skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The structural-phase state of iron-carbon coatings formed by the ultradispersed particles

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4898614· OSTI ID:22308103

The methods of nuclear gamma-resonance spectroscopy, elemental microanalysis, and X-ray diffraction were used to study nanoscale coatings. The samples were prepared by magnetron sputtering of carbon and iron particles. They alternately were deposited on monocrystalline silicon or polycrystalline corundum substrate moving relative to the plasma flows in the form of sublayers with a thickness of less than 0.6 nm up to the total thickness of 150-500 nm. Solid solutions with the carbon concentrations of up to 7.5, 12.0, 17.6, and 23.9 at% were produced by co-precipitation of ultradispersed particles of iron and carbon. Using method of conversion electron Mössbauer spectroscopy, we detected the anisotropy of orientation of magnetic moments of iron atoms due to texturing of the formed coatings. The deviation of the crystallite orientation from the average value depends on the degree of carbonization. At 550°C, the pearlite eutectic α‐Fe(C)+Fe{sub 3}C is formed from the amorphous structure without formation of intermediate carbides. The relative content of cementite correlates with the amount of carbon in the coating. The formation of the solid solutions-alloys directly during the deposition process confirms the theory of thermal-fluctuation melting of small particles.

OSTI ID:
22308103
Journal Information:
AIP Conference Proceedings, Vol. 1622, Issue 1; Conference: Conference on Moessbauer spectroscopy in materials science 2014, Hlohovec u Breclavi (Czech Republic), 26-30 May 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English