skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hybrid nanoantennas for directional emission enhancement

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4903219· OSTI ID:22402384
; ; ; ; ; ; ;  [1]
  1. Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia)

Plasmonic and dielectric nanoparticles offer complementary strengths regarding their use as optical antenna elements. While plasmonic nanoparticles are well-known to provide strong decay rate enhancement for localized emitters, all-dielectric nanoparticles can enable high directivity combined with low losses. Here, we suggest a hybrid metal-dielectric nanoantenna consisting of a gold nanorod and a silicon nanodisk, which combines all these advantages. Our numerical analysis reveals a giant enhancement of directional emission together with simultaneously high radiation efficiency (exceeding 70%). The suggested hybrid nanoantenna has a subwavelength footprint, and all parameters and materials are chosen to be compatible with fabrication by two-step electron-beam lithography.

OSTI ID:
22402384
Journal Information:
Applied Physics Letters, Vol. 105, Issue 22; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English