Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions

Journal Article · · Journal of Computational Physics
 [1];  [2]
  1. Department of Mathematics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747 (United States)
  2. Department of Mathematics, Purdue University, West Lafayette, IN 47907 (United States)

We propose a multi-element stochastic collocation method that can be applied in high-dimensional parameter space for functions with discontinuities lying along manifolds of general geometries. The key feature of the method is that the parameter space is decomposed into multiple elements defined by the discontinuities and thus only the minimal number of elements are utilized. On each of the resulting elements the function is smooth and can be approximated using high-order methods with fast convergence properties. The decomposition strategy is in direct contrast to the traditional multi-element approaches which define the sub-domains by repeated splitting of the axes in the parameter space. Such methods are more prone to the curse-of-dimensionality because of the fast growth of the number of elements caused by the axis based splitting. The present method is a two-step approach. Firstly a discontinuity detector is used to partition parameter space into disjoint elements in each of which the function is smooth. The detector uses an efficient combination of the high-order polynomial annihilation technique along with adaptive sparse grids, and this allows resolution of general discontinuities with a smaller number of points when the discontinuity manifold is low-dimensional. After partitioning, an adaptive technique based on the least orthogonal interpolant is used to construct a generalized Polynomial Chaos surrogate on each element. The adaptive technique reuses all information from the partitioning and is variance-suppressing. We present numerous numerical examples that illustrate the accuracy, efficiency, and generality of the method. When compared against standard locally-adaptive sparse grid methods, the present method uses many fewer number of collocation samples and is more accurate.

OSTI ID:
22233589
Journal Information:
Journal of Computational Physics, Journal Name: Journal of Computational Physics Vol. 242; ISSN JCTPAH; ISSN 0021-9991
Country of Publication:
United States
Language:
English

Similar Records

An Adaptive Wavelet Stochastic Collocation Method for Irregular Solutions of Stochastic Partial Differential Equations
Technical Report · Sat Sep 01 00:00:00 EDT 2012 · OSTI ID:1081925

An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations
Journal Article · Fri May 01 00:00:00 EDT 2009 · Journal of Computational Physics · OSTI ID:21167778

The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications
Journal Article · Wed Nov 19 23:00:00 EST 2008 · Journal of Computational Physics · OSTI ID:21167738