skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Feasibility of Moving PMU Data in the Future Power Grid

Conference ·
OSTI ID:1043136

The power grid is a complex network connecting electricity providers with their consumers. With an increasing consumer base requiring more resources and the requirement to integrate significant renewable sources, maintaining the network requires new and innovative management solutions. To manage this complexity and provide precise, real-time views of the grid, Phasor Measurement Units (PMUs) are undergoing widespread deployment. These units provide measurements as often as 60 times per second, with an accurate time identifier attached to each reading, enabling real-time monitoring of the network. However, this new capability generates much more data than the current infrastructure is designed to handle. With the expectation that there will eventually be tens of thousands of PMUs monitoring the transmission lines, the power community is looking towards accumulating multiple terabytes of data per day - several orders of magnitude beyond current data acquisition rates. This has led to questions being raised in the power community about whether or not a significant research effort is required to effectively transfer the volume of information generated by these new data streams. This paper answers that question by comparing a worst-case data generation scenario with several alternative networking protocols and historical trends in protocol advancement. Based on this analysis we are able to conclude that transferring the information between the PMUs and the resulting data repositories is feasible. We recognize that there are issues beyond transferring the data that need to be addressed such as effective access to historical data, data transfer latency, cyber security, and data analysis. There is also an extensive engineering trade-off that the power companies will need to make to decide the best mix of networking protocols for their particular PMU deployments, since that requires significant assumptions about proprietary information including deployment cost, deployment schedules, PMU locations, and available resources.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1043136
Report Number(s):
PNNL-SA-80268; TRN: US201213%%102
Resource Relation:
Conference: CIGRE Canada Conference on Power Systems: Promoting Better Interconnected Power Systems, September 6-8, 2011, Hallifax, Nova Scotia, Canada, Hallifax, Nova Scotia (Canada), 6-8 Sep 2011
Country of Publication:
United States
Language:
English