skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-137: Dosimetric Validation for Pinnacle, Acuros, AAA, and Brainlab Algorithms with Induced Inhomogenieties

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4888467· OSTI ID:22339891
;  [1]; ;  [2]
  1. San Diego State University, San Diego, CA (United States)
  2. Naval Medical Center San Diego, San Deigo, CA (United States)

Purpose: To compare the dosimetric accuracy of the Eclipse 11.0 Acuros XB and Anisotropic Analytical Algorithm (AAA), Pinnacle-3 9.2 Collapsed Cone Convolution, and the iPlan 4.1 Monte Carlo (MC) and Pencil Beam (PB) algorithms using measurement as the gold standard. Methods: Ion chamber and diode measurements were taken for 6, 10, and 18 MV beams in a phantom made up of slab densities corresponding to solid water, lung, and bone. The phantom was setup at source-to-surface distance of 100 cm, and the field sizes were 3.0 × 3.0, 5.0 × 5.0, and 10.0 × 10.0 cm2. Data from the planning systems were computed along the central axis of the beam. The measurements were taken using a pinpoint chamber and edge diode for interface regions. Results: The best agreement between data from the algorithms and our measurements occurs away from the slab interfaces. For the 6 MV beam, iPlan 4.1 MC software performs the best with 1.7% absolute average percent difference from measurement. For the 10 MV beam, iPlan 4.1 PB performs the best with 2.7% absolute average percent difference from measurement. For the 18 MV beam, Acuros performs the best with 2.0% absolute average percent difference from measurement. It is interesting to note that the steepest drop in dose occurred the at lung heterogeneity-solid water interface of the18 MV, 3.0 × 3.0 cm2 field size setup. In this situation, Acuros and AAA performed best with an average percent difference within −1.1% of measurement, followed by iPlan 4.1 MC, which was within 4.9%. Conclusion: This study shows that all of the algorithms perform reasonably well in computing dose in a heterogeneous slab phantom. Moreover, Acuros and AAA perform particularly well at the lung-solid water interfaces for higher energy beams and small field sizes.

OSTI ID:
22339891
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English