skip to main content

Title: Multiscale Toxicology- Building the Next Generation Tools for Toxicology

A Cooperative Research and Development Agreement (CRADA) was established between Battelle Memorial Institute (BMI), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Lawrence Livermore National Laboratory (LLNL) with the goal of combining the analytical and synthetic strengths of the National Laboratories with BMI's expertise in basic and translational medical research to develop a collaborative pipeline and suite of high throughput and imaging technologies that could be used to provide a more comprehensive understanding of material and drug toxicology in humans. The Multi-Scale Toxicity Initiative (MSTI), consisting of the team members above, was established to coordinate cellular scale, high-throughput in vitro testing, computational modeling and whole animal in vivo toxicology studies between MSTI team members. Development of a common, well-characterized set of materials for testing was identified as a crucial need for the initiative. Two research tracks were established by BMI during the course of the CRADA. The first research track focused on the development of tools and techniques for understanding the toxicity of nanomaterials, specifically inorganic nanoparticles (NPs). ORNL"s work focused primarily on the synthesis, functionalization and characterization of a common set of NPs for dissemination to the participating laboratories. These particles were synthesizedmore » to retain the same surface characteristics and size, but to allow visualization using the variety of imaging technologies present across the team. Characterization included the quantitative analysis of physical and chemical properties of the materials as well as the preliminary assessment of NP toxicity using commercially available toxicity screens and emerging optical imaging strategies. Additional efforts examined the development of high-throughput microfluidic and imaging assays for measuring NP uptake, localization, and toxicity in vitro. The second research track within the MSTI CRADA focused on the development of ex vivo animal models for examining druginduced cardiotoxicity. ORNL's role in the second track was limited initially, but was later expanded to include the development of microfluidic platforms that might facilitate the translation of Cardiac 'Microwire' technologies developed at the University of Toronto into a functional platform for drug screening and predictive assessment of cardiotoxicity via highthroughput measurements of contractility. This work was coordinated by BMI with the Centre for the Commercialization of Regenerative Medicine (CCRM) and the University of Toronto (U Toronto). This partnership was expanded and culminated in the submission of proposal to Work for Others (WFO) agencies to explore the development of a broader set of microphysiological systems, a so call human-on-a-chip, that could be used for toxicity screening and the evaluation of bio-threat countermeasures.« less
 [1] ;  [2]
  1. ORNL
  2. Battelle Memorial Institute
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States