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Abstract

We present an overview of the tactics we have used to achieve a high-level of performance while
improving portability for a large-scale molecular dynamics code SPaSM. SPaSM was originally im-
plemented in ANSI C with message passing for the Connection Machine 5 (CM-5). In 1993, SPaSM
was selected as one of the winners in the IEEE Gordon Bell Prize competition for sustaining 50
Gflops on the 1024 node CM-5 at Los Alamos National Laboratory [6]. Achieving this performance
on the CM-5 required rewriting critical sections of code in CDPEAC assembler language. In addi-
tion, the code made eztensive use of CM-5 parallel I/0 and the CMMD message passing library.
Given this highly specialized implementation, we describe how we have ported the code to the Cray
T3D and high performance workstations. In addition we will describe how it has been possible to do
this using a single version of source code that runs on all three platforms without sacraficing any
performance. Sound too good to be true? We hope to demonstrate that one can realize both code per-
formance and portability without relying on the latest and greatest prepackaged tool or parallelizing
compiler.

1 Introduction

One of the promises of massively parallel supercomputing has been its ability to open up whole
new areas of exciting computational challenges for scientists in a wide range of fields from physics
to medicine. However, as research in the last decade has shown, tackling new problems on parallel
machines also requires one to rethink old algorithms and learn new programming techniques to
make use of the parallel programming environment. While parallel machines have been promoted
as having very high performance, more often than not, getting high performance on a particular
machine is much more difficult than most vendors would like you to believe. For this reason, many
researchers have sounded the call to develop a standardized set of parallel programming tools and
languages to make parallel programming easier [9].

Unfortunately it seems that many of the efforts to develop tools and languages have sac-
rificed code performance in favor of portability or ease of use. Often times, solutions are ov-
erengineered or not realistically applicable to the problem at hand. Given the fact that the main
motivation for using a parallel machine in the first place is to get high performance for solving a
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large-scale problem, compromising performance in favor of using a completely overengineered tool
or language claiming to do everything seems unacceptable.

In this paper we present on overview of our real-life experiences developing an application
code for the CM-5 and later porting it to the Cray T3D and workstations. During our code develop-
ment, we found the state of parallel programming tools/language development to be disappointing
at best and of little consequence whatsoever to final outcome of our project. Rather than relying
on others to make the latest and greatest parallelizing compiler or tool, we adopted an aggressive
approach of doing everything ourselves using whatever means are available on any given machine.
As we will show, this approach has not only greatly simplified code development, but is has allowed
us to achieve a high degree of code portability without sacraficing performance. It has also allowed
us to keep up with the extremely rapid pace of computing technology since we have not had to rely
on specialized tools to be developed for every machine we decide to use. While tool developers have
the best of intentions, it is our belief that high code performance does not come for free. It never
has in the past and it won’t in the future (if you don’t believe this, consider the difficulty of getting
30% of the peak performance solving a real problem on your desktop workstation). Furthermore,
we contend that no compiler or tool is going to understand your problem as well as you do. With
all of the disclaimers now out of the way, we hope that our approach will provide an alternative
to application programmers who are disappointed with the current state of parallel programming
tools or languages.

2 Molecular dynamics and the need for speed

Our research interests have been in the area of large-scale molecular dynamics in order to study
the dynamical properties of materials such as fracture, dislocation dynamics, and ductile-brittle
transition. The idea behind an MD simulation is really quite simple; one solves Newton’s equations
of motion F = ma directly for a large collection of N atoms [1]. To simplify this general N -body
problem for materials simulations, we assume each atom only interacts with other atoms that are
nearby. Thus, a cutoff distance 7, is specified and any atoms that are further away from each
other than r,,,, do not interact (this is valid in many materials due to screening effects). While a
short-range molecular dynamics simulation greatly simplifies the problem, we are still faced with
a considerable computational challenge due to relatively short length and time scales accessible.
Realistic simulations must often involve a very large number of atoms and be run for a large number
of timesteps. Atoms may also interact according to complicated many-body potentials. The details
of our algorithm are not discussed here, but they can be found in [4, 5, 6].

One of the goals of our work has been to model macroscopic properties in materials. This
problem is especially difficult considering the fact that a speck of dust can contain considerably
more than a billion (10°) atoms. Simulations with more than a billion atoms are still out of reach
today, but there has been considerable interest in developing codes capable of simulating more than
100 million atoms on parallel machines(2, 3, 5, 6, 8]. To date, the largest test simulation that has
been performed involved 600 million atoms which we recently performed on a 1024 node CM-5.

Figure 1 shows a snapshot from a recent fracture experiment involving a plate of 104,031,072
atoms (roughly 1620 x 1620 x 40 atoms) While this may seem like alot of atoms, this plate would
only be about 0.3 microns wide with a thickness of 0.008 microns (as a sidenote, it is interesting to
point out that it is now possible to produce integrated circuits with these length scales so such sim-
ulations are nearly large enough to provide direct comparison with experiment). In the experiment,
a notch is placed in the side of the plate and the plate pulled apart under a constant strain rate of
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0.002. This is done by introducing an initial velocity profile and slowly expanding the boundaries
in the z-direction. There are periodic boundary conditions in the z and z directions. The atoms
interact according to a tabulated short-range pair-potential. As the simulation progresses, the plate
fractures when the overall strain reaches approximately 4%.

Figure 1. Fracture ezperiment with 1 04,081,072 atoms

This simulation required more than 150 hours of CPU time on a 512 processor CM-5 and
used 11.6 Gbytes of RAM. A total 8550 timesteps were performed with each timestep requiring
approximately 58.7 seconds. Of that time, 21.3 seconds were spent handling the 14473 message
passing operations performed by each node in a single step. In addition, the code performed 906
gigabytes of file I/O and presented massive visualization problems as each output file was more
than 1.6 Gbytes in size. Visualization was performed by Mike Krogh of the Advanced Computing
Laboratory using a 256 node CM-5.

Hopefully by now, we have convinced the reader that simulations with more than 100 million
atoms present a formidable computational problem involving a significant amount of computation,
communication, I/0, and visualization complications. Even more sobering is physical reality. A
100 million atom simulation is still a pretty small simulation when compared to real materials. Fur-
thermore, 8550 timesteps only corresponded to approximately 85 picoseconds of real time. Lastly,
this simulation used a relatively simple inter-atomic interaction. Simulating materials such as met-
als or silicon will require many-body potentials. We have implemented several of these potentials
and to provide a point of comparison, performing a similar experiment with silicon would have
required more than 1100 hours of CPU time on a 512 node CM-5. Considering the fact that we’d
like to perform billion atom simulations over several nanoseconds, we will clearly need a rather
substantial improvement in computing power. Of course it’s becoming increasingly clear that we
are not going to be able to perform an MD simulation of the 1025 atoms in a glass of beer anytime
in the forseeable future[11].

3 Portability Issues

In developing our CM-5 code, code portability was a nonissue. We used any means possible to
get high performance on the CM-5 including optimizations to improve communications overhead
and CDPEAC assembler to use the vector units[5]. This was certainly justified considering the 30
million dollar cost of the CM-5 and our desire to see what kinds of problems could be performed on
such a machine. Recently, we were faced with porting this code from the CM-5 to the T3D. This
section describes our approach which focuses on three main areas; eliminating CPDEAC, fixing the
message passing, and solving the I/O headache.

3.1 Eliminating CDPEAC

Ironically, our choice to use CDPEAC on the CM-5 made our code more portable than if we had
used CMF or Cx. The approximately 1000 lines of CDPEAC assembler code were isolated to only a
few code modules and the original C code was still available. Thus, removing the CDPEAC simply
required adding a few conditional compilation directives and making a few small code modifications.
This required less than an hour of effort and resulted in a code that was entirely written in ANSI
C. ANSI C is supported on virtually every machine we are aware of so it is easily portable.




3.2 Fixing the message passing

In order to run on the T3D we needed to change all of our message passing from CMMD to a
combination of PVM and Cray shared memory. Since CMMD has substantially more functionality
than PVM, it was going to be moderately difficult to change all of the code to use a new library.
Rather than taking this approach, we decided it would be easier to implement our own message
passing wrapper library for the CMMD functions we used. The idea here is very simple; simply
rename each CMMD call in the code (we replaced “CMMD?” by the word “SPaSM” in the function
names). The new “functions” are then implented using a combination of macros and C code. Thus
on the T3D, we simply implemented the functionality of the CMMD functions listed in Table 1
using a combination of PVM and shared memory. On CM-5, this wrapper library is simply a set
of macros.

CMMD _send_block CMMD receive_block CMMD send_noblock
CMMD _send_and receive CMMD reduce_int CMMD _reduce_double
CMMD sync_with nodes CMMD set_global_or CMMD _get_global or
CMMD _msg_pending CMMD _all msgs_done

Table 1. Required CMMD functions.

This approach simplified the porting process considerably. The wrapper library could be
developed and tested independently of the production code. When the library was complete it
was linked in with the production code and we were able to run SPaSM on the T3D within a few
minutes. The I/O capabilities were still horribly broken (see mext section), but we were able to
verify the correct operation of the code and run a few simple test cases. While writing our own
message passing library may seem complicated, bringing the code up on the T3D required the effort
of one person working for 3 days. This effort included the time to learn how to use PVM and the
Cray T3D C compiler.

3.3 The I/O headache

Our CM-5 code made extensive use of the parallel I/O capabilities provided by the CMMD library.
In CMMD, four basic I/O modes are possible. In CMMD local mode, each node can manipulate
files independently of the other nodes. In CMMD .ndependent mode each node opens the same
file, but the nodes can read or write the file independently although some care must usually be
made when writing. CMMD sync_bc (synchronous broadcast) mode allows all nodes to manipulate
files as if a single process were running. For example, if all nodes execute a fprintf statement
in this mode, only one copy of the output will appear (as if printed by a single process). This
mode is particularly useful for reading input parameters from files or standard input as data read
is automatically broadcast to all of the nodes. Finally, CMMD _sync_seq (synchronous sequential)
mode allows the nodes to write large amounts of data in parallel to devices such as the scalable
disk array (SDA). In this mode, each node will write the contents of a local buffer to a single file in
node order. Node 0 will write data, followed by node 1, node 2, etc... This is particularly useful for
saving results and later restarting as this mode provides the highest possible bandwidth to parallel
I/0 devices.

Unfortunately, the T3D supports none of these modes. This leads to all sorts of bizarre
I/O behavior without making some rather substantial code modifications. Early versions of our
T3D code provided little or no I/0 support (many features were simply removed to get the code




to compile at all). Any I/O that was provided was patched together using numerous conditional
compilation directives and other hacks. Finding this situation unacceptable, we eventually decided
to write our own I/O library much in the same spirit as our message passing wrapper library. Our
1/0 library copied the functionality of the CM-5 code. In order to provide support for different I/0
modes, we had to implement wrappers around the UNIX fle operations and CMMD extensions
shown in Table 2.

fprintf fscanf read

write fopen open

fgets CMMD set_open.mode CMMD set_io_mode
CMMD fset_io_mode

Table 2. UNIX and CMMD file operations in 1/0 lLibrary.

Providing fully functional I/O support required a somewhat more complicated programming
effort than before. The final library consisted of more than 1000 lines of ANSI C code. In order to
mimic CMMD parallel I/Q operations, the library maintains a list of open files and the I/0 “mode”
of each file. According to the file mode, nodes may coordinate in message-passing operations in
order to properly read or write files. For example, file pointers and other information will be passed
around to ensure that files are written properly. Similarly, when reading from standard input, node
0 will actually perform the read but will broadcast the data to all of the other nodes, mimicing the
behavior of the CM-5. This all occurs behind the scenes so the actual source code does not have to
worry about the details of how each I/O mode is implemented on a particular machine. While the
I/0 library is fairly complex, the entire library was implemented in less than week and provided a
working solution to one of the major obstacles preventing real production work on the T3D.

3.4 General comments and results

This approach of writing our own message passing and I/O wrappers has dramatically improved
code portability across many different platforms. Shortly after porting the code to the T3D, we
were able to bring the code up on a single processor workstation in a simulated message-passing
environment (the code thinks it’s doing message passing, but the wrapper library simply copies
buffers around). In addition, we were able to run the code on a multiprocessor SPARCcenter 2000
running Solaris using a shared-memory multithreaded approach.

It is extremely important to emphasize that we use only one version of source code that
compiles on all platforms. The only difference between machines is the wrapper library used. When
running on the CM-5, we use the CM-5 wrapper library. On the T3D we use the T3D wrapper. This
has greatly simplified code maintenance and debugging since new code modules can be developed
on a single processor workstation and later run on the CM-5/T3D without modification. This
has proved to be especially useful considering the reliability and uptime of most massively parallel
machines. As further proof of the effectiveness of this approach, a new code module for modeling
silicon was developed entirely on a CM-5E over a period of several months. This code compiled
and produced the correct results on the T3D without a single code modification.

Lastly, we should point out that this approach has resulted in no performance penalty. In
fact, CM-5 performance improved slightly due to better code organization. The CDPEAC kernels
are also still available due to the modular design. On other machines, by writing our own wrapper
libraries we are able to optimize communications and I/O without affecting the main source code.
Recently, our original PVM based message passing library was replaced by a new library that used
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the Cray shared-memory library entirely. This resulted in a a factor four performance increase in
communication speed.

4 Performance Issues

While portability is nice, we have not lost sight of our real goal of getting the highest performance
possible. We have taken a rather aggressive approach to performance optimization on most ma-
chines. We are skeptical that any compiler is going to magically be able to map our problem onto
the machine in such a way that we get high performance. Furthermore, we don’t want to always
be waiting for better tools or compilers in order to run fast. While it may seem crazy to some
people, we argue that the best way to get high performance is to understand the underlying archi-
tecture of the machine. In particular, an understanding of superscalar RISC microprocessors will
be extrememly useful as this type of processor is used in most parallel machines today.

4.1 A self evaluation

Prior to the installation of the T3D at Los Alamos, we knew that getting high performance would
depend on how effectively we could use the DEC Alpha in the T3D processing nodes. With this in
mind, we set out on a mission to answer the question “how well does our C code use the SPARC
processor on the CM-5?” We assumed if we couldn’t use the SPARC very well we probably wouldn’t
be able to do very well on the Alpha either. To our knowledge, this question had never be addressed
in any great detail on the CM-5 since most efforts were focused on using the vector units. Qur goal
was to see if we could understand our code’s behavior before running on the T3D. Most of this
work has been described in [7] so many of the details will be ommitted here.

Since our application was dominated by the force computation, we extracted this part of
the code so we could analyze it in detail. To analyze the code, we dumped the assembler output
from the compiler and studied it with a SPARC achitecture manual in hand [10]. By running a
small test problem, we were able to determine a dynamic instruction profile as shown in Table 3
and the timing breakdown in Table 4. In addition, we developed a simple cache simulator of the
64K direct-mapped cache that produced the results in Table 5 for the same test problem.

Instruction type Cycles %
LOAD 33703588 | 32.0%
FP (floating point) 27908776 | 26.5%
ALU (integer) 18874774 | 17.9%
STORE 14585631 | 13.8%
CONTROL (branches) 7079666 | 6.7%
NOP (no operation) 3234324 | 3.1%
Total 105386759

Table 3. Dynamic distribution of insiructions ezecuted.
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Num cycles' Time (sec) %
Executing useful instructions | 105386759 3.19 36%
Memory access stalls 109000000 3.30 37%
Floating point stalls 47000000 1.42 16%
Unknown stalls 33000000  1.00 11%
Total 8.91

Table 4. Time distribution of code activity

l Total | Hits % | Miss %
104907504 | 104851000 (99.9%) 56504 (0.1%)
33280936 33123800 (99.5%) 157136 (0.5%)
14552064 | 14536988 (99.9%) | 15076 (0.1%)

Table 5. Simulated cache performance.

Instruction Fetch
Data Fetch
Stores

4.2 Performance strategies

The fact that our code stalls the processor 65% of the time on the SPARC suggests several serious
performance problems. The most significant of these problems is the fact that every double-precision
load causes a 2 cycle stall on the pipeline [10]. This suggests that one should try to reduce memory
operations as much as possible. While this may sound obvious, it is surprising to learn how many

operations that were executed in about 80% of the iterations in a particular loop. Working around
this problem resulted in a 58% overall code speedup. Furthermore, any variables referenced by
pointers in C will never be stored Into registers and reused. Thus, speedups can be obtained by

¢ Reduce memory operations.

® Reorder floating point.

¢ Inlining.

® Increased use of local variables,

® Loop unrolling.

These optimizations are widely known and are probably familiar to most users. One could
argue that these optimizations should be performed by the compiler. Yet, by applying these tactics
directly to the code, we get huge speedups even when compiling with full compiler optimization.




It seems clear that you will almost always be able to beat the compiler at these things if you are
clever. It is important to note that all of these optimizations can be made to the C code (no
assembler code required).

4.3 Performance results

By applying the above strategies to our CM-5 code, we achieve a 119% speedup. Even more
remarkable is the fact that the C code now only runs 2.2 times slower than the CDPEAC code even
though the peak performance of the VUs is more than 20 times higher than that of the SPARC.
When the same code is run on the CM-5E which uses a 40 Mhz SuperSPARC, we get a 95%
speedup and the C code actually runs 5% faster than the CDPEAC code. This rather startling fact
certainly leads us to wonder whether using the VUs was really worth the effort required. One of
the difficulties in using the VUs is that vectorizing an inherently unstructured calculation is always
going to result in extra work being performed. Clearly the difficulty in effectively using the VUs
cannot be understated.

On the T3D, the same performance strategies result in a 183% speedup. As a result, the
code sustains calculation rates between 27-41 Mflops/node which represents 18-27% of the peak
performance. This is better performance than most other T3D applications that we are currently
aware of.

As proof that the same optimizations can result in speedups on other RISC machines,
Table 6 shows the performance speedups on a variety of platforms. In all cases, code was compiled
with full compiler optimization. We see large speedups in all cases.

System N | Unmodified | Optimized | Speedup
32 Node CM-5 (33 Mhz SPARC) 1024000 42.63 19.54 119%
32 Node CM-5 (CDPEAC) 1024000 8.87

32 Node CM-5E (40 Mhz SuperSPARC) 1024000 11.37 5.83 95%
32 Node CM-5E (CDPEAC) 1024000 6.11

32 Node T3D (150 Mhz DEC Alpha) 1024000 8.57 3.03 183%
HP-735 (99 Mhz HP-PA 7100a) 32000 4.62 1.61 187%
IBM Power2 (66 Mhz Rios 2) 32000 4.98 1.95 155%

Table 6. Performance of production code on a test problem.

5 Conclusions

While tool and language developers have the the best of intentions, we hope that we have demon-
strated that both portability and performance are possible by simply taking a direct approach to
the problem. Probably the best approach is to keep your program development simple and straight-
forward. By programming in ANSI C, we have been able to focus our entire effort on effectively
using the machine rather than always trying to figure how to use a new set of compiler directives
or tools for every new machine that comes along. By using wrapper libraries, we have been able
to eliminate hardware dependencies from the main source code resulting in simplified code mainte-
nance and debugging since only one version of source code is used for all machines. This simplified
approach actually makes performance tuning easier because we do not need to worry about the
extra layers of abstraction that a parallelizing compiler or tool would add. Instead, we have one
simple task-making the RISC processor run as fast as possible. As it turns out, tactics for making
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code run fast on one RISC architecture seem to be quite effective at producing speedups on other
RISC architectures so this effort isn’t wasted.

Lastly, we'd like to close with a philosophical note. As scientists working on a problem,
our approach has given us almost complete control over all aspects of our problem. With the
complexity of modern machines, this is extremely important because we are able to understand
virtually all aspects of our code from the algorithms used to their mapping onto the underlying
hardware. Without this knowledge, we do not see how we could believe any answers generated (it’s
not clear whether anyone should believe any results generated on a parallel machine in the first place
considering their “proven” reliability). How could an experimental chemist or physicist believe the
outcome of an experiment if they didn’t understand all aspects of the laboratory techniques used
to generate the data? Why should computational science be any different? We firmly believe that
this is important and hope that users and software developers realize that a “black-box” approach
is not necessarily the best or only way to use a parallel machine.
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