skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Revealing Fermi surface evolution and Berry curvature in an ideal type-II Weyl semimetal

    Abstract In type-II Weyl semimetals (WSMs), the tilting of the Weyl cones leads to the coexistence of electron and hole pockets that touch at the Weyl nodes. These electrons and holes experience the Berry curvature generated by the Weyl nodes, leading to an anomalous Hall effect that is highly sensitive to the Fermi level position. Here we have identified field-induced ferromagnetic MnBi 2-x Sb x Te 4 as an ideal type-II WSM with a single pair of Weyl nodes. By employing a combination of quantum oscillations and high-field Hall measurements, we have resolved the evolution of Fermi-surface sections as themore » Fermi level is tuned across the charge neutrality point, precisely matching the band structure of an ideal type-II WSM. Furthermore, the anomalous Hall conductivity exhibits a heartbeat-like behavior as the Fermi level is tuned across the Weyl nodes, a feature of type-II WSMs that was long predicted by theory. Our work uncovers a large free carrier contribution to the anomalous Hall effect resulting from the unique interplay between the Fermi surface and diverging Berry curvature in magnetic type-II WSMs.« less
  2. Quantum critical fluctuations in an Fe-based superconductor

    Abstract Quantum critical fluctuations may prove to play an instrumental role in the formation of unconventional superconductivity. Here, we show that the characteristic scaling of a marginal Fermi liquid is present in inelastic light scattering data of an Fe-based superconductor tuned through a quantum critical point (QCP) by chemical substitution or doping. From the doping dependence of the imaginary time dynamics we are able to distinguish regions dominated by quantum critical behavior from those having classical critical responses. This dichotomy reveals a connection between the marginal Fermi liquid behavior and quantum criticality. In particular, the overlap between regions of highmore » superconducting transition temperatures and quantum critical scaling suggests a contribution from quantum fluctuations to the formation of superconductivity.« less
  3. Comparison of temperature and doping dependence of elastoresistivity near a putative nematic quantum critical point

    Strong electronic nematic fluctuations have been discovered near optimal doping for several families of Fe-based superconductors, motivating the search for a possible link between these fluctuations, nematic quantum criticality, and high temperature superconductivity. Here we probe a key prediction of quantum criticality, namely power-law dependence of the associated nematic susceptibility as a function of composition and temperature approaching the compositionally tuned putative quantum critical point. To probe the ‘bare’ quantum critical point requires suppression of the superconducting state, which we achieve by using large magnetic fields, up to 45 T, while performing elastoresistivity measurements to follow the nematic susceptibility. Wemore » performed these measurements for the prototypical electron-doped pnictide, Ba(Fe1-xCox)2As2, over a dense comb of dopings. We find that close to the putative quantum critical point, the elastoresistivity appears to obey power-law behavior as a function of composition over almost a decade of variation in composition. Paradoxically, however, we also find that the temperature dependence for compositions close to the critical value cannot be described by a single power law.« less
  4. Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5

    The study of quantum phase transitions that are not clearly associated with broken symmetry is a major effort in condensed matter physics, particularly in regard to the problem of high-temperature superconductivity, for which such transitions are thought to underlie the mechanism of superconductivity itself. Here we argue that the putative quantum critical point in the prototypical unconventional superconductor CeCoIn5 is characterized by the delocalization of electrons in a transition that connects two Fermi surfaces of different volumes, with no apparent broken symmetry. Drawing on established theory of f-electron metals, we discuss an interpretation for such a transition that involves themore » fractionalization of spin and charge, a model that effectively describes the anomalous transport behavior we measured for the Hall effect.« less
  5. Nematic quantum criticality in an Fe-based superconductor revealed by strain-tuning

    Iron-based superconductors are believed to host a quantum critical point (QCP), a zero-temperature phase transition, beneath the “dome” delineating the superconducting phase. Elucidating the nature of this QCP is, however, tricky. Worasaran et al. set out to do just that in a prototypical iron-based superconductor, barium iron arsenide. By applying strain to their samples, the researchers found power-law behaviors that are characteristic of nematic quantum criticality. The associated quantum fluctuations were present over a large portion of the phase diagram. This method may be useful in studying quantum criticality in other material systems.
  6. Measurement of elastoresistivity at finite frequency by amplitude demodulation

    Elastoresistivity, the relation between resistivity and strain, can elucidate subtle properties of the electronic structure of a material and is an increasingly important tool for the study of strongly correlated materials. To date, elastoresistivity measurements have been predominantly performed with quasi-static (DC) strain. In this work, we demonstrate a method for using AC strain in elastoresistivity measurements. A sample experiencing AC strain has a time-dependent resistivity, which modulates the voltage produced by an AC current; this effect produces time-dependent variations in resisitivity that are directly proportional to the elastoresistivity, and which can be measured more quickly, with less strain onmore » the sample, and with less stringent requirements for temperature stability than the previous DC technique. Example measurements between 10 Hz and 3 kHz are performed on a material with a large, well-characterized and temperature dependent elastoresistivity: the representative iron-based superconductor BaFe1:975Co0:025As2. These measurements yield a frequency independent elastoresistivity and reproduce results from previous DC elastoresistivity methods to within experimental accuracy. We emphasize that the dynamic (AC) elastoresistivity is a distinct material-speci c property that has not previously been considered.« less
  7. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors

    A key actor in the conventional theory of superconductivity is the induced interaction between electrons mediated by the exchange of virtual collective fluctuations (phonons in the case of conventional s-wave superconductors). Other collective modes that can play the same role, especially spin fluctuations, have been widely discussed in the context of high-temperature and heavy Fermion superconductors. The strength of such collective fluctuations is measured by the associated susceptibility. Here we use differential elastoresistance measurements from five optimally doped iron-based superconductors to show that divergent nematic susceptibility appears to be a generic feature in the optimal doping regime of these materials.more » This observation motivates consideration of the effects of nematic fluctuations on the superconducting pairing interaction in this family of compounds and possibly beyond.« less
  8. AC elastocaloric effect as a probe for thermodynamic signatures of continuous phase transitions


Search for:
All Records
Author / Contributor
0000000292040629

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization