here is an effect of income on mortality, it
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would be expected to be most obvious at the low end of the scale.

4, percent with four or more years of college (COLLEGE). Education may be a better
socioeconomic variable than income since some persons may have low income because
they have poor health, not vice versa. Educational attainment, as a socioeconomic in-
dicator, will not be changed by subsequent illness.

5. Percent population change since 1970 (CHNG70). This variables is intended to
characterize population stability and migration, which can be important for several
reasons. First, cities with high rates of inmigration may attract healthy people looking
for better economic opportunities. A contrary effect would result if ill health were a
factor in the decision to migrate to a more favorabie climate (or to return home where
family support may be available). Finally, long term exposure to air pollution would be
affected by migration.

6. Average annual heating degree days (HDD). This is essentially a climate variable
reflecting long-term rather than current weather conditions,

1. Population density (logarithm, LPD). Before the conquest of infectious diseases,
population density was an important determinant of mortality (Farr, 1885; Lipfert, in
press). When applied to county units or larger, this statistic is now of limited use due to
the heterogeneity of land use typically found in larger areas, and tends not to capture
the average density at which people actually live. However, it is capable of distinguish-
ing the 100% urban SMSAs (such as Jersey City) from most of the others, which are
usuaily mixed urban/suburban.

Drinking Water Ouality Data. Previous studies(Lacey, 1981; Lipfert, 1984) have implicated
soft water as a contributing factor in heart disease, primarily for males. Data on drinking
water hardness in ppm (HARDNESS) were obtained from a data base compiled by the National
Institutes of Health (Feinleib et al., 1979). These dita were for the ca. 1970 time period and
earlier, but it was felt that drinking water supply data would be reasonably stable over time.
The NIH data base was for cities rather than SMSAs; the value for the main city of each SMSA
was selected; no attempt was made to average over all the component cities of an SMSA. Data
were available for 144 SMSASs out of the above set of 149; the other five values were obtained
by telephone from the respective water supply authorities.

Data on Smoking Habits. Cigarette consumption data have been estimated from state sales tax
data for three time periods: 1955, 1969, and 1980 (Lipfert, 1978; Lipfert er al., 1988) The es-
timates are based on regression analysis on state level sales data (annual packs per capita for
the population aged 18 and over), using various economic and demographic variables as pre-
dictors. The presence of lower sales taxes in adjoining states was found to be an important
factor in explaining cigarette sales differences. These regression results were then used to pre-
dict cigarette consumption in each state. It was not possible to derive cigarette consumption
data at finer geographic resolution, and thus we are forced to assume uniform consumption
throughout the state with discontinuities at the borders. These errors are likely to lead to an
underprediction of the effect of smoking on mortality, particularly for interstate SMSAs.

Earlier analyses of smoking patterns typically found large urban-rural! differences, and it has
long been assumed that city people smoke more. In the study of 1980 smoking data, SMSA
tobacco sales data from the 1977 Census of Retail Trade were compared to state-wide sales
data from the same source, and a consistent relationship was found, amounting to an annual
urban-statewide difference of about 5 packs per year per person (out of 185). This smali (but
still statistically significant) difference suggests that regional smoking patterns are now prob-
ably more important than urban-rural differences within regions, which supports the use of
state level data in the analysis of mortality effects.



Finally, a comparison was made of our estimates of cigarette consumption with independent
state level survey data on the percentage of people who smoke (smoking prevaience). The cor-
relation coefficient relating these two measures was only about 0.5 (explaining 25% of the
variance) for the 29 states which had conducted surveys. Possible explanations for this rather
poor result include variations in amount consumed per smoker and under-reporting by those
responding to the survey. We prefer to use consumption data rather than prevalence since
heavy smokers have a much higher relative mortality risk than light smokers, and since con-
sumption may reflect the possible effects of passive (involuntary) smoking. Cigarette con-
sumption rates are analogous to air pollution emission rates, with respect to passive smoking ef-
fects.

For an analysis of chronic health effects, it is not clear whether current cigarette smoking rates
or some time integral is the appropriate metric (the same question exists for air quality as well).
For this reason, we considered two possible smoking variables: the 1980 data. as described
above, and 1969 data. Because of collinearity between the two (r=0.48), regression models are
limited to one or the other (or alternatively, the average (SMOKING78), which was used in the
regression runs reported below).

Locations Studied

This study employs Standard Metropolitan Statistical Areas (SMSAs) as the geographic unit of
analysis. The U.S. Bureau of the Census (1983) defines an SMSA as a group of counties (except
in New England; see below) having a total population of at least 100,000 with an urbanized area
population of at least 50,000. Two counties in Montana, with populations of 77,000 (Missoula)
and 34,000 (Silver Bow County, which includes the city of Butte), which do not qualify as
SMSAs, were also added to the data set in order to take advantage of their air quality data.
Consolidated Metropolitan Areas, which combine several SMSAs, such as Los Angeles, New
York, or Chicago, were not used in this analysis.

The 112 SMSASs first studied by Lave and Seskin (1970) and later by Evans et al. (1984b) and
others comprised the primary list of locations. These were originally selected on the basis of
the availability of air monitoring data, ca. 1960, but the actual geographic definitions in terms
of the counties included have changed somewhat over the years, as defined in each decennial
Census. In general, SMSAs are comprised of whole counties but include independent cities in
Yirginia and portions of counties in New England (CT, MA, ME, NH, RIl, VT). For com-
parability of mortality and socioeconomic data, New England County Metropolitan Areas
(comprising whole counties) were used in these six states.

Ozkaynak and Thurston (1987) selected a subset of 98 SMSAs from this list, based on
availability of ca. 1980 air quality data and conformance with their mortality model. Com-
parisons are presented below using this model and data set. They also defined a subset of 38
SMSAs which had air quality data obtained from the Inhalable Particulate (IP) Network, which
featured size-classified particle concentration data. In this report, we use the entire IP data set,
comprising 63 locations including the two Montana counties.

Further subsets of SMSAs were defined on the basis of the availability of air quality data, as
discussed below. Mean values of all variables are given in Appendix A,

WA 0 ARSI



REGRESSION ANALYSIS RESULTS.

Multiple regression analyses were used to deduce associations between SMSA mortality rates and
various air pollutants. These were performed using the algorithms of Quattro 8-Pro, a spread-
sheet analysis program (Borland International, 1989). All regressions were run with models
specified a priori; stepwise regression was not used. The intent was to develop mortality models
which contain only those socioeconomic terms which are statistically significant (or nearly s0)
and to evaluate these models using various air pollutants. The two-sided 0.05 level was selected
as indicating statistical "significance.”

Regression Results for SO,” and TSP

r . Ozkaynak and Thurston (1987) published the first
analysis of mortality gradients for the year 1980; their work has been widely cited and recom-
mended for use in cost-benefit analyses. They found sulfate to be the most important air pol-
lutant and assigned from 4-9% of U.S. total mortality to this cause. The range of re ession
coefficients for 804' was from 0.046 to 0.075 deaths per thousand ‘population per ug/m7, with
two-sigma confidence limits of about =/- 0.03 deaths per thousand population per ug/m3 (p <
0.001). In this sense, they confirmed the findings of previous analyses dealing with air quality
from the 1960s and 1970s (Lave and Seskin, 1978; Chappie and Lave, 1982; Mendelsohn and
Orcutt, 1979). However, each of these previous studies has been found to contain serious flaws
(Lipfert, in press) and in particular, reanalysis of the Lave and Seskin work has produced much
lower (and even negative) estimates for the effects of sulfate on mortality (Evans et al., 1984;
Lipfert, 1980, 1984). For this reason, careful attention was given to the Ozkaynak/Thurston
(O&T) study.

O&T postulated that (crude) mortality rates in US. SMSAs could be defined using six
socioeconomic variables: median age (MEDIAN), percentage 65 and over (65+), percentage non-
white (NW), percentage classified as below the poverty line (POOR), the log of population den-
sity (LPD), and the percentage with four or more years of college (COLLEGE). However, they
presented no regressior results for these variables and the variable they labeled as “COLLEGE"
appeared to be something else, since its mean value did not correspond to either the 1970 or
1980 Census data for "percent with four or more years of college." Further, we could not be
certain as to the exact air quality data they used, since no details were given on the inhalable
particle data and the only available information on 804' and TSP had to be read from the pub-
lished graphs. However, as discussed above, we did find a few important differences in the
804"‘ and TSP data. These uncertainties, which undoubtedly resulted from the constrictions of
journal publication space, make detailed comparisons with the present work difficult.

Table 2 presents recalculation of regressions based on this model and set of locations, using the
input data developed for this study and all-cause mortality. The coefficients for 504' and TSP
check the O&T results quite well, which ﬁ dicate that they portray mainly regional rather than
local effects. Note that O&T reported R values from 0.89 to 0.92; we derived slightly higher
values, suggesting that the actual "COLLEGE" and air quality variables constituted improve-
ments in fit. These differences not withstanding, Table 2 shows that we successfully replicated
the basic O&T findings, using their model and independently derived input data.

When sulfate was entered as the sole pollutant (Regression 2.1), three of the six socioeconomic
variables failed to reach significance (MEDIAN, POOR, LPD). When TSP was substituted for
804" (regression 2.3), MEDIAN became significant and LPD nearly so, but TSP was highly in-
significant. These results indicate an interaction between the 804" and socioeconomic variables.

Table 2 also shows results for 149 SMSAs using this model. The SO," coefficient increased by
about 20% relative to the 98-SMSA case and the TSP coefficient remained insignificant, but NW



TABLE 2
MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL

(Mortality from ali causes)
Regression No. 2.1 22 23 24
Varlable All Cause All Cause All Cause All Cause
%> =65 0.554 0.4%0 0.533 0.433
() ©) ) )
median age 0.076 0.131 0.0977 0.169
(0.10) (0.014) (0.04) (0.002)
% nonwhite 0.0248 0.0072 0.0244 0.0067
(0.0002) (0.28) ~ (0.0009) (0.35)
% college 0.049 0049 0.068 0,081
() (0.0002) ) ©)
% poor 0.0148 0.0365 0.0198 0.0371
(0.50) (0.10) (0.41) ©.11)
log population 0.0383 20.105 0.179 0.106
density (0.74) (0.44) (0.14) (0.43)
S04~ 0.064 0.079 X X
(ug/m®) © ©
particulates X X 0.0002 0.003
(TSP-ug/m°) (0.94) (0.26)
# observations 98 149 98 149
R? 0.933 0.870 0.919 0.856
std error of . 0.352 0.550 0.387 0579

estimate

Values in this table are regression coefficients
() indicates probabilty that the true value Is zero
X indicates the variable was not included



became insignificant and the 65+ coefficient decreased by 13-19%. There were important dif-
ferences in the coefficients for COLLEGE and 65+ according to which pollutant was included.

Regressions were also computed for the other three cause-of-death groupings using this model,
for both the 98 and 149 SMSA data sets (Tables 3, 4, and §). For non-external causes, sulfate
was significant in both cases, but TSP nearly reached negative significance® for 149 SMSAs.
Wide fluctuations were seen in the socioeconomic coefficients. For cardiovascular causes, the
results were similar except that TSP was highly negatively® significant (p=0.004) for 149 SMSAs
and NW, MEDIAN, and POOR were never significant. For COPD, TSP was significant (+) in
both cases, and 504" was negatively® significant for 149 SMSAs. There were wide variations in
the socioeconomic coefficients among the four regressions. The negative pollution coefficients
derived by the O&T model are counterintuitive and are indicative of incomplete or improper
model specification. Although the pollutant regression coefficients checked well with the values
reported by Ozkaynak and Thurston (for the 98 SMSA case), taken as a whole, these results
suggest that the O&T mortality model is not completely specified and that the selection of loca-
tions for analysis may also be important.

The "Complete”® Socioeconomic Model. Since three of the six socioeconomic variables postulated
by OA&T failed to reach. significance, the next step in this process was to examine associations
between the three specific cause-of-death variables and a larger suite of (non-pollution) inde-
pendent variables. (All-cause mortality was eliminated from the analysis at this point, since ex-
ternal causes of death tend to be higher in the West and thus could confound results for any air
pollutants which also varied systematically from East to West, such as sulfates, for example.)
The independ=zt variables were selected from those that are known a priori or suspected to in-
fluence spatial variations in mortality rates and included: 65+, POOR, COLLEGE, LPD, per-
centage black (BLACK), percentage of Hispanic origin (HISP), percentage of nonwhites other
than blacks (OTHERNW), estimated cigarette consumption (SMOKING78), drinking water hard-
ness (HARDNESS), annual heating degree days (HDD), and percentage population change be-
tween 1970 and 1980 (CHNG?0). These variables had previously been investigated with respect
to city mortality rates (Lipfert et al., 1988). This analysis was limited to the 149 SMSA data set;
TSP and SO~ were each entered separately.

Table 6 presents these results. For non-external mortality and cardiovascular causes, neither
pollutant reached significance although for non-external deaths, SO," was close and the coeffi-
cient for TSP was similar to values which have been reported for time-series analyses (Schwartz
and Dockery, 1992a,b). TSP was highly significant for COPD deaths, with about the same
regression coefficient as found with the O&T model. Among the other independent variables,
SMOKING78 was significant for non-external deaths and nearly significant for COPD and
major cardiovascular deaths. OTHERNW, HISP, HDD, and HARDNESS were never significant,
COLLEGE and CHG70 were significant for cardiovascular and non-external deaths, and POOR
and LPD were only significant for COPD. BLACK was significant (positive) for non-external
and cardiovascular deaths, but significant (negative) for COPD. In general, we found that the
socioeconomic coefficients were not sensitive to which pollutant was entered, indicating that the
interactions seen with the O&T model had been eliminated.

These results suggest that this model may be “overspecified." For example, the Hispanic
population tends to be higher in the Southwestern portion of the country where heating degree
days are low; thus, only one of these variables should be entered. Since Hispanics have been
shown to have lower rates of heart disease (Rosenwaike, 1987), presumably because of dif-
ferences in diet, and since there is no currently operational hypothesis for an effect of space

® negative coefficients, which imply that pollution prolongs life, if taken naively at face value,
indicate that mortality rates for that disease tend to be lower in those parts of the country
where the pollutant in question tends to be higher; these are usually regional trends and may be
indicative of incomplete model specification.



TABLE 3

MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL
(Mortality from Non-External Causes)

Regression No. 3.1 32 3.3 34
Varlable Non Ext Non Ext Non Ext Non Ext
%> =65 0.564 0.503 0.534 0.445
©) ) ©) )
medlan age 0.0479 0.0868 0.079 0.133
(0.26) (0.08) (0.10) (0.01)
% nonwhite 0.0153 0.0010 0.0151 0.0002
a 0.017) (0.87) (0.04) (0.96)
% college 0.0418 0.0425 0.0663 -0.0804
©) (0.001) ©) ()
% poor 0.0133 0.0268 0.0165 0.0274
(0.53) (0.21) (0.50) (0.23)
log population 0.224 0.0895 0.391 0.328
denstty (0.04) (0.49) (0.0013) (0.010)
0.077 0.0333 X X
(uo/ md) © ©)
particulates X X -0.002 -0.005
(TSP-ug/m°) (0.43) (058)
# observations ) 149 ) 149
R2 0.939 0.884 0.920 0.865
std error of 0.341 0.521 0.390 0.561
estimate
Values In this table are regression coefficients

() indicates probability that the true value Is zefo

X indicates the variable was not included



TABLE 4
MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL

(Major Cardiovascular Deaths)
Regression No. 41 42 43 44
Varlable MCV MCV MCV MCV
%> =65 0.351 0.330 0.340 0.289
() ©) (©) ©)
median age 0.011 0.0074 0.0098 0.0386
(0.72) (0.83) (0.78) (0.29)
% nonwhite 0.0057 £0.0022 0.0057 £0.0028
(0.22) (0.64) (0.29) (0.56)
% college -0.0397 0.0396 0.0564 -0.065
() ©) ©) ()
% poor 0.014 -0.0084 00122 -0.0082
(0.36) (0.58) (0.48) (0.60)
log population 0.219 0.130 0.330 0.267
density (0.007) (0.15) (0.0001) (0.002)
S04~ 0.0514 0.0599 X X
(ug/m°) ©) ©
particulates X X <0.002 £0.005
(TSP-ug/m?) (0.36) (0.004)
# observations ) 149 98 149
R2 0.922 0.862 0.902 0.849
std ervor of 0.249 0.363 0.279 0.380

estimate

Values In this table are regression coefficients
() indicates probability that the true value is zero
X indicates the variable was not included



TABLE 8
MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL

(COPD Deaths)
Regression No. 5.1 5.2 53 54
Variable CcOoPD COPD COPD COPD
%> =65 0.0028 0.0133 -0.0006 0.0170
(0.61) (0.010) (0.90) (0.0007)
median age 0.0147 0.0069 0.0136 0.0044
(0.006) 0.21) (0.009) (0.42)
% nonwhite 0.0029 0.0012 -0.003 0.0012
{0.0004) (0.075) (0.0002) (0.09)
% college -0.0001 “0 0.0012 0.0020
091) (0.96) {0.29) (0.08)
% poor 0.0075 0.004 0.008 0.0041
(0.004) (0.08) (0.002) (0.07)
log population 0.022 -0.044 0.027 0.05
densty (0.12) (0.002) (0.04) ©)
0™ 0.003 0.004 X X
(ug/m®) (0.14) (0.03)
particulates X X 0.0008 0.0008
(TSP-ug/m' (0.015) (0.003)
# observations 88 149 98 149
R2 0.384 0.460 0.407 0.476
std error of 0.043 0.056 00s2 0058

estimate

Values in this table are regression coefficients
() Indicates probabiity that the true value is 2ero
X Indicates the variable was not included



TABLE 8

MULTIPLE REGRESSION RESULTS FOR THE "COMPLETE' MODEL

(149 SMSAs)
Regression No. 6.1 6.2 6.3 6.4 65 6.6
Variable NonExd  NonEx MCV MCV COPD COPD
% > =65 0.557 0.552 0.327 0.322 0.0185 0.020
) ()] ©) ) () ©
% Hispanic -0.0043 -0.0090 0.0027 0.0032 -0.0009 0.0014
(0.51) ©.17 (0.54) (0.49) (0.028) (0.08)
% black 0.022 0.022 0.011 0.011 0.0021 -0.0021
(0.004) (0.004) (0.038) (0.038) (0.033) (0.03)
% other non w -0.002 -0.004 -0.002 -0.0030 0.0001 0.0003
0.77) (0.65) (0.69) (0.58) (0.90) (0.77)
% college 0.037 0.042 0.037 0.042 0.0003 0.0017
(0.007) ©) (0.0002) ©) (0.81) (0.19)
% pop. change,  0.017 0.020 0.012 0.013 0.0002 0.0004
1960-1970 (0.008) ©) (0.0002) ©) (0.71) (0.52)
drinking 000064  -0.00065 -0.0004 -0.00038 3.6x10°° 3.6x10°
water hardness  (0.12) (0.12) (0.19) (0.19) (0.50) (0.49)
% poor 0.0195 0.0246 - 0.0019 0.0028 0.0058 0.0069
(0.36) (0.26) (0.89) (0.85) (0.03) 0.01)
cigarette cales 0.0040 0.0048 0.0019 0.0022 0.00041 0.00042
(1970-80 avg) (0.029) (0.009) (0.13) (0.084) (0.08) (0.06)
heating ax10° 3x10 ax10® 4x10 2100 -1x10°6
degree days - (0.26) (0.40) (0.065) (0.11) (0.67) (0.79)
log population 0.038 0.044 0.006 0.0356 0.036 0.035
densky ©.75) o.7n) (0.93) (0.66) (0.02) (0.01)
X 0.0030 X -0.0009 X 0.00084
(T SP-UO/ ) (0.24) (0.61) (0.006)
S04~ 0.031 X 0.0178 X -0.0025 X
(ug/m®) (0.08) (019 (0.29)
¥ observations 149 149 149 149 149 149
RZ 0.920 0.920 0.907 0.906 0.488 0.510
std error of 0.438 0.440 0.303 0.305 0.056 0.050

estimate

Values in this table are regression coefficients
() indicates probabiRty that the true value Is zero
X Indicates the variable was not included



TABLE 7

MULTIPLE REGRESSION RESULTS FOR THE PARSIMONIOUS MODELS
(Non-External Mortality)

Regression No. 71 7.2 73 7.4 78 76
Variable NonExt  NonExt Non Bxt Non Ext Non Ext Non Ext
%> =65 0.550 0.550 0.553 0.553 0.550 0.548
© ©) () © ©) ©
% Hispanic 0.0028 X £0.0059 0.0084 -0.0055 X
(0.59) (0.16) (0.056) (0.30)
% black 0.0201 0.020 0.0212 0.0242 0.0232 0.0228
© (©) (©) (] ©) (o)
% other nonw 0.0077 <0.0099 X X 0.0070 0.0112
(0.29) (0.09) 10.33) {0.08)
% college 0.041 0.040 0.042 0.045 0.044 0.044
© (©) ©) (©) ) ©)
% pop. change,  0.0195 00198 £.0197 0.022 0.0222 0.0226
1980-1970 ©) © © () () ©)
drinking 000068 000068  -0.00067 000071  -0.09071 0.00073
water hardness (0.08; (0.09) (0.10) (0.08) (0.08) (0.07)
cigarette sales 0.0035 0.0034 0.0039 0.0046 0.0042 0.0041
(1970-80 avg) (0.04) (0.046) (0.018) (0.004) (©.011) (0.014)
particulates X X X 0.0026 0.0025 0.0018
(TSP-ug/m3) (0.28) (0.30) (0.44)
= 0.025 0.026 0.024 X X X
(ug/m") (0.14) 0.19) (0.15)
# cbservations 149 148 149 149 149 149
R2 0919 0919 0918 0913 0918 0918
std error of 0.437 0.438 0.437 0.439 0.439 0.439
estimate

Values in this table are regression coefficionts
() indicates probabiity that the true value is zero

X indicates the variable was not included



TABLE 8

PARSIMONIOUS MODEL RESULTS
(MCV and COPD Mortality)
Regression No. 8.1 8.2 8.3 8.4
Variable MCV MCV COPD COPD
% > = 65 0.320 0.317 00177 0.0179
©) () . ) ©
% Hispanic 0.0072 £0.0074 -0.0008 0.0011
(0.014) (0.016) 0.27 (0.01)
% black 0.0056 0.0064 0.002 0.002
(0.069) (0.033) (0.01) (0.01)
% college 0.037 -0.041 X X
() (©) -
o population change 0.0155 0.017 X X
1980-1970 () ©)
drinking water <0.00037 -0.0004 X X
hardness (.20) (0.19)
% poor X X 0.0061 0.0065
0.017) 0.011)
cigarette sales 0.0026 0.0029 0.00043 0.00045
(1970-80 avg) (0.026) (0.011) (0.04) (0.03)
log pepufiation X X 0.0405 0.038
consity | | (0.001) (0.004)
TSP 3 X 0.0007 0.00075 X
(ug/m (0.68) (0.013)
S04 0.0132 X X X
(ug/m) (0.26)
TSP - :9).‘ X X X 0.00082
(ug/ (0.003)
# observations 149 149 149 149
R 0903 0.902 0.492 0.501
sid ervor of 0.305 -0.308 0.055 0.054
estimate

Values in this table are regression coefficlents
()k\dbdﬂpmbabllymmmmuobwo
X indicates the variable was not included



heating, per se, on health®*®, HISP was selected for retention. A few additional regressions were
performed with OTHERNW substituted for HISP. Similarly, because of ambiguities in racial
definitions in the 1980 Census, Hispanics are sometimes indicated as "other® nonwhites; there-
fore, OTHERNW was dropped. The variables for education and poverty were shown to be
somewhat collinear, COLLEGE was retained since it was usually more significant and an argu-
ment could be made that education is a more robust measure of socioeconomic status since a
person's classification would not be affected by subsequent iil health (which may not be the case
with poverty status).
Results for "Parsimonious” Models. Based on selective elimination of variables from the
*complete” model, as described above, 65+, BLACK, HISP, COLLEGE, CHG70, and
SMOKING78 were highly significant predictors of non-external mortality in 149 SMSAs;
HARDNESS was nearly significant (Table 7). All of these variables entered with the “correct"
sign. 504" was nearly significant, with a coefficient similar to that found with the “"complete”
model but less than half of that found with the O&T model. TSP was not significant, but its
coefficients were similar in magnitude to those reported for time-series analyses (Schwartz and
Dockery, 1991a,b).

For cardiovascular causes (Table 8), all of the same non-pollution variables were highly sig-
nificant as for non-external 'monality; smoking was slightly less significant for cardiovascular
causes. Neither TSP nor SO was significant with this model; TSP tended to be negative. For
COPD, the TSP coefficient was about the same as with previous models and was relatively in-
sensitive to the inclusion of socioeconomic variables. However, the SMOKING78 coefficient
lost significance when compared to the “complete” model (Table 6).

-li i . Many of the more recent time-series analyses of
the relationships between air pollution and mortality used a Poisson regression model, in which
the logarithm of mortality is regressed against a suite of (untransformed) variables. The formal
rationale given for this choice is based on analyses where mortality is a relatively rare event
(Steubenville, Ohio, for example, with an average of 3 deaths per day [Schwartz and Dockery,
1991a]), but it has also been extended to large cities like Philadelphia (average of 48 deaths/day
{Schwartz and Dockery, 1991b]), where this refinement may not strictly be needed. The log-
linear model essentially postulates an exponentially-increasing mortality response to linearly in-
creasing air pollution levels. Lipfert (in press) has found that a log-linear model fits
mortality-air pollution relationships from eight major episodes in London from 1948-62, includ-
ing the major 1952 disaster during which over 4000 excess deaths were recorded.

The current cross-sectional analysis is based on mortality rates, which are the ratios of deaths to
population and may tend to vary excessively among the smaller geographic entities, just because
of randomness. Indeed, the highest (non-external) mortality rate was found for Silver Bow
County (Butte), MT, which had a 1980 population of about 34,000. Furthermore, the number
of annual COPD deaths per SMSA was as low as 18, which suggests that a Poisson (log-linear)
model might be apptopriate. Extending the analysis to include log-linear models also provides a
comparison with previous time-series analyses and checks on model robustness. In general, we
found that use of log-linear models yielded shghtly higher correlation coefficients than the cor-
responding linear models.

Use of the log-linear model for non-external mortality (Table 9) showed only minimal changes
in significance for the non-pollution variables (HARDNESS lost significance but SMOKING78
**Neither the effects of climate or weather were considered in this analysis, owing in part to
lack of data on suitable measures describing known physiological effects. These effects may
include heat stress (notably, high temperature deviations from normal weather patterns), indoor
air pollution resulting from unvented or leaky heaters, and the indirect effects of crowding and
exposure to contagion indoors during inclement weather.



TABLE 9

MULTIPLE REGRESSION RESULTS FOR LOG-LINEAR MODELS
(Non-Externai Deaths)

Regression No. X 8.2 9.3 9.4 95 9.6
Variable NonExd  NonbExt Non Bxt Non Bxt Non Ext Non Ext
%> =65 0.0298 0.0293 0.0300 0.0295 0.0296 0.0204
© (0) ©) ©) ©) ()
% Hispanic 000057 X 0.0007 X 0.00034 0.0010
(0.013) (0.0015) 0.22) (0.007)
% black 0.0015 0.0013 0.0016 0.0015 0.0015 0.0013
. ) () ©) ) © ()
% other non W X 0.00115 X 0.0012 0.0010 0.00015
(0.0003) ©) (0.009) (0.59)
% coflege 00027  0.0025 0.0026 0.0024 0.0024 0.0025
) () ©) ©) ) ()
%pop.change,  0.0014  -0.0013 0.0010 0.0015 0.0014 0.0013
1980-1970 ©) () ) ©) (0) ©)
drinking ax108 3x10 ax10® ax10® ax10°d ax10®
water hardness  0.18 (0.15) (0.14) (0.12) (0.13) (0.16)
cigarette sales 0.00035  0.00028 0.00037 0.00030 0.00032 0.00029
(1970-80 av(Q) (0.0002)  (0.002) ©) (0.0006) (0.0004) (0.0019)
particulates X X 0.00028 0.00020 0.00026 X
(YSP-ug/m®) (0.031) (0.070) (0.037)
So¢" 0.0006 0.0007 X X X 0.00063
tug/m®) ©055) (0.49) (0.49)
7 observations 149 149 149 149 149 149
RZ ‘ 0523 0.926 0.925 0.928 0.928 0.926
sid error of 0.0239 0.0233 0.0235 0.0230 0.0230 0.0233
estimate

Values in this table are regression coefficlents
()hdleatesprobabllymmohmvduohzuo
X indicates the variable was not included



gained), but made drastic changes for the pollution variables. 504" became highly nonsig-
nificant and TSP became significant in two of the three cases. Table 10 shows that card:ovas-
cular causes were associated with the same (non-pollution) variables; neither TSP nor SO
significant; the TSP coefficients tended to be essenually zero. Drinking water hardness, whach
had been associated with reduced heart disease in some previous studies (Lacey, 1981), was
highly non-significant with this model. TSP was a more significant contributor to COPD deaths
in the log-linear model than in the linear model. In general, the elasticities for the log-linear
models were higher, in addition to usually being more statistically significant. For example, for
nonexternal mortality, the TSP elasticity increased from 0.023 to 0.043; for COPD, it increased
from 0.22 to 0.25.

Regression Runs Emploving Other Poll

Qzone. As discussed above, two separate sources of ozone data were utilized in this analysis.
Peak 1-hr values were available for 1980 for 72 SMSAs (U.S. EPA, 1984), which were generally
the largest SMSAs in the nation. These data represented the highest readings for each SMSA,
and are not necessarily representative of average exposure across the entire SMSA, Seasonal
average values were available for the entire data set, as obtained for a smooth isopleth map
(Figure 8a), averaged over 1980-90 (McCurdy, 1992). Most of the analysis was conducted for
the seasonal average data set, because of its completeness and the likelihood of better represent-
ing spatial averages across each SMSA. The correlation between the two ozone measures was
0.75.

Table 11 presents regression results for non-external mortality and estimated seasonal average
ozone, using both linear and log-linear models. Ozone was only significant in the log-linear
models (149 SMSAs), regardless of whether other pollutants were included. However. including
ozone caused TSP to lose significance in both types of models. When both SO and ozone
were included in a linear model, neither was significant. Ozone was assocxated with deaths
from cardiovascular causes but was not associated with COPD deaths (results not shown).
Changing from linear to log-linear models caused the ozone elasticity for nonexternal mortality
to increase from 0.026 to 0.057; for major cardiovascular causes, it increased from 0.033 (not
significant) to 0.092 (significant).

The regression results for peak ozone were largely non-significant, for both linear and log-
linear models, and for both non-external and major cardiovascular deaths. The results for log
major cardiovascular deaths reached a p-value of 0.068, with an elasticity of about 0.035
(Regression 11.4). The results for this subset of 72 SMSAs using average ozone were slightly
better, reaching p=0.047 and an elasticity of about 0.07 (Regression 11.6). However, this par-
ticular result was achieved with a non-optimum model, and it can be seen that in general the
results for ozone set were somewhat sensitive to which socioeconomic variables were included in
the model. Apparently, reducing the data set from 149 to 72 SMSAs had a major effect on the
robustness of the ozone relationships. This precludes any firm conclusions as to what the find-
ings might have been for peak ozone with the full complement of 149 locations.

TSP inciudes both sulfates and other types of particles, as collected (or
formed) on glass-fiber filters used in high-volume samplers. Subtracting the sulfate pomon is
one way of accounting for some of the artifacts that may have been formed and of examining
the largely insoluble portion of the catch. A composition midway between ammonium sulfate
and ammonium bisulfate was assumed in making these computations; the new variable was
labeled "NET TSP." Subtracting 804' from TSP made little difference in the results; sig-
nificance declined slightly. When included with ozone in the same regression, there was little
difference between the two TSP measures, indicating that the non-so4" portion may have been
the most “sctive” portion. Tlus was also true for COPD deaths, except that statistical
significance improved when SO was subtracted. As mentioned above, the negative depend-
ence of COPD momhty on SO is viewed as a non-causal regional artifact, and removal of
this portion of TSP is tantamount to improving the precision of measurement,



REGRESSION RESULTS FOR LOG-LINEAR MODELS

TABLE 10

(Cardiovascular and COPD mortality)

Regression No. 10.1 10.2 10.3 10.4
Variable MCV MCV COPD COPD
% > = 65 0.0324 0.0323 0.0282 0.0286
(0) () () (0)
% Hispanic 0.0012 0.0013 0.0016 -0.0020
©) ) (0.14) (0.06)
% black 0.0011 0.0011 -0.0033 -0.0031
(0.0001) (0.0003) (0.005) (0.006)
% college 0.0042 0.0040 X X
©) (0)
% population change 0.0020 <0.0020 X X
1980-1870 () ()
drinking water X 210% X X
hardness (0.80)
% poor X X 0.0089 0.0094
(0.019) (0.012)
cigarette sales 0.00044 0.00045 0.00086 0.00090
(1970-80 avg) (0.0001) ©) (0.006) (0.003)
log population X X 0.051 0.043
denshty | (0.005) (0.02)
participants X ax10™® 0.00156 X
TSP (ug/m°) 057 ()
S04" 1.6x10°° X X X
(ug/m®) (0.7
TSP-S0." X X X 0.00176
(ug/ )
# observations 149 149 149 149
R2 0.902 0.916 0.534 0.542
std eror of 0.0306 0.0298 0.081 0.080
estimate

Values in this table are regession coefficlents
that the true value Is zero
X indicates the variable was not included

() indicates



TABLE 11

REGRESSION RESULTS FOR OZONE

(Log-linear Model)
Regression No. 1.1 1.2 1.3 11.4 18 11.6 11.7 118
Variable Non Ext NonBxd  NonExd MCV MCV MCV MCV MCV
%> =65 0.0265 0.0268 0.0294 0.0276 0.028 0.029 0.0281 0.0319
(©) © ©) ©) () () ©) ()
% Hispanic X X 0.00035 X 0.0004 0.0003 X 0.0008
(0.21) (0.40) (0.44) (0.012)
% black 0.0012 0.0012 0.0013 0.0005 0.0009 0.00087  0.0005 0.00079
(0.0006) (0.0006) ©) (0.21) (0.05) (0.05) (0.20) (0.002)
% other non W 0.0014 0.0013 0.0009 0.0019 X X 00018  -0.0014
©) ©) (0.02) 0 ) (0.002)
% college 0.008 -0.0026 -0.0025 0.0045 0.0052 00048 00043  0.0037
(0.0001) (0.0003) (0) ©) (0) (0) ) (©)
% pop. change, 0.004 0.0015 0.0014 0.0019 0.0020 00021 00020  0.0020
1980-1970 © () ©) ) ©) () () ©
drinking asx105  ext0®  axiod ax10” 5x1075 Sx10°  ax0® X
water hardness ©.72) (©.67) - (0.12) (0.52) (0.37) (0.33) .47
cigarette sales 0.0001 0.0001 0.00029 0.0002 0.00042 0.00038  0.0002 0.00034
(1970-80 av'g) (0.42) (0.44) (0.0009) (0.24) 0.017) ©0.27) (0.25) (0.0015)
peak ozone 0.057 X X 0.095 0.051 X X X
(ppm) 0.21) (0.07) (0.16)
Avg 02008 X 0.268 0.508 X X 0.611 0.426 0.815
{ppm) 0.22) (0.014) (0047  (011) {0.0011)
# observations T2 72 149 72 72 72 72 149
Rsq 0.936 0.936 0.929 0.939 0.918 0.921 0.938 0928
std error of 0.022 0.022 0.023 0.025 0.029 0.029 0.025 0.028
estimate v

Values in this table are regression coefficients
() Indicates probability that the true value Is zero

X indicates the variable was not inciuded



Inhalable Particles (IP). Data were available on sulfates and on two size classifications of
suspended particle concentrations, PM, 5 and PM ¢, for 63 locations. Initial regression runs
showed Butte, MT, to be an outlier; it had the highest crude mortality rate in the data set, al-
though it was not an outlier in the context of all 149 locations. Most of the regressions for IP
pollutants were thus conducted with only 62 observations (excluding Butte), in an attempt to
derive reasonably robust results.

Using the O&T model (Table 12), SO was significant for n=62, but not when Butte was in-
cluded (Regressions 12.1 and 12.2). The coefficients tended to be slightly higher than found for
SO4" measured on high-volume sampler filters. Fine particles (PM, 5) were also significant,
for both all-cause and external mortality, with a substantially lower coefficient. PM,

(inhalable particles) were not significant. These results also pertained to major cardiovascular
diseases; for COPD, only PM,¢ was significant (Regression 12.13). We also note that the coeffi-
cient for "65+" appeared to be sensitive to the inclusion of the sulfate variable, which suggests
interaction between socioeconomic and pollution variables with this model ard data set.

With a log-linear version of the O&T model (Table 13), no pollutant was significant for all-
cause mortality when Butte was included (Regressions 13.1 and 13.2), but suliate was significant
in both cases for non-external mortality (elasticity about 0.05). (We expect a priori that a log-
linear model might be more tolerant of outliers than a linear model.) Fine particles had about
the same elasticity as SO," but this pollutant did not achieve statistical significance for any of
the cause of death groupings with Butte included. The coefficient and significance for COPD
and PM; g were also reduced with Butte included (Regression 13.8).

The results for an expanded model specification and IP pollutants are given in Table 14, for
linear models. No pollutant achieved statistical significance, but PM, s was close for non-
external deaths (Regression 14.1, elasticity = 0.043). The elasticities for sulfate and PM, s were
0.02 and 0.027, respectively. Note that the results were considerably less significant for MCV,
whereas an improvement was expected due to consideration of a specific cause-of-death
category.

It is also interesting to compare findings for the two suifate measures and for fine particles.
The hypothesis advanced by Ozkaynak and Thurston (1987) is that the 804' ion is the "active”
ingredient in the particle mix. As dnscussed above, we expect that SAROAD sulfate consists of
a mixture of airborne sulfate and SO pamcles formed on the filters, hence the substantially
higher mean values with respect to [lf’] ® (obtained from unreactive Teflon filters). If this
were the case, we would expect to find the same regression coefficient in all three cases, ac-
cording to O&T's hypothesis that oanly 804 affects mortality. However, we find that, while
both sulfate variables yield approximately the same coefficient (but not the same elasticities,
since the mean values differ), the coefficient for all fine particles (which includes SO,~), is
substantially lower, with about the same or higher elasticity. This implies that there is nothing
special about the sulfate portion of fine particles and that all three variables should be con-
sidered as indicators of fine particles. .

Similar considerations apply to the comparisons of COPD regression coefficients for TSP, PM,s,
and PM, For the purpose of exploring COPD relationships further, a new fine-particle vari-
able was 3efmed ("non-S PM, (") by subtracting the sulfate portion in the same manner as NET
TSP (described above). This implicitly assumes that all of the sulfate is in the fine particle
mode, which is usually the case. If only a specific fraction of particles were biologically active,
say the small particles, we would expect to see the same regression coefficient for all three
measures. The results are as follows:



MULTIPLE REGRESSION RESULTS
FOR THE O&T MODEL WITH IP DATA

TABLE {2

Regression No. 12.1 12.2 123 124 125 126 127
Variable All Causes Al Causes  All Causes All Causes Non Ext NonExt  Non Ext
% > = 65 0.388 0.328 0.313 0.287 0.348 0.329 0.298
©) () ©) (V)] () ©) ©)
% median age 0.228 0.241 0.265 0.268 0.204 0.233 0.260
(0.02) (0.0007) (:0002) () ©) (0.0011)  (0.0004)
% nonwhite 0.0162 0.0124 0.0156 0.0210 0.0018 0.0057  0.0117
(0.26) (0.22) (0.12) (0.04) (0.85) (0.58) ©0.27)
% college 0.0927 0.0877 0.094 0.118 0.079 0087  0.114
(0.0005) ©) () (0) () ©) (0)
% poor 0.016 -0.0008 0.0053 0.0184 0.0016 0.0040 0.018
0.71) (0.96) (0.86) (0.57) (0.94) (0.89) (0.58)
log population 0.034 0.116 0.170 0.197 0.384 0.413 0.443
densty (0.86) (0.43) (0.24) (0.19) (0.018) (0.005)  (0.004)
IP-S04 3 0.0568 0.0819 X X 0.0873 X X
(ug/m°) (0.23) (0.013) (0.003)
m-z.s3 ) { X 0.0252 X X 00293 X
(ug/m®) (0.043) (0.02)
PM-15 2 X X X 0.0029 X X -0.0026
(ug/m®) (0.60) (0.65)
# observations 63 62 62 62 62 62 62
Rsq 0.870 0923 0920 0.915 0.925 0921 0914
std error of 0.642 0.455 0.463 0.479 0.454 0.467 0.489

estimate




MULTIPLE REGRESSION RESULTS
FOR THE O&T MODEL WITH IP DATA

TABLE 12 (cont'd)

RegressionNo. 128 129 12.10 12.11 12.12 12.13
Variable MCV MCV MCV copD __ COPD COPD
% > = 65 0.194 0.186 0.168 0.0160 0.0182 0.0184
©) ©) (0.0002) (0.014) (0.005) (0.003)
% medlan age 0.108 0.122 0.137 0.0072 0.0045 0.0050
(0.028) (0.012) (0.0055) 0.32) (0.54) (0.470)
% nonwhite 0,006+ .0.0046 -0.0003 0.0016 -0.0020 -0.0025
(0.26) (0.52) (0.95) ©.11) (0.047) (0.01)
% college 0.066 0.069 0.088 0.0012 0.0026 0.0042
©) ©) ©) (0.52) 0.17) (0.011)
% poor 0.017 0.019 0.029 0.0060 0.0067 0.0079
(0.43) (0.36) 0.7 (0.049) (0.029) (0.008)
log population 0.364 0.40 0.41 0.040 -0.045 0.043
density (0.0004) (0 ©) (0.006) (0.002) (0.002)
IP-S04 0.0530 X X -0.0051 X X
(ug/m3) (0.02) {0.13)
PM-25, X 0.0177 X X -0.0004 X
(ug/m") (0.04) (0.76)
PM-15 X X 0.0032 X X 0.0011
(ug/md) (0.40) (0.045)
# obsaervations 62 62 62 62 62 62
R sq. 0.901 0.907 0.901 0.648 0.633 0.658
std error of 0.329 0.319 0.329 0.046 0.047 0.045
estimate

Values In this table are regression coefficlents
() indicates probability that the true value is zero

X indicates the variable was not included
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MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL
(log-linear) WITHIP DATA

TABLE 12

Rogresslon No. 1.1 13.2 133 13.4 135 13.6 13.7 138
Variable AN Causes Al Causes  NonExt NonExt __ NonExt MCV MCV corPo
% > = 65 0.01% 00185 0.0229 0.0208 0.0216 00266 00255 00249
{0) (0) () ) ©) ©) (©) ()
% madian age 0.0115 0.0129 0.0098 0.0102 0.0117 00072  0.0089 0.0153
(0.027) (0.012) (0.079) (0.042) (0.036) ©030)  (0.20) (0.19)
% nonwhite 0.0013 0.0015 0.0008 0.0007 0.0011 00003  0.0005  -0.0041
(0.08) (0.04) (0.30) (0.34) (0.036) ©.75)  (0.59) (0.016)
% college 0.0052 0.0058 0.0052 -0.0050 0.0059 00079 0.0084  0.0046
©00002)  (0) (0.0005) (0.0002) ©) ©) ©) (0.10)
% poor 0.0002 0.0026 0.0024 0.0018 0.0028 00056  -.0060 0.0107
(0.32) (0.25) (0.32) (0.39) (0.24) (0.055) 0.04) (0.03)
log population 0.0046 00017 0.0087 0.014 0.0126 0028  0.032 0.084
density (067) (0.87) (0.45) (0.18) (©.27) (0.046)  (022) (0.0005)
IP-S04 0.0036 X 0.0050 0.0059 X 00053 X X
(ug/m®) (0.14) (0.05) (0.011) (0.10)
PM-2S X 0.00071 X X 0.0011 X 0.0015 X
(ug/m®) (0.43) (0:24) (0.23)
PM-15 X X X X X X X 0.00137
(vg/m) (0.12)
# obsetvations 63 63 62 63 63 63 (<]
Rsq. 0.864 0.860 0.870 0.886 0.864 0857 0853 0.662
sid ervor of 0.0334 0.0340 0.036 0.032 0.036 0045  0.045 0.078
estimate

Values In this table are regression coefficients
()hdledesprobabl’lymmetmvaluehzero

X indlcates the variable was not included



TABLE 14

REGRESSION RESULTS FOR THE COMPLETE MODEL WITH IP DATA

(7 = 62, Butte deleted)

RegressionNo.  14.1 14.2 14.3 14.4 145 14.8 14.7 14.8

Varlable Non Ext Non Ext Non Ext MCV MCV MCV COFD  COPD

%> = 65 0.504 0.497 0.496 0.273 0.268 0.268 0.0228  0.0221
© (0) ) (W] 0 (0) (0) (0)

% Hispanic 0.012 0.013 0.0142 0.0125 0.0013 0.0014 X X
(0.37) (0.32) (0.29) ©0.17) (0.14) (0.14)

% black 0.0186 0.0165 0.0162 0.0006 0.0048 0.0014 0.0018  0.0026
(0.08) (0.15) (0.075) (0.92) (0.94) (0.85) (0.013)  (0.001)

% other non w 0.014 0.014 0.011 0.0077 0.0077 0.0071 X X
(0.59) (0.60) (0.67) (0.67) (0.67) (0.70)

% college 0.056 -0.060 -0.060 -0.051 0.055 0.055 0.0011  0.0021

| © (0.0008)  (0.0004) (0.0003) ©) ©) () (0.49)  (0.20)

% pop. change,  -0.020 -0.020 0.022 0.014 0.014 0015 0.0007  0.0004

1980-1970 ©) ©) ©) ©) () ©) 0.15)  (0.40)

drinking water 0.0011 0.0010 -0.0011 .0.00035 -0.0003 -0.0003 X X

hardness (0.14) (0.20) (0.14) (0.49) (0.55) (0.50)

% poor 0.0079 0.0092 0.012 “0 “0 0.0005 X 0.0051
(78) (0.76) (0.69) (0.98) (0.98) (0.96) (0.03)

cigarette sales 0.0036 0.0038 0.0043 0.0029 0.0031 0.0033 0 0.0012

(1970-80 avg) (©.14) ©.13) (0.079) (0.086) (0.07) (0.051) 082  (0.67)

heating an0®  26x10d ax10® 2x10”0 1x10'3 1x10 X X

degree days (0.45) (0.60) (0.56) (0.72) (0.74) (0.72)

log population 0.15 0.15 0.47 0.22 v.22 0.23 0029 0032

density (0.27) (0.28) (021) (0.020) (0.02) (0.015) (0.058)  (0.04)

PM-2.5 0.0188 X X 0.010 X X X X

(ug/m®) (0.078) 0.18)

IP-S04 X 0.0356 X X 0.0112 X X X

(ug/m®) (0.26) (0.61)

PMAAS X X 0.0058 X X 0.00148  0.00056 X

(ug/m ) (0.23) (0.65) (0.28)

Non-S X X X X X X X 0.0008+

PM-2.5 (ug/m°) (0.54)

# observations 62 62 62 62 62 62 62 62

R2 0.953 0.952 0.952 0.944 0.942 0.942 0661  0.683

std error of 0.378 0.384 0.384 0.260 0.264 0.264 0045  0.044

estimate




TABLE 18

REGRESSION RESULTS FOR COMBINATIONS OF POLLUTANTS INCLUDING MANGANESE

Regression No. 15.1 15.2 15.3 15.4 15.5 15.6 15.7
Varlable Non Ext NonExt  Nonbxt Non Ext MCV MCV "MCV
%> =65 0.522 0.532 0.535 0.5637 0.301 0.303 0.301
) ) ©) (0) ©) ©) ©)
% Hispanic -0.0051 X X X X X X
(0.41)
% black 0.018 0.0238 0.0220 0.0225 0.0062 0.0050 0.0045
(0.016) ©) ) ©) (0.028) (0.09) (0.14)
% other nonw 0.0082 X X X X X X
(0.29)
% college 0.037 0.038 0.033 -0.033 0.036 0.033 -0.034
(0.0003)  (0) (0.0012) (0.0017) (0) ©) (©)
% pop. change,  0.0218 0.024 0.0223 0.0227 0.0189 00178 00172
1980-1970 ©) ©) Q) ) ©) ) ©)
drinking water 000083  -0.0010 0.0010 0.0010 -0.0006 -0.0005 -0.0005
hardness (0.022) (0.013) (0.016) (0.017) (0.035) (0.059) (0.058)
% poor 0.020 X X X X X X
(0.34)
cigarette sales 0.0042 0.0045 0.0041 0.0042 0.0030 0.0027 0.0026
(1970-80 av'g) (0.013) (0.004) (0.009) (0.005) (0.005) (0.011) (0.014)
heating 410 X X X X X X
degree days (0.90)
logpopuation 00156  0.07 oMt 01 0.044 0.062 0.063
densRy (0.88) (0.44) 0.29) - (0.29) (0.58) (0.38) (0.38)
pnnbge X X X 0.0014 X X £0.0018
{ug/ (0.56) (0.26)
S04 X X 0.022 0.022 X 0.0149 0.0149
(ug/m) (0.18) (0.19) (0.19) (0.19)
mno:‘g;u 236 253 2.08 1.76 1.49 117 1.56
(ug/ (0.10) (0.07) (0.16) (0.26) 0.12) (0.24) (0.14)
# observations 138 138 138 138 138 138 138
R2 0.925 0922 0.923 0.924 0.911 0913 0.913
sid error of 0.409 0.408 0.407 0.408 0.277 0.276 0.276




R ” Model Yariabl Coeffici Signifi

O&T TSP 0.0008 0.003
6 6 Complete TSP 0.00084 0.0006
84 Parsimonious TSP 0.00074 0.007
12.13 O&T PMq 0.0041 0.045
14.7 Parsimonious PM IS 0.00056 0.28
12.12 O&T PM, -0.0004 0.76
14.8 Parsimonious Non- g PM, 5 0.00084 0.54

We find that TSP and PM; ¢ have the same coefficients, within statistical tolerances, but that
PM, 5 is different. However, removing the sulfate portion of PM, ¢ (as described above)
brings the non-sulfate PM, ¢ coefficient effectively into this common range of coefficient
values (0.0006-0.0011). This implies that all of these particle measures exhibit the same effect
on mortality per unit of mass, and since the only particles common to all of them are the non-
sulfate fine particles, we are led to the conclusion that this may be the "biologically-active"
fraction.

This comparison would be more compelling if the particle variables other than TSP were also
statistically significant. The poor performance of these other variables may relate in part to the
smaller numbers of observations available for analysis or the fact that not all of the observations
were taken in 1980. However, if we accept the hypothesis that only the small non-sulfate par-
ticles are biologically active, then the elasticity should be compute g by multiplying the coeffi-
cient by the mean value of the non-S PM, variable (12.6 ug/m”), which would constitute a
major reduction in the estimated effect upon mortality. This wonld also apply to time senes
studies. For example, Dockery et al. [in press] derived similar coefficients for PM 4 and P 5
in St. Louis; however, only the PM o value was statistically significant (Table 1). Wenher S()2
nor H* came even close to statistical signif icance in that time-series study.

It thus appears from the above considerations that the magnitude of the indicated effects on
mortality cannot be estimated with confidence for a poliutant with many constituents (such as
TSP or total oxidants) until the biologically active components of the pollutant have been iden-
tified. The regression coefficient may still be a valid measure of relative changes, but it will
not be possible to apply this slope to contributions from specific pollution source categories
without knowledge of the "active ingredients" of the TSP mix.

Manganese. In previous studies, iron (Fe) and manganese (Mn) have been found to be sig-
nificant predictors of spatial variations in mortality (Lipfert, 1978; Lipfert, 1984; Lipfert et al.,
1988). However, these species are also markers for ferrous metal manufacturing activities,
which may have other associations with health, either directly because of occupational hazards
or indirectly because of life-style differences. For example, Brackbill et al., (1988) found that
the metal industries were among the highest in terms of percentages of smokers. Lipfert (1984)
found that Mn was only significant for males (65+), which suggests long-term occupational ef-
fects rather than community air pollution.

Table 15 presents regressions for Mn, as the sole "pollutant” and in combination with SO, and
TSP, for the maximum possible data set of 138 locations. Mn was never statistically significant,
although it was close for non-external deaths, and its regression coefficient was about 1/4 of
that found for 1980 mortality in U.S. cities (Lipfert ef al., 1988). This suggests that the effects
of Mn, whatever they may be, are experienced more in central cities than in the entire SMSAs
(which are often largely suburbs), since the measurements for metals are usually made in central
locations. Comparing Tables 15 and 7 shows only minor interactions between other pollutants
and Mn, when entered in combination.



Two types of models have been used in this regression analysis: linear models, which assume a
straight-line rzfaticnship between mortality and all other variables (including air pollution), and
log-linear modetls, which assume that mortality rates rise exponentially in response to (ali of) the
independent variables. In . ither case is a threshold are considered for ambient air quality; the
models assume "hat the type of relationship is independent of the absolute level of air pollution,

This is in contrast to (he current philosophy of air pollution control, which assumes that safe
concentration levels exist for most community air pollutants, below which health effects are es-
sentiglly zero. These “no-effect” thresholds and an appropriate margin of safety are then used
to establish National Ambient Air Quality Standards (NAAQS), which are to be met throughout
the country by controlling the responsible air pollutant emissions. It is thus important to try to
reconcile the results of this study with this prevailing concept of NAAQS and the corresponding
no-effect thresholds. An important consideration in this regard is the extent to which a few
SMSAs with poor air quality, in violation of the NAAQS, may influence the outcomes of these
regression models. Three different types of analysis were performed towards this end; these
analyses were limited to the parsimonious log-linear models.

Scatter Plots. The first technique involved scatter plots in which an "adjusted” or residual value
of mortality was computed, accounting for all variables in the regression equation other than air
pollution. These values were then plotted against each of the pollutants in turn, in order to
display which, if any, locations might be influential with regard to the regression slopes.
Figures 9 to 11 present such plets for the log of non-external mortality. Against SAROAD sul-
fate, Figure 9, no relationship is seen, in keeping with the non-significant regression siope. The
lowest "adjusted” mortality cities (Honolulu and Tampa), have measured sulfate values in the
mid-range, and the scatter of the remaining cities is spread more-or-less uniformly across the
entire range of 804" values. Figure 9 is in sharp contrast with Figur. | of Ozkaynak snd
Thurston, in which crude mortality was plotted against sulfate and a strong relationship was ap-
parent. The implication of this comparison is that the appa“ent association between mortality
and sulfate displayed by Ozkaynak and Thurston appears to have been a relationship between
sulfate and all the other socioeconomic variables that also affect longevity.

Figure 10 plots the residual mortality data against SMSA -averaged TSP. A weak relationship is
seen, in part because the lowest mortality SMSAs also have low TSP; however, there are also
low-TSP locations with high mortality residuals, but there are no high-TSP locations with low
mortality residuals. In that sense, the high TSP locations might be influential.

Average ozone levels are used in Figure 11; ozone has the strongest pollution-mortality associa-
tion of the three pollutants considered in this regression. The Honoluiu and Southern California
points would appear to be influential and since all of these locations have racial/ethnic popula-
tions that differ from most of the rest of the country, correct handling of these variables would
seem o be important.

Additional scatter plots for non-external mortality and the various other pollutants which were
available in the data base are presented in Appendix B.

Logarithmic residuals for cardiovascular mortality are plotted against average ozone in Figure 12
and peak ozone in Figure 13. In Figure 12, the two highest ozone cities are Los Angeles and
San Bernadino; the two largest positive residuals (cardiovascular mortality higher than predicted)
are Columbia, SC, and Atlantic City, NJ, neither of which has any known attributes that might
explain their relatively high MCV mortality. Note that a log residual of 0.1 corresponds to
about 25% excess mortality. The dose-response relationship shown in Figure 13 for peak ozone
consists of a cloud of data around the ozone NAAQS (0.12 ppm) and a few higher and lower
points that form the basis for the nearly significant (p = 0.07) association. The four highest
residuals in the data cloud are Orlando, FL, Austin, TX, Jersey City, NJ, and New York City.
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It seems clear that many more observations with both higher and lower peak ozone values would
be required to clarify this relationship.

COPD mortality is considered in Figure 14; three high residuals (Butte, MT, Tucson, AZ, and
Albuquerque, NM) are seen to be influential, although the bulk of the data support a positive
relationship. Explanations for the three high residuals include the mining industry in Butte and
the likelihood of retirees in the Southwest with existing lung disease; deleting these three obser-
vations increased the TSP coefficient slightly. The highest TSP point is Spokane, WA, which
may have been influenced by the eruption of Mt. St. Helens; this datum is not remarkable,
given the general trend and level of scatter.

Successive Truncation. The next technique involved dropping groups of the highest pollution
locations from the analysis, thus reducing both the range of the independent variable and the
number of observations. These cesults are presented in Figures 15 to 20, for non-external mor-
tality and one pollutant at a time.

For TSP and non-external mortality (Figure 15), the regression coefficient rfmains essentially
constant for data sets with maximum TSP values from about 80 to 140 ug/m”. The frequency
distribution of TSP in this data set is given in Figure lg; 109 of the 149 SMSAs have average
TSP levels within the former NAAQS for TSP (75 ug/m°). As seen in Figure 17, the standard
errors of the regression coefficient increase monotonically as the number of observations
decreases; this square-root relationship is as expected from statistical theory. Thus, one may
conclude that the mortality-TSP relationship is not dominated by a few high TSP cities, and that
a coefficient of about 0.0003 is the best unbiased estimate for data sets having maximum TSP
locations from about 80 ug/m3 upward (SMSA averages). Below this value, this type of analysis
is indeterminate.

Similar data are presented for (average) ozone in Figure 18. The regression coefficient is essen-
tially constant for all but the smallest data set considered (n = 40). However, the frequency dis-
tribution for average ozone is substantially skewed (Figure 19); only seven SMSAs exceed 0.06
ppm. Figure 8b showed that most of the SMSAs were in violation of the 1-hr standard in 1980.
The standard error of the ozone-mortality coefficient decreased monotonically with the number
of observations, as with TSP, but adding the last few high-ozone observations resulted in a dis-
proportionate decrease in the standard error (Figure 20). The regression coefficients themselves
were not affected, however (Figure 18).

COPD mortality is addressed in Figure 21; as the high TSP locations are removed from the data
set, the regression coefficient increases in value (but not gtatistically significantly so, because of
the widening confidence limits) down to about 65 ug/m”, at which point it becomes negative
and the confidence limits expand greatly. This TSP level probably corresponds to the removal
(by truncation) of the lowest of the three high residual points seen on Figure 14.

Quintile Analysis. The final technique employed a dummy variable technique similar to that
used by Schwartz and Dockery (1992a,b). New regressions were run in which the continuous
pollutant variable was replaced by n-1 dummy variables, where n=5 for the case in which the
entire data set is subdivided into quintiles based on ranked TSP values. The regression coeffi-
cient for each dummy variable represents the best unbiased estimate of the logarithm of mor-
tality for that quintile relative to the lowest TSP quintile (controlling for all other variables).
When these values are plotted against the corresponding TSP values for each quintile, a
rudimentary dose-response function results. One expects some loss of statistical significance
with such an analysis, since the effect of the continuous variable is now being indicated by four
differeat variables. The advantages of this approach are that linearity is not assumed a priori,
and that the entire data set is considered at once.

Figure 22 presents results for ozone and non-external and cardiovascular mortality. Slight

variations in the non-pollution variables were exercised to determine sensitivity of the new
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dummy variables to model specification, which is seen to be minimal. In both cases, most of
the “signal® appears to be in the lowest three quintiles, rather than in the highest ozone loca-
tions. Thus, although the analysis confirms that the high ozone locations are not unduly in-
fluential, the resulting “dose-response” functions are not intuitive and suggest that the model
may be misspecified, especially for non-externai deaths.

TSP is considered in Figure 23, for both COPD deaths and non-external deaths. Again, the
strongest rise in mortality is in the mid-range of TSP values, although the COPD relationship is
reasonably linear. The coefficients for the highest three TSP quintiles were all statistically sig-
nificant; the low coefficient and p-value (~0.70) for the second lowest quintile suggests that a
threshold may be present.

Figure 24 presents results for sulfate, which are presented to check for data anomalies that
might have influenced the results. The dose-rcsponse functions are U-shaped, and even if only
the right-hand half were considered, the excess risk is small. Note that the maximum excess
risk for non-external deaths exceeds that for cardiovascular causes. Normally, one would expect
that a potentially causal relationship would strengthen when one considers a specific cause of
death (a3 in the case with TSP and COPD, for example).

It is of course possible that combinations of pollutants, at different levels, may be invoived,
epecially for non-exisrnal deaths, which represents the sum of all diseases. However, such an
analysis does not seem practical with only 149 observations.

CONCLUDING DISCUSSION

This analysis has developed regression models which appear to offer substantial improvements
over previous studies of SMSAs (including that of Ozkaynak and Thurston [1987]), in that 92%
or more of the mortality rate variance has been "explained” and that most of the (non-pollution)
terms in.the regressions were highly statistically significant. Improvements in fit were made
when external causes were removed and when specific cause-of-death groupings were analyzed
(although the regressions for COPD mortality probably suffered from the small numbers of
deaths occurring in a given year in each location). Use of log-linear models, in which the
logarithms (base 10) of mortality rates were regressed against linear combinations of independ-
ent variables, also provided improved fits to the data.

Summary of Regression Resuits

Tables 2 to 15 presented selected regression results in their entirety, including regression coeffi-
cients for all the independent variables. This degree of detail is useful in comparing model
specifications and in judging the validity of the overall approach. In contrast, Tables 16 and 17
are intended to facilitate comparisons among diseases and pollutants. Regression coefficients,
their standard ersors, and significance levels are presented in Table 16; Table 17 presents com-
parable information based on elasticities. Statistically significant results (p >= 0.05) are shown
in bold italic type; those values which failed to reach significance must be regarded as less
robust than the others and may be unreliable estimates of the true underlying relationchips.
Furthermore, one must keep in mind that statistical significance alone is not sufficient evidence
that the "true underlying relationship® has indeed been identified; such a causal conclusion re-
quires plausible physiological mechanisms as well. Evidence of this truism is seen in the statis-
tically significant megative entries in Tables 16 and 17 (implying that air pollution prolongs life,
or, more likely, that the regression model is incompletely specified).

. One use for the regression coefficients is in comparing the contribu-
tions of a given pollutant to the variations in mortality rates for different diseases, based on the
same or similar models. While rigorous comparisons can only be made among those coefficients
that are statistically significant, each of the coefficients in Table 16 represents the best linear
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unbiased estimate for the data and models indicated. The numerical velue of a regression coef-
ficient also depends directly on the mean values of dependent and independent variables; the
coefficients of the linear models have units of death rates per thogsand people per unit of pol-
lution (the units of pollution include both ppm [ozone) and ug/m*” [all other species)). For the
log-linear models, the regression coefficients represent incremental effects on mortality ratios.

For the O&T model, Table 16 shows both positive and negative significant regression coeffi-
cients, which confirms the reservations expressed above about the adequacy of the O&T
specification in controlling for non-pollution effects on mortality. Comparisons among pol-
lutants and diseases with the O&T model may thus be problematic.

The complete and parsimonious linear models show significant associations only for
ozone/cardiovascular causes and TSP/COPD. The log-linear models confirmed these findings
and also found significance with non-external causes for each of these pollutants. Since the
mortality grouping for non-external causes includes both major cardiovascular (MCY) and
COPD in addition to many other causes of death, it is of some interest to compare the pollution
effects on each of these cause-of -death groupings. This may be done by directly comparing the
regression coefficients of the linear models, or by comparing the products of the log-linear
regression coefficients and the mean mortality values (given in Appeadix A).

These comparisons (which are all based on the 10-year average ozone variable) suggest that the
association between ozone and MCYV can account for all of the indicated association between
ozone and non-external deaths. Note that the estimates of the contributions of COPD to the
ozone/non-external death relationship are essentially nil. Further insights into the plausibility
of these ozone-mortality relationships require several avenues of investigation. First, long-term
average ozone data for the year 1980 should be used in lieu of the smoothed 10-year average
data from Figure 8; data on peak ozone values should be extended to all 149 locations. Then, if
the relationships with mortality persist, the components of MCV (heart attack, stroke, etc.)
should be examined individually with regard to physiological plausibility.

In contrast to the ozone findings, the association between TSP and COPD appears to account for
only a'fraction (about 20%) of the association between TSP and nonexternal deaths. It thus fol-
Jows that some other disease components of non-external deaths (excluding MCYV, for which the
best estimate of the TSP contributions are nil) might be associated with TSP. If other associa-
tions between TSP and specific diseases could be identified, the information might be useful in
assessing whether any of the relationships shown in Table 16 might be causal or whether some
portions appear to be artifactual. Note also that artifactual relationships could also be present in
the extant indicated associations between mortality and air pollution (see *Uncertainties,” below).

With respect to the regressions for sulfate (both [TSP) 804 and [IP] SO,4 ), we note that the
results for [IP) SO,™ are consistently less significant than those for [TSP] SO , even though the
coefficients are quite similar (this was also the case when TSP SO~ was hmnted to the 62 cities
having IP data) As discussed above, we expect that [IP] 804 is the more reliable measure-
ment, by virtue of the types of filters used, and that the [TSP] SO regressxon results may be
biased low by as much as 30% due to the measurement errors; the superiority in fit shown by
[TSP] SO,4" in Table 16 was thus unexpected and suggests that the filter artifacts characteristic
of the 1‘31’ sampling technology may somehow be contributing to the apparent relationships with
mortality (which seems counterintuitive since filter artifacts are not inhaled!). We also note that
none of the sulfate results, using either measure, reached statistical significance with the com-
plete or parsimonious models.

Elasticities. Since elasticities are dimensionless (Table 17), they may be readily compared among
pollutants, models, and diseases. For non-external mortality, there is a remarkable degree of
uniformity among the various pollutants, for the complete and parsimonious models (linear and
log-linear). Elasticities range from 0.009 to 0.051; standard errors, from 0.006 to 0.024
(eliminating manganese from this comparison would narrow the range considerably). For TSP,
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ozone, and PM ., elasticities are higher for the log-linear models than the linear models; the
opposite holds %r sulfate, PM, ¢, and manganese. These tendencies probably reflect dif-
ferences in the relative contributions of high and low mortality locations. The uniformity
among elasticities for different pollutants does not hold for the specific disease groups;, ozone
and PM, ¢ show the largest elasticities for major cardiovascular diseases while TSP and (to a
lesser extent) PM, ¢ show the largest elasticities for COPD. The standard errors of the elas-
ticities are larger i"cs)r the specific diseases than for non-external mortality but differ much less
among pollutants.

An interesting comparison may be made among the five models shown for sulfate, for non-
external and major cardiovascular deaths. As one moves dewn the sulfate columns in Table 17,
from the O&T model to the parsimonious model, the elasticity drops markedly, but its standard
error decreases also. Thus the loss in significance for 804" that resulted from using more com-
plete model specifications stems from the reduced values of the coefficients (which ars the best
unbiased estimates in all cases), not from increases in the standard errors. Since one of the
hallmarks of multicollinearity is an increase in the standard errors (variance inflation), these
results suggest that the drop in sulfate elasticity shown by the new models is due to better fits
and not due to collinearity, per se.

We note also that the five different model results shown for COPD and TSP are all essentially
the same, showing a remarkable degree of uniformity independent of model specification. This
is also true, to a slightly lesser extent, for major cardiovascular deaths with respect to ozone or
PM, s.

Finally, given the large number of regressions shown in Tables 16 and 17, one wonders whether
the relatively few significant results that were found could have occurred due to chance. For
each model, there are three mortality variables and seven pollutants, giving a maximum of 2]
results. We would expect to find one of these to be significant at the 5% level, just due to
chance. Since there are two significant findings for the linear (parsimonious) model and four
for the log-linear model, two of which exceed the 0.00] level, we conclude that most of the
significant findings are not likely to be due to chance alone. This conclusion would be rein-
forced if manganese were not considered or if only one sulfate variable were included in the
comparison.

Discussion of Soecific Pollutant-Di Associati

These elasticities alsc compare reasonably well with the time series results given in Table 1.
Kinney and Ozkaynak (1991) found ozone to be a slightly better predictor of daily cardiovas-
cular mortality than for non-external causes in Los Angeles (1970-79); they used a linear model
and their elasticities are only slightly lower than the corresponding values given in Table 16.
We have no basis for comparing the ozone results for log-linear models, except that Schwartz
(1992) did not find ozone to be a significant predictor of daily mortality in Detroit. Ozkaynak
and Kinney did not find ozone or particles to be significant predictors of respiratory deaths in
Los Angeles, but Schwartz and Dockery (1991) derived a log-linear elasticity for TSP and COPD
in Philadelphia of about 0.14, which compares reasonably well with Table 14. No statistically
significant time-series associations have been shown for sulfate, although weak relationships
have been derived for SO, (Tabie 1).

- iation. The lack of consistent (i.e., monotonic) dose-response relation-
ships for ozone should be discussed and several possible explanations come to mind, other than
statistical variability or the effects of using inappropriate (long-term average) ozone data. First,
some people adapt to ozone and, since ozone levels have been improving in Southern California,
it is possible that the population is now less sensitive there. However, it is also possible that the
mid-range levels of (average) ozone, which occur in most medium to large U.S. cities, are
simply a surrogate for the mix of ozone precursors, including NO,. For example, Kleinman
(1992) reports a strong correlation between values of ozone over background {about 29 ppb) and



the difference between NO,, and NOx. Compounds included in this increment include PAN,
HNOJ. and HONO. Finally, because of the severe heat wave that occurred in the Central and
Eastera U.S. in 1980, it is possible that ozone effects have been confounded with heat wave ef-
fects (see below).

Regional Dependence of the TSP-COPD Relationship. Although the association between COPD
mortality and TSP appears to be quite robust to changes in the model and data set, it is possible
that the relationship is confounded by regional characteristics. For example, some western cities
have been noted (anecdotally) as retirement destinations for people already suffering from lung
disease, which may have originated in other parts of the country. Some portion of the higher
TSP levels found in the west is regional in nature, having to do with lower frequencies of
precipitation and increased levels of windblown dust. Thus, the association between COPD and
TSP could be circumstantial, at least in part. We note that the migration variable (CHNG70)
tends to be positive for COPD mortality, and one wonders whether the regressions are picking
up the individual characteristics of cities (east and west) or simply the characteristics of the
western region as a whole. An example of such regional dependence was seen in the relation-
ship between 804' and all-cause mortality (as shown by Ozkaynak and Thurston, 1987), in
which the association is heavily dependent upon cities in Ohio and Appalachia.

Three additional regressions were run to explore regional confounding with respect to COPD
and TSP. First, the 149 SMSAs were coded as to Jocation east or west of the Mississippi River
(St. Louis and Minneapolis were considered "east,” as was Honolulu; these assignments were not
critical to the outcome of the analysis). Separate regressions were run for each subset for the
logarithm of COPD mortality rate using the same model as for the entire data set. TSP was not
significant for either subset, although the regression coefficients were positive with about the
same values. For the "east” subset (n=105), the TSP coefficient was 0.00094 (p=0.15); all other
terms in the model remained significant except population density. For the “west" subset
(n=44), the TSP coefficient was 0.00064 (p=0.3), and the variables for poverty, population ¢en-
sity, and Hispanic ethnicity lost significance. Smoking remained significant in both subsets with
about the same coefficient.

Next, a dummy variable was added to the model designating east-west location and a regression
was run for the combined data set. This variable was highly significant, reflecting th2 higher
COPD mortality rates in the West, but the TSP coefficient was only slightly reduced in mag-
nitude (0.0012) relative to Table 16 and remained significant (p=0.006). The conclusion follows
that the COPD-TSP relationship does not appear to be confounded by regional differences.

Additional jocations would be required to study the details of the relationship in the West. In
geoeral, COPD mortality rates are higher in the West, hence the negative association with sul-
fatz. TSP levels also tend to be high in some Western locations, presumably because of fugitive
dust but also because of forest slash burning and residential wood smoke. Volcanic ash is
another possibility, of course (Mt. St. Helens erupted May 18, 1980 and Spokane had the highest
TSP levels in the data set). It is also noteworthy that COPD deaths have been rising nationwide
(presumably because of the delayed effects of smokins), while TSP levels have generally been
falling (presumably because of emissions controls). Cross-sectional analyses are incapable of
distinguishing whether an association represents a bona-fide cause and effect relationship, or a
circumstantial one: the selective migration of people with (pre-existing) respiratory problems to
locations which happen to be high in dust loading (see Figure 14 and the ensuing discussion).
While such a scenario would rule out a chronic relationship between TSP and COPD, it could
still be consistent with deaths from acute (daily) effects. This hypothesis could be evaluated
directly by performing a time-series analysis in a location with high fugitive dust levels, includ-
ing the year 1980.



Previous Findings by C  Deatl

Support for these cross-sectional results is also found in the literature on various mortality
studies which also considered separate cause of death groupings. In some cases, because of dif-
ferences in study design, one can only note whether the relative effects are similar, i.e., ranking
of regression coefficients or elasticities or concordance in associations of diseases and pollutants.

Cross-sectional Studies. Most of the extant cross-sectional studies suffered from incomplete or
flawed model specifications, and sometimes from problems with air quality data. Lipfert's
(1978) study of 1970 city mortality, which also considered county and state mortality, had some
of these problems also, but selected results by cause of death are presented here for reference.
Lipfert did not consider cardiovascular causes per se, but did present results for dcaths not clas-
sified as respiratory, cancer, or external, most of which were cardiovascular. On average, over
70% of deaths were in this category, and the regression coefficients were very similar to those
for all non-external causes (elasticities were higher). Typical elasticities (for TSP) were 0.054
for all non-external causes and 0.065 for the unspecified (cardiovascular) category. (Lipfert did
not include data for ozone in his 1978 analysis, but he found significant relationships between
ozone and all-cause mortality in his 1984 study of 1970 SMSA mortality.) The respiratory dis-
ease grouping used in the 1978 city study included asthma deaths and accounted for a total of
only about 1.7% of all deaths. The respiratory disease regressions were most successful at the
state level, for which the TSP elasticity was about 0.21.

Time-Series Studies. Only a few of the many time series studies which have appeared over the
years have considered separate causes of death. Schimmel and Greenburg's (1972) study of
1963-68 mortality in New York City was one of the most thorough. They looked at nine
cause-of-death categories against SO, and smoke (regressed jointly), for lags up to seven days,
controlling for temperature. Results were presented for the entire city and for a smaller section
located around the air monitoring site. The elasticities were slightly higher for the smaller sec-
tion, as might be expected, but mainly for SO,; the smokeshade coefficients scaled ap-
proximately with the population. In their joint regressions on SO, and smokeshade, smokeshade
accounted for 2/3 of the excess deaths for total, respiratory and cardiovascular cause of death
groupings (for the smaller district); the split for the entire city was weighted more towards
smokeshade because of the depression of the SO, coefficients when city-wide mortality was
regressed against local SO,. Schimmel and Greenburg used linear models and presented regres-
sion results for same-day mortality and for deaths accumulated for seven days after the air pol-
lution measurement. The latter elasticities were about 0.025 for all causes, 0.031 for cardiovas-
cular causes, and 0.097 for respiratory diseases. These values are lower across-the-board than
the present cross-sectional results, but agree qualitatively.

Kinney and Ozkaynak (1991) did not find a stronger relationship for respiratory disease deaths
in their study of Los Angeles, which used linear models and lags up to one day. However, they
did not examine TSP or any other particle measures, for respiratory disease mortality. They
found relationships with czone and NO, (regressed jointly) for total mortality and cardiovas-
cular mortality, with combined elasticities of about 0.04 and 0.05, respectively.

Time-series analyses of Philadelphia (Schwartz and Dockery, 1992a), Utah County (Pope et al.,
1992) and Santa Clara County, CA (Fairley, 1990) were all limited to some measure of particu-
lates im their investigations of specific causes of death. The elasticities found are given below:

Elasticity
Cause of death Philadelphia Utah County Santa Clara County
all (non-external) 0.051 0.072 0.030
cardiovascular 0.071 0.084 0.030
respiratory 0.14 0.17 0.13

cancer 0.028 - 0.029



These figures indicate reasonable quantitative agreement with the present cross-sectional find-
ings; however, the disagreement with regard to associations between particulate matter and car-
diovascular mortality is noteworthy and may indicate fundamental differences in the relation-
ships. For example, it is possible that the time-series relationship for cardiovascular deaths
reflects prematurity of death less than one year, so that it is not reflected in the annual rates.
Similarly, it is possible that the ozone-MCYV association reflects chronic effects, at least in part,
so that it is not picked up by a daily mortality analysis. Of course, all of this speculation as-
sumes that both types of analyses are not confounded by statistical or data artifacts of various
kinds.

s f Non-Pollution Mortality Relationshi

We chose to base our conclusions on the "parsimonious” models because they fit the data better
and had highly statistically significant coefficients for most of the terms. It is thus also impor-
tant to examine these results in detail, since it has been shown that the extent to which "excess"
mortality is assigned to suifate is strongly dependent on the way in which socioeconomic and
lifestyle variables are handled. The issue of regional vs. local effects was discussed above.
Table 18 compares elasticities for these variables. We see that using elasticities as a measure,
many of the non-pollution effects account for smaller fractions of mortality than we are cur-
rently estimating for air pollution. Note also that the values for smoking may be underes-
timates, especially since official estimates tend to blame smoking for almost all of COPD deaths.
This may be an inappropriate comparison, however, since age is the overwhelming factor in
Table 18 and the effects of smoking per se are usually stated after age adjustments have been
made. Also, the smoking data used in the present analysis are "ecological® in that they are based
on entire states and are not specific to decedents for particular causes of death. The ensuing er-
rors will tend to depress the smoking regression coefficients.

We find that the factors associated with higher all-cause (non-external) mortality rates in a
given area are age, percentage of blacks, poverty and smoking. Beneficial factors include the
presence of Hispanics, of other non-whites, college education, drinking water hardness, and
in-migration. For cardiovascular diseases, the age, education, smoking, and in-migration effects
are increased; this sheds some doubt on the validity of the "soft-water® hypothesis, since it was
originally directed towards heart disease (Pocock, 1980). All the remaining trends conform
more-or-less to the "conventional wisdom." Note that poverty and education are strongly col-
linear in this data set and that independent estimates of their separate effects may be unreliable.
For COPD, the findings are somewhat problematic, since population density is a strong negative
predictor and we might have otherwise associated respiratory problems with crowded central
cites. This may indicate rural sources of respiratory problems, such as farmer’s lung, or perhaps
that wind-blown dust is more common in low-density areas in the West. The positive coeffi-
cient for in-migration may indicate that some portion of elevated COPD mortality is due to
selective migration of persons suffering from the disease.

Table 19 presents a listing of previous (some independent) estimates of regression coefficients
for some of the variables used in this study. Agreement appears satisfactory, with the possible
exception of % > 65 and smoking. The uncertainties suggested by these discrepancies are dis-
cussed below.



Table 18 - Elasticitics for Non-Pollutant Variables

Non-external Causes |Major Cardiovascular | COPD

variable linear log-linear |linear log-linear |linear log-linear
% 65+ 0.74 0.73 0.81 0.79 0.75 0.69
% black 0.022 0.033 0.015 0.038 0.09 -0.08
% other non-white -0.004 001 - - - -

% Hispanic -0.004 0.005| -0.009 0.015| - -

% with 4yr college -0.089 -0.095 -0.15 -0.16

log pop. density . - - -0.40 0.29
cigarette sales 0.11 0.14 0.12 0.19 0.32 0.37
drnkg water hardness -0.01 -0.007 -0.01 0.005| - -

% pop. change,1970-80 -0.033 0.038 | -0.049 0059 | - -

% in poverty - - - - 0.27 0.23




Table 19. Independent Estimates of Regression Coefficients

Results from this Study Rasults for 1980 Cities

Eat. Coefl. (SM3As) (Lipfert ot al.,1088)
Variable (Exogenous Data) Basis non-extarnal causes all causes
%X>6 0.48% Difference in total US mor- 0.88 0.54

tality rates for %>85 - % <65

% Black 0.027¢ Difference in age-adjusted 0.023 0.008-0.037
total US rates, white-black
% Other NW -0.03 Difference in 1980 age-adjusted total -0.01
US rates, white-"all othes®
-0.0042° based on 1960 data
% Hispanic -0.017 Ditference in age-adjusted -0.006 -0.04--0.08

total US rates, Mexican,
Puerto Rican or Cuban born,
all whites + all blacks
adjusted for poverty

Smoking 0.012 Relative riek, by amount 0.004 0.008-0.018
smoked (Surg. Gen. Rpts)

Water -0.001% (Great Britain) -0.0007 -0.007--0.06
Hardness -0.0073 (Ttaly)

-0.004 (Great Britain) v i
% Poverty 0.11-0.17 1970, cities 0.049 0.04-0.08

0.02-0.08 1970, SMSAs

0.084 1970 expected value
% College -0.03 ¢o 1970, cities -0.04 0--0.08
Gradustes -0.09

-0.018 1980, individuals®
*from Kitagawa and Hauser (1973)

ison wi vi indi jti

Since one of the ‘mportant issues in the design of cross-sectional studies is the selection of
geographic units for study, it is important to compare the present results with those of a similar
previous study based on 1980 data for cities (Lipfert e al., 1988). That study found slightly
different combinations of demographic and socioeconomic variables to be optimal, but did not
employ log-linear models and did not use city-wide averages for TSP. If the model truly repre-
sents what it purports, we should find the same regression coefficients for both cities and
SMSAs. If the variables are merely serving as surrogates, we might expect to find the same
elasticities. Table 19 indicates good agreement between regression coefficients in most cases.

Since there are no two cross-sectional studies in the literature which employed common analysis
methods and models, it is not possible to make definitive comparisons between 1970 and 1980,



i.e., 10 examine whether benefits in reduced mortality have accrued as a result of the Clean Air
Act. Such a comprehensive analysis should be given a high priority.

The regression results presented above comprise a reasonably coherent picture, after sources of
confounding and error are taken into accourst. However, many important uncertainties remain
and it is fair to assume that, if they were all accounted for, this picture would be likely to
change in ways that cannot now be predicted.

Asge Distributions. In spite of the appearance of consistency in these results, many important
uncertainties remain. The lack of agreement with of the coefficient for 65+ implies that use of
this simple metric may not be handling spatial variations in age distributions properly. To the
extent that systematic regional differences in the distributions exist within the 65 and over age
group, confounding could result. Note that use of “median age® by Ozkaynak did not seem to
help, presumably because the problem lies with the elderly, not with people around the median
age (30s). Either age-specific deaths should be analyzed (which are often problematic because
of the smaller counts involved), or the age distribution in each city should be used to compute
an "expected” death rate for each location.

Weather/Climate Effects. Recent analyses (Kalkstein ef al., 1991) have identified heat wave
mortality as more important than summer air pollution in some U.S. cities. 1980 was a severe
drought and heat wave year (Bair, 1992), but not all locations were affected equally. Since
ozone also responds to sunlight, and TSP tends to be higher in the absence of precipitation,
weather variables should be added to the analysis. Evans et al. (1984b) and Mendelsohn and
Orcutt (1979) found that weather/climate variables could make significant contributions to
cross-sectional mortality regressions. In may be important to include departures from normal
conditions and durations of hot spells in such formulations.

Indoor Air Poliution. While Lipfert and Wyzga (1992) found that indoor and outdoor air quality
for respirable particulates tended to be highly correlated in time when averaged over a com-
munity, this will not be the general case for spatial comparisons. Some communities have more
air conditioning, which protects against heat and outdoor air pollution, and some locations use
more uavented indoor heaters and wood stoves, which are important sources of indoor air pol-
lution. Variables describing the prevalence of heating and air conditioning equipment should be
added to the analysis. '

Smoking and Life-Stvle. The lack of agreement for the smoking variable in this study was also
disappointing and deserves further study. The raw data should be examined for outliers (New
Hampshire is a candidate, because of the high levels of out-of-state sales). Data on smoking
Jrevalence from surveys should also be evaluated, along with other data on personal risk factors
such as exercise, obesity, alcohol use, etc. The "pace of life” has been shown to vary substan-
tislly across the nation and may be a contributor to differences in heart disease.

Chronic vs. Acute Effects. As discussed earlier, cross-sectional regressions may reflect either
phenomena that occurred during the year of study or the sequelae of trends that built up over a
long time. It is important to try to reconcile this uncertainty, which might be approached by
exami~ing mortality for 1979 and 1981 (with regard to 1980 air pollution, heat waves, flu
cpidemics, etc.). TSP data cnuld also be compiled specifically for these years. There are also
uncertainties as to the correct pollution dose metric, with regard to both chronic and acute
responses. Cross-sectional analyses tend to use long-term averages; time-series studies use daily
averages or peaks. The duration of peak periods is often neglected by both types of studies.

Qther Causes of Death. Etiological insights might be gained by examining both causal and
non-causal hypotheses (controls). Additional causes of iaterest include various cancers, in-
fluenza, and pneumonia; control causes might include diabetes or urinary disorders, for example.



The component causes of death comprising "major cardiovascular® (heart attack, stroke, chronic
ischemic heart disease, etc.) should be investigated individually in order to further explore the
findings with respect to ozone. :

Concluding Assessment

This study broke new ground in its treatment of the air quality data for SMSAs and in its ex-
ploration of log-linear regression models. Both of these developments turned out to be very
important and suggest that all previous (national-level) cross-sectional studies of mortality
should be re-examined in these contexts.

Although the previous finding of Lipfert er al., (1988) was confirmed, that mortality from all
(non-external) causes may be associated with any of several pollutants with an elasticity around
0.05 (and that it is difficult to separate the effects of different pollutants), two specific
pollutant-disease associations were also identified: TSP-COPD and ozone-cardiovascular. The
latter association was judged to be problematic because of flaws in the ozone data used and the
appearance of the apparent dose-response relationship, but the ozone findings appear worthy of
further investigation, these defects notwithstanding. The TSP-COPD association survived ail at-
tempts to identify confounding or artifacts, but should be confirmed with data for additional
locations and time periods. '

Finally, the study confirmed previous findings (Evans ef al., 1984; Lipfert, 1978; Lipfert, 1934;
Lipfert et al., 1988) that the association between sulfate and all-cause or cardiovascular mor-
tality is extremely dependent upon the extent to which non-pollution effects on mortality have
been controlled for. This characteristic stems from the regional nature of 804' in the North-
eastern United States. Important variables include smoking, a detailed racial breakdown, and
population migration. It was shown that the resuits of Ozkaynak and Thurston (1987) are not
robust, in part because of lack of consideration of these variables and in part because of their
failure to average air quality data across each SMSA.
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APPENDIX A

STATISTICS OF VARIABLES USED

variable name ¢ obs mean mean std dev. max min

(149) (98) (149) (148) (149)
TSP (ug/ml) 149 68.38 67.72 16.94 141.57 41.25
S04 (ug/md) 149 9.29 9.60 3.10 17.00 2.00
TSP-S04 net 149 56.43 55.37 17.74 135.72 27.23
computed SO2 (ug/m3) 147 1€.91 17.59 10.93 46.38 0.56
computed S04 (ug/m3) 147 6.66 7.04 3.90 13.86 0.44
computed NOx (ug/m3) 147 15.08 16.14 8.57 46.98 1.44
1978 av'g ozone (ppa) 149 0.0494 0.04395 0.0095 0.08%0 0.0130
1980 peak ozone (ppm) 12 0.156 - 0.057% 0.44 0.04
manganese (ug/m3) 138 0.0357 0.0365 0.026%5 0.1930 0.0088
PM-2.5 (ug/m3) 63 17.62 - 5.96 37.14 7.2%
PM-15 (ug/md) 63 38.48 - 12.22 68.64 21.91
IP-504 (ug/m3) 63 4.27 - 2.46 12.32 1.03
IP-Pb (ug/m3) 63 0.203 - 0.12 0.62 0
population count 149 928330 1091937 1289727 9120346 38092
population density 149 596 673 1174 12108 29
log pop. density 149 2.52 2.59 0.43 4.08 1.47
% white 149 84.57 83.60 10.79 98.80 33.10
% black 149 11.14 12.77 9.66 39.90 0.10
X other nonwhite 149 4.29 3.63 6.84 64.70 0.30
% nonwhite 149 15.43 16.40 10.79 66.90 1.20
median age 149 29.77 29.82 1.94 38.40 25.00
% 65 and over 148 10.60 10.47 2.17 21.40 6.20
% pop. change,1970-80 149 12.83 11.62 14.96 69.45 -9.30
smoking (1980) 149 186.684 186.97 24.18 324.55 '125.21
swmoking (1970) 149 181.30 181.03 29.09 303.00 115.00

smoking,avg 1870,1980 148 189.07 188.00 22.70 299.286 121.75

¥ 4 yr college (1970) 98 11.27 11.27 3.42 23.40 5.10
X 4 yr college (1980) 149 16.58 16.85 4.43 32.80 8.00
% below poverty 148 11.14 11.24 3.01 21.70 6.80
X Hispanic 149 5.30 4.55 9.11 61.980 0.30
Drnkg water hardness 149 107.05 87.46 84.23 484.00 0.00
heating degree days 149 4733 4592 2083 9901 0
deaths (all causes) 148 7963 9330 11924 95550 487
deaths less external 149 7334 8589 11065 89675 425
deaths (cardiov.) 149 3912 4573 6056 502179 217
deaths (COPD) 149 218 250 277 1M 18
mort rate(all causes) 149 8.502 8.531 1.486 13.704 4.907
mort rate (nonext) 149 7.826 7.850 1.485 12.899 4.377
mort rate(cardiov.) 143 4.193 4.201 0.950 7.686 2.027
mort rate (COPD) 149 0.251 0.241 0.075 0.683 0.122
log mort rate (all) 148 0.923 0.925 0.078 1.137 0.691
log mort rate(nonext) 149 0.888 0.688 0.083 1.111  0.641
log mort rate (CV) 149 0.611 0.613 0.100 0.866 0.307
log mort rate (COPD) 149 ~-0.616 -0.629 0.116 -0.166 -0.914
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Appendix B Additional Scatter Plots for Non-External Mortality

Figures B-1 to B-9 present scatter plots of these residuals against the additional pollutant vari-
ables which were not specifically considered in these regressions. NET TSP appears similar to
TSP (Figure B-1). PM-15 (Figure B-2) has one high-value influential observation (San Ber-
nadino, CA); the fine particle piot shows three such points (Figure B-3). Manganese in TSP
shows a positive relationship (Figure B-4) in that all of the Mn values above 0.05 have have
positive residuals, but there is no apparent effect of dose. Mn may thus be acting as an in-
dicator variable for ferrous metal manufacturing operations. rather than as a pollutant, per se.
Both 804' (Figure B-S) and Pb (Figure B-6) from the inhalable particle samplers show scat-
tered relationships with little trend.

Figures B-7 to B-9 present plots of these residuals against three variables derived from a long-
range transport model for air pollution (Shannon, 1981). Only the values intended to represent
NOx (Figure B-9) suggest any kind of trend.
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Figure B-1. Scatter plot of residual log non-external mortality rates vs. the 'ISP-SO4' dif-
ference.
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Figure B-4. Scatter plot of residual log non-external mortality rates vs. manganese in TSP.



0.12

011 = 63 SMSAs with IP data
0.08+ = -
g 006 s n g _ =
E 004. J m -l ’. -
g y e =% = = = -
g 0.02- "= - " n
g o——
-
g -0.02
§ o0t
-0.06- =
-0.08-
-001 ¥ L RS ! ] | ] L) ) ]
0 2 4 6 8 10 12 14 16 18

S04 from dichot sampler (ug/m3)

Figure B-5. Scatter plot of residual log non-external mortality rates vs. [IP) 804".




0.12
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Figure B-7. Scatter plot of residual log non-external mortality rates vs. SO, computed from the
ASTRAP long-range transport model.
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Figure B-8. Scatter plot of residual log non-external mortality rates vs. 804" computed from

the ASTRAP long-range transport model.
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* Figure B-9. Scatter plot of residual log non-external mortality rates vs. NO, computed from

the ASTRAP long-range transport model.
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