Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A hybrid nanoantenna for highly enhanced directional spontaneous emission

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4885422· OSTI ID:22304049
; ; ; ;  [1];  [2]; ;  [3];  [1]
  1. State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)
  2. MATEIS, UMR 5510 CNRS, INSA-Lyon, Université de Lyon, Villeurbanne Cedex 69621 (France)
  3. ILM, UMR 5306 CNRS, Université de Lyon, Villeurbanne Cedex 69622 (France)
Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO{sub 2} thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.
OSTI ID:
22304049
Journal Information:
Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 24 Vol. 115; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

Plasmon Energy Transfer in Hybrid Nanoantennas
Journal Article · Mon Dec 21 19:00:00 EST 2020 · ACS Nano · OSTI ID:1830642

Hybrid nanoantennas for directional emission enhancement
Journal Article · Sun Nov 30 23:00:00 EST 2014 · Applied Physics Letters · OSTI ID:22402384

Directive and enhanced spontaneous emission using shifted cubes nanoantenna
Journal Article · Wed Sep 07 00:00:00 EDT 2016 · Journal of Applied Physics · OSTI ID:22598803