skip to main content

Title: Interaction transfer of silicon atoms forming Co silicide for Co/√(3)×√(3)R30°-Ag/Si(111) and related magnetic properties

Combined scanning tunneling microscopy, Auger electron spectroscopy, and surface magneto-optic Kerr effect studies were employed to study the microscopic structures and magnetic properties for ultrathin Co/√(3)×√(3)R30°-Ag/Si(111). As the annealing temperature increases, the upward diffusion of Si atoms and formation of Co silicides occurs at temperature above 400 K. Below 600 K, the √(3)×√(3)R30°-Ag/Si(111) surface structure persists. We propose an interaction transferring mechanism of Si atoms across the √(3)×√(3)R30°-Ag layer. The upward transferred Si atoms react with Co atoms to form Co silicide. The step height across the edge of the island, a separation of 0.75 nm from the analysis of the 2 × 2 structure, and the calculations of the normalized Auger signal serve as strong evidences for the formation of CoSi{sub 2} at the interface. The interaction transferring mechanism for Si atoms enhances the possibility of interactions between Co and Si atoms. The smoothness of the surface is advantage for that the easy axis of magnetization for Co/√(3)×√(3)R30°-Ag/Si(111) is in the surface plane. This provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation and shows potential applications in spintronics devices.
Authors:
; ;  [1]
  1. Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)
Publication Date:
OSTI Identifier:
22409981
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANNEALING; AUGER ELECTRON SPECTROSCOPY; COBALT; COBALT SILICIDES; CRYSTAL STRUCTURE; DIFFUSION; INTERFACES; KERR EFFECT; LAYERS; MAGNETIC PROPERTIES; MAGNETIZATION; ROUGHNESS; SCANNING TUNNELING MICROSCOPY; SILICON; SILVER; SUBSTRATES; SURFACES