N=2 supersymmetric a=4-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation
Journal Article
·
· Journal of Mathematical Physics
- Departement de Mathematiques et de Statistique, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7 (Canada)
- Mathematical Institute, University of Utrecht, P.O. Box 80.010, 3508 TA Utrecht (Netherlands)
- Department of Higher Mathematics, Ivanovo State Power University, 34 Rabfakovskaya str., Ivanovo 153003 (Russian Federation)
- Department of Mathematics, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1 (Canada)
We consider the problem of constructing Gardner's deformations for the N=2 supersymmetric a=4-Korteweg-de Vries (SKdV) equation; such deformations yield recurrence relations between the super-Hamiltonians of the hierarchy. We prove the nonexistence of supersymmetry-invariant deformations that retract to Gardner's formulas for the Korteweg-de Vries (KdV) with equation under the component reduction. At the same time, we propose a two-step scheme for the recursive production of the integrals of motion for the N=2, a=4-SKdV. First, we find a new Gardner's deformation of the Kaup-Boussinesq equation, which is contained in the bosonic limit of the superhierarchy. This yields the recurrence relation between the Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the full N=2, a=4-SKdV hierarchy. Our method is applicable toward the solution of Gardner's deformation problems for other supersymmetric KdV-type systems.
- OSTI ID:
- 21476544
- Journal Information:
- Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 8 Vol. 51; ISSN JMAPAQ; ISSN 0022-2488
- Country of Publication:
- United States
- Language:
- English
Similar Records
Supersymmetric quantum mechanics and the Korteweg--de Vries hierarchy
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
The Hamiltonian structure of a coupled system derived from a supersymmetric breaking of super Korteweg-de Vries equations
Journal Article
·
Sun May 01 00:00:00 EDT 1994
· Journal of Mathematical Physics (New York); (United States)
·
OSTI ID:5019502
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
Journal Article
·
Wed Aug 19 20:00:00 EDT 2015
· Proceedings of the Estonian Academy of Sciences
·
OSTI ID:1221155
The Hamiltonian structure of a coupled system derived from a supersymmetric breaking of super Korteweg-de Vries equations
Journal Article
·
Thu Nov 14 23:00:00 EST 2013
· Journal of Mathematical Physics
·
OSTI ID:22217851
Related Subjects
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
BOSONS
DEFORMATION
DIFFERENTIAL EQUATIONS
EQUATIONS
FIELD THEORIES
HAMILTONIANS
INTEGRALS
KORTEWEG-DE VRIES EQUATION
MATHEMATICAL OPERATORS
MATHEMATICAL SOLUTIONS
PARTIAL DIFFERENTIAL EQUATIONS
QUANTUM FIELD THEORY
QUANTUM OPERATORS
RECURSION RELATIONS
SUPERSYMMETRY
SYMMETRY
BOSONS
DEFORMATION
DIFFERENTIAL EQUATIONS
EQUATIONS
FIELD THEORIES
HAMILTONIANS
INTEGRALS
KORTEWEG-DE VRIES EQUATION
MATHEMATICAL OPERATORS
MATHEMATICAL SOLUTIONS
PARTIAL DIFFERENTIAL EQUATIONS
QUANTUM FIELD THEORY
QUANTUM OPERATORS
RECURSION RELATIONS
SUPERSYMMETRY
SYMMETRY