skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. La 0.6 Sr 0.4 CoO 3−δ Films Under Deoxygenation: Magnetic And Electronic Transitions Are Apart from The Structural Phase Transition

    Abstract Topotactic phase transitions induced by changes in the oxygen vacancy concentration can largely alter the physical properties of complex oxides, including electronic and magnetic phases, while maintaining the structural integrity of the crystal lattice. An oxygen‐vacancy‐induced topotactic phase transition from perovskite (PV) to brownmillerite (BM) is achieved in epitaxial La 0.6 Sr 0.4 CoO 3−δ (LSCO) thin films. Two novel intermediate states with different oxygen content are identified by X‐ray diffraction, which involves a single‐phase reduced PV state and a mixed state of co‐existing PV and BM. The combination of depth‐sensitive polarized neutron reflectometry (PNR) and Rutherford backscattering (RBS)more » allows a quantitative determination of magnetization and the mean oxygen content in all states, revealing a continuous transition from La 0.6 Sr 0.4 CoO 2.97 to La 0.6 Sr 0.4 CoO 2.5 . BM formation is observed for an LSCO layer with an oxygen content of 2.67, while the magnetic and electronic transition already occurs for a layer with a higher oxygen content of 2.77 (and above) and in the absence of a BM signature. These results demonstrate that the physics of electronic metal‐to‐insulator transition (MIT), magnetic ferromagnet‐to‐non‐ferromagnet transition (FM‐to‐non‐FM), and structural PV‐to‐BM phase transition should be considered within the framework of separate but interrelated processes.« less
  2. Engineering new limits to magnetostriction through metastability in iron-gallium alloys

    Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe1-xGax alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe1-xGax alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction bymore » as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe1-xGax- [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10-5 s m-1. When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.« less
  3. Growth of PdCoO2 by ozone-assisted molecular-beam epitaxy

    We report the in situ, direct epitaxial synthesis of (0001)-oriented PdCoO2 thin films on c-plane sapphire using ozone-assisted molecular-beam epitaxy. The resulting films have smoothness, structural perfection, and electrical characteristics that rival the best in situ grown PdCoO2 thin films in the literature. Metallic conductivity is observed in PdCoO2 films as thin as ~2.0 nm. The PdCoO2 films contain 180° in-plane rotation twins. Scanning transmission electron microscopy reveals that the growth of PdCoO2 on the (0001) surface of Al2O3 begins with the CoO2 layer.
  4. Ferroelectric properties of ion-irradiated bismuth ferrite layers grown via molecular-beam epitaxy

    We systematically investigate the role of defects, introduced by varying synthesis conditions and by carrying out ion irradiation treatments, on the structural and ferroelectric properties of commensurately strained bismuth ferrite BixFe2-xO3 layers grown on SrRuO3-coated DyScO3(110)o substrates using adsorption-controlled ozone molecular-beam epitaxy. Our findings highlight ion irradiation as an effective approach for reducing through-layer electrical leakage, a necessary condition for the development of reliable ferroelectrics-based electronics.
  5. High-quality EuO thin films the easy way via topotactic transformation

    Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, but nonetheless powerful means of creating such films is via topotactic transformation, in which a chemical reaction transforms a single crystal of one phase into a single crystal of a different phase, which inherits its orientation from the original crystal. Topotactic reactions may be applied to epitactic films to substitute, add or remove ions to yield epitactic films of different phases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum (UHV) means of growing highly oriented single crystalline thin films of the easily over-oxidizedmore » half-metallic semiconductor europium monoxide (EuO) with a perfection rivalling that of the best films of the same material grown by molecular-beam epitaxy or UHV pulsed-laser deposition. Lastly, as the technique only requires high-vacuum deposition equipment, it has the potential to drastically improve the accessibility of high-quality single crystalline films of EuO as well as other difficult-to-synthesize compounds.« less

Search for:
All Records
Author / Contributor
0000000301856794

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization