skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining

Journal Article · · Molecular Cell

DNA double-strand breaks represent one of the most severe forms of DNA damage in mammalian cells. One pathway for repairing these breaks occurs via nonhomologous end-joining (NHEJ) and depends on XRCC4, LigaseIV, and Cernunnos, also called XLF. Although XLF stimulates XRCC4/LigaseIV to ligate mismatched and noncohesive DNA ends, the mechanistic basis for this function remains unclear. Here we report the structure of a partially functional 224 residue N-terminal fragment of human XLF. Despite only weak sequence similarity, XLF1-170 shares structural homology with XRCC41-159. However, unlike the highly extended 130 Angstroms helical domain observed in XRCC4, XLF adopts a more compact, folded helical C-terminal region involving two turns and a twist, wrapping back to the structurally conserved N terminus. Mutational analysis of XLF and XRCC4 reveals a potential interaction interface, suggesting a mechanism for how XLF stimulates the ligation of mismatched ends.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
959938
Report Number(s):
BNL-82924-2009-JA; TRN: US201016%%1082
Journal Information:
Molecular Cell, Vol. 28, Issue 6
Country of Publication:
United States
Language:
English