skip to main content

SciTech ConnectSciTech Connect

Title: The Hamiltonian structure of a coupled system derived from a supersymmetric breaking of super Korteweg-de Vries equations

A supersymmetric breaking procedure for N= 1 super Korteweg-de Vries (KdV), using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled KdV type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.
Authors:
 [1] ;  [2]
  1. Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile and Departamento de Física, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of)
  2. Departamento de Matemáticas, Universidad de Antofagasta, Antofagasta (Chile)
Publication Date:
OSTI Identifier:
22217851
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 54; Journal Issue: 11; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ALGEBRA; CLIFFORD ALGEBRA; DIRAC EQUATION; HAMILTONIANS; KORTEWEG-DE VRIES EQUATION; LAGRANGIAN FUNCTION; LIMITING VALUES; SOLITONS; SUPERSYMMETRY; SYMMETRY BREAKING