skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-performance self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors by in-situ atomic-layer-deposited HfO{sub 2}

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4852975· OSTI ID:22253682
; ; ; ;  [1]; ; ;  [2]
  1. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
  2. National Nano Device Laboratories, Hsinchu 30076, Taiwan (China)

Self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors (MOSFETs) have been fabricated using the gate dielectrics of in-situ directly atomic-layer-deposited (ALD) HfO{sub 2} followed by ALD-Al{sub 2}O{sub 3}. There were no surface pretreatments and no interfacial passivation/barrier layers prior to the ALD. TiN/Al{sub 2}O{sub 3} (4 nm)/HfO{sub 2} (1 nm)/In{sub 0.53}Ga{sub 0.47}As/InP MOS capacitors exhibited well-behaved capacitance-voltage characteristics with true inversion behavior, low leakage current densities of ∼10{sup −8} A/cm{sup 2} at ±1 MV/cm, and thermodynamic stability at high temperatures. Al{sub 2}O{sub 3} (3 nm)/HfO{sub 2} (1 nm)/In{sub 0.53}Ga{sub 0.47}As MOSFETs of 1 μm gate length, with 700 °C–800 °C rapid thermal annealing in source/drain activation, have exhibited high extrinsic drain current (I{sub D}) of 1.5 mA/μm, transconductance (G{sub m}) of 0.84 mS/μm, I{sub ON}/I{sub OFF} of ∼10{sup 4}, low sub-threshold swing of 103 mV/decade, and field-effect electron mobility of 1100 cm{sup 2}/V · s. The devices have also achieved very high intrinsic I{sub D} and G{sub m} of 2 mA/μm and 1.2 mS/μm, respectively.

OSTI ID:
22253682
Journal Information:
Applied Physics Letters, Vol. 103, Issue 25; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English