skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alveolar macrophage cytokine response to air pollution particles: Oxidant mechanisms

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115 (United States)
  2. Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL (United States)

Alveolar macrophages (AMs) primed with LPS and treated with concentrated ambient air particles (CAPs) showed enhanced release of tumor necrosis factor (TNF) and provide an in vitro model for the amplified effects of air pollution particles seen in people with preexisting lung disease. To investigate the mechanism(s) by which CAPs mediate TNF release in primed rat AMs, we first tested the effect of a panel of antioxidants. N-Acetyl-L-cysteine (20 mM), dimethyl thiourea (20 mM) and catalase (5 {mu}M) significantly inhibited TNF release by primed AMs incubated with CAPs. Conversely, when LPS-primed AMs were treated with CAPs in the presence of exogenous oxidants (H{sub 2}O{sub 2} generated by glucose oxidase, 10 {mu}M/h), TNF release and cell toxicity was significantly increased. The soluble fraction of CAPs suspensions caused most of the increased bioactivity in the presence of exogenous H{sub 2}O{sub 2}. The metal chelator deferoxamine (DFO) strongly inhibited the interaction of the soluble fraction with H{sub 2}O{sub 2} but had no effect on the bioactivity of the insoluble CAPs fraction. We conclude that CAPs can mediate their effects in primed AMs by acting on oxidant-sensitive cytokine release in at least two distinct ways. In the primed cell, insoluble components of PM mediate enhanced TNF production that is H{sub 2}O{sub 2}-dependent (catalase-sensitive) yet independent of iron (DFO-insensitive). In the presence of exogenous H{sub 2}O{sub 2} released by AMs, PMNs, or other lung cells within an inflamed alveolar milieu, soluble iron released from air particles can also mediate cytokine release and cell toxicity.

OSTI ID:
20976859
Journal Information:
Toxicology and Applied Pharmacology, Vol. 218, Issue 3; Other Information: DOI: 10.1016/j.taap.2006.11.033; PII: S0041-008X(06)00417-0; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English