skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-element probabilistic collocation method in high dimensions

Journal Article · · Journal of Computational Physics
 [1]
  1. Division of Applied Mathematics, Brown University, 182 George St., Box F, Providence, RI 02912 (United States)

We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element probabilistic collocation method MEPCM and so we refer to the new method as MEPCM-A. We investigate the dependence of the convergence of MEPCM-A on two decomposition parameters, the polynomial order {mu} and the effective dimension {nu}, with {nu}<<N, and N the nominal dimension. Numerical tests for multi-dimensional integration and for stochastic elliptic problems suggest that {nu}{>=}{mu} for monotonic convergence of the method. We also employ MEPCM-A to obtain error bars for the piezometric head at the Hanford nuclear waste site under stochastic hydraulic conductivity conditions. Finally, we compare the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and we find MEPCM-A to be more efficient for up to 600 dimensions for a specific multi-dimensional integration problem involving a discontinuous function.

OSTI ID:
21333933
Journal Information:
Journal of Computational Physics, Vol. 229, Issue 5; Other Information: DOI: 10.1016/j.jcp.2009.10.043; PII: S0021-9991(09)00604-4; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English