skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions

Journal Article · · Journal of Nanoscience and Nanotechnology

Following predictions by first-principles theory of huge tunnel magnetoresistance (TMR) effect in epitaxial Fe/MgO/Fe magnetic tunnel junctions (MTJs), measured magnetoresistance (MR) ratio about 200% at room temperature (RT) have been reported in MgO-based epitaxial MTJs. Recently, MR ratio of about 600% has been reported at RT in MgO-based amorphous MTJs with core structure of CoFeB/MgO/CoFeB grown by magnetron sputtering with amorphous CoFeB layers. The sputtered CoFeB/MgO/CoFeB MTJs shows a great potential application in spintronic devices. Although epitaxial structure will probably not be used in devices, it remains an excellent model system to compare theoretical calculations with experimental results and to enhance our understanding of the spin dependent tunneling. Both theoretical calculations and experimental results clearly indicate that the interfacial structure plays a crucial role on coherent tunneling across single crystalMgO barrier, especially in epitaxial MgO-based MTJs grown by molecular beam epitaxy (MBE). Surface X-ray diffraction, Auger electron spectroscopy, X-ray absorption spectra, and X-ray magnetic circular dichroism have been used for interface characterization. However, no consistent viewpoint has been reached, and this is still an open issue. In this article, recent studies on the interface characterization in MgO-based epitaxial MTJs will be introduced, with a focus on research by X-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and spin dependent tunneling spectroscopy.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1073642
Journal Information:
Journal of Nanoscience and Nanotechnology, Vol. 12, Issue 2; ISSN 1533-4880
Country of Publication:
United States
Language:
English