skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improvement of the overall performances of LiMn{sub 2}O{sub 4} via surface-modification by polypyrrole

Journal Article · · Materials Research Bulletin
;  [1];  [2];  [1];  [1]
  1. Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)
  2. Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065 (China)

Graphical abstract: Polypyrrole(PPy) film has improved the rate performance of LiMn{sub 2}O{sub 4} efficiently due to its excellent conductivity. PPy@LiMn{sub 2}O{sub 4} could provide more energy under the higher power than pristine LMO. - Highlights: • The PPy layer on the surface of LMO particles hasn’t been studied in LiMn{sub 2}O{sub 4} so far. • The solvent in the synthesis process of PPy@LMO is absolute ethyl alcohol. • The differences of surface-modification between the PPy and PI for LMO. • The analyses of rate performances are through specific power. - Abstract: Polypyrrole (PPy) is an excellent conductive polymer and the study on its utilization in the surface modification of the LiMn{sub 2}O{sub 4} (LMO) is few. In this work, the structure, morphology and electrochemical performance of surface-modified LiMn{sub 2}O{sub 4} composites with PPy and polyimides (PI) were discussed. The crystal structure, chemical bonds and morphology were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Moreover, the specific power and cycling performance were tested at room and high (55 °C) temperature. The PPy@LMO (surface-modified LMO composites with PPy) shows better performances than the pristine LMO. The addition of PPy not only weakens the corrosion caused by electrolyte, but also improves the discharge capacity at higher rates. The charge transfer resistance of the PPy@LMO is much lower than that of the pristine LMO after cycling.

OSTI ID:
22475993
Journal Information:
Materials Research Bulletin, Vol. 71; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English