skip to main content

SciTech ConnectSciTech Connect

Title: Formation of Imploding Plasma Liners for HEDP and MIF Application

Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achievingmore » velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km/s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding plasma liners. HyperV’s tasks focused on developing the plasma guns and associated pulse power systems required for the 30 gun experiment at LANL. Unfortunately, funding for the entire PLX collaborative project was terminated after only two years of the four year project due to program funding realignments which necessitated recompeting the project in midstream. Despite the loss of funding, HyperV installed two Mark1 guns and pulsed power systems on PLX, and jet characterization and merging experiments were subsequently successfully performed at LANL by the PLX Team. In parallel with those PLX experiments, HyperV continued its efforts to develop a plasma gun capable of meeting the PLX goal of 8 mg of argon at 50 km/s. HyperV was ultimately successful in this effort, demonstrating 10.8 mg at 52.8 km/s and 7.5 mg at 62.4 km/s with the Mark2 MiniRailgun.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. HyperV Technologies Corp., Chantilly, VA (United States)
  2. Univ. of Maryland, College Park, MD (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
HyperV Technologies Corp., Chantilly, VA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY fusion; plasma jet; railgun; minirailgun; coax gun; plasma accelerator; PLX; plasma liner; magneto-inertial fusion; magnetized target fusion