skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

Technical Report ·
DOI:https://doi.org/10.2172/1214794· OSTI ID:1214794
 [1]
  1. Michigan State Univ., East Lansing, MI (United States)

The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

Research Organization:
Michigan State Univ., East Lansing, MI (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Nuclear Physics (NP)
DOE Contract Number:
SC0004087
OSTI ID:
1214794
Report Number(s):
DOE-MSU-04087
Country of Publication:
United States
Language:
English