skip to main content

Title: Inversion gate capacitance of undoped single-gate and double-gate field-effect transistor geometries in the extreme quantum limit

We present first-principle analytical derivations and numerically modeled data to show that the gate capacitance per unit gate area C{sub G} of extremely thin undoped-channel single-gate and double-gate field-effect transistor geometries in the extreme quantum limit with single-subband occupancy can be written as 1/C{sub G} = 1/C{sub OX} + N{sub G}/C{sub DOS} + N{sub G}/ηC{sub WF}, where N{sub G} is the number of gates, C{sub OX} is the oxide capacitance per unit area, C{sub DOS} is the density-of-states capacitance per unit area, C{sub WF} is the wave function spreading capacitance per unit area, and η is a constant on the order of 1.
Authors:
 [1]
  1. IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)
Publication Date:
OSTI Identifier:
22410265
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 20; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CAPACITANCE; DENSITY OF STATES; FIELD EFFECT TRANSISTORS; GATING CIRCUITS; OXIDES; QUANTUM MECHANICS; WAVE FUNCTIONS