skip to main content

Title: Determination of Critical Experiment Correlations Using the Sampler Sequence Within SCALE 6.2

The validation of neutron transport methods used in nuclear criticality safety analyses is required by consensus American National Standards Institute/American Nuclear Society (ANSI/ANS) standards. In the last decade, there has been an increased interest in correlations among critical experiments used in validation that have shared physical attributes and which impact the independence of each measurement. The statistical methods included in many of the frequently cited guidance documents on performing validation calculations incorporate the assumption that all individual measurements are independent, so little guidance is available to practitioners on the topic. Typical guidance includes recommendations to select experiments from multiple facilities and experiment series in an attempt to minimize the impact of correlations or common-cause errors in experiments. Recent efforts have been made both to determine the magnitude of such correlations between experiments and to develop and apply methods for adjusting the bias and bias uncertainty to account for the correlations. This paper describes recent work performed at Oak Ridge National Laboratory using the Sampler sequence from the SCALE code system to develop experimental correlations using a Monte Carlo sampling technique. Sampler will be available for the first time with the release of SCALE 6.2, and a brief introduction to themore » methods used to calculate experiment correlations within this new sequence is presented in this paper. Techniques to utilize these correlations in the establishment of upper subcritical limits are the subject of a companion paper and will not be discussed here. Example experimental uncertainties and correlation coefficients are presented for a variety of low-enriched uranium water-moderated lattice experiments selected for use in a benchmark exercise by the Working Party on Nuclear Criticality Safety Subgroup on Uncertainty Analysis in Criticality Safety Analyses. The results include studies on the effect of fuel rod pitch on the correlations, and some observations are also made regarding difficulties in determining experimental correlations using the Monte Carlo sampling technique.« less
 [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: ICNC 2015, Charlotte, NC, USA, 20150913, 20150917
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States