skip to main content

Title: Strain-induced vertical self-organization of semiconductor quantum dots: A computational study

Atomistic strain simulations based on the valence force field method are employed to study the vertical arrangements of semiconductor quantum dot (QD) multilayers. The effects of the QD shape, dimensions, and materials parameters are systematically investigated, varying independently the following parameters: spacer width H, QD lateral spacing D, base b, and height h, slope of the side facets, elastic properties of the dot and the substrate materials, and lattice mismatch between the dot and the substrate. The transition between vertically aligned and anti-aligned structures is found to be determined mainly by the ratios H/D and b/D, as well as by the strain anisotropy of the substrate and to a lesser extent of the QD. The dependence on the QD height h is significant only for steep side facets and large aspect ratios h/b, and the effects of the lattice mismatch strain and the bulk elastic moduli are found to be negligible. The comparison with experimental data shows an excellent agreement with the results from the simulations, demonstrating that the presented analysis results in precise theoretical predictions for the vertical self-organization regime in a wide range of QD materials systems.
Authors:
 [1]
  1. Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa (Ontario) K1N 6N5 (Canada)
Publication Date:
OSTI Identifier:
22267780
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 24; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANISOTROPY; ASPECT RATIO; CRYSTAL DEFECTS; ELASTICITY; HEIGHT; QUANTUM DOTS; SEMICONDUCTOR MATERIALS; SIMULATION; STRAINS; SUBSTRATES