skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of chemiluminescence to monitoring of trace atmospheric species

Miscellaneous ·
OSTI ID:6811779

This dissertation concerns the development of analytical instrumentation based on gas phase chemiluminescence for the monitoring of nitric acid, methyl nitrate, peroxyacetyl nitrate, and total acidity. Nitric acid was converted to NO and NO{sub 2} by a 400 C glass beads converter and the resulting NO{sub 2} was monitored by a luminol-based detector. A CrO{sub 3} converter was used to convert the NO generated in the system to NO{sub 2} to lower the detection limit of the instrument. The detection limit of the configuration was 0.30 ppb of nitric acid. Peroxyacetyl nitrate (PAN) and NO{sub 2} were separated and detected with a novel gas chromatographic system which did not require compressed gas cylinder. Air that has been scrubbed by passing it over FeSO{sub 4} was used as the carrier gas which eliminates the need for any compressed gas cylinders. The detection limits for the instrument (PAN-GC) were 0.12 ppb for PAN and 0.20 ppb for NO{sub 2}. Methyl nitrate was separated from PAN and NO{sub 2} using a modified version of the PAN-GC. A 200 C quartz converter inserted between the end of the column and the detector in the PAN-GC, converts methyl nitrate and PAN into NO{sub 2} for detection by the luminol-based detector. The detection limits are 0.30 ppb for PAN, 0.30 ppb for methyl nitrate, and 0.20 ppb for NO{sub 2} The development of a total acidity detector based on the reaction of O and F atoms with hydrazoic acid (HN{sub 3}) was also carried out. Several methods for converting atmospheric acidity to HN{sub 3} were tested. These included packed bed, coated filters, and denuder methods. The system was calibrated with nitric acid and hydrochloric acid and the characterization of the response to various organic acids was investigated. The detection limits for nitric acid and for hydrochloric acid were 0.51 ppb and 0.63 ppb, respectively.

Research Organization:
Denver Univ., CO (USA)
OSTI ID:
6811779
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English