skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charged particle spectra in 32S + 32S interactions at 200 GeV/nucleon from CCD-imaged nuclear collisions in a streamer chamber

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/10103003· OSTI ID:10103003
 [1]
  1. Univ. of California, Berkeley, CA (United States)

We have measured the transverse momentum spectra 1/pT dN/dpT and rapidity distributions dN/dy of negatively charged hadrons and protons for central 32S + 32S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be Δy ~ 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low pT. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, Tf ~ 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC03-76SF00098
OSTI ID:
10103003
Report Number(s):
LBL-32812; ON: DE93002562
Resource Relation:
Other Information: TH: Thesis (Ph.D.); PBD: Apr 1992
Country of Publication:
United States
Language:
English