DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics

Abstract

The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including MHD stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-IMAS data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization work-flows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six differ-ent integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 dis-charges of the H98,y2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenar-ios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experimentmore » (EXCITE), including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
General Atomics, San Diego, CA
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1996416
Grant/Contract Number:  
FG02-95ER54309; FC02-04ER54698; SC0017992; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas (PoP)
Additional Journal Information:
Journal Name: Physics of Plasmas (PoP); Journal Volume: 30; Journal Issue: 9; Journal ID: ISSN 1070--664X
Country of Publication:
United States
Language:
English

Citation Formats

Lyons, Brendan, McClenaghan, J., Slendebroek, T., Meneghini, O., Neiser, T., Smith, S., Weisberg, D., Belli, E., Candy, J., Hanson, J., Lao, L., Logan, N., Saarelma, S., Sauter, O., Snyder, P., Staebler, G., Thome, K., and Turnbull, A. Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics. United States: N. p., 2023. Web. doi:10.1063/5.0156877.
Lyons, Brendan, McClenaghan, J., Slendebroek, T., Meneghini, O., Neiser, T., Smith, S., Weisberg, D., Belli, E., Candy, J., Hanson, J., Lao, L., Logan, N., Saarelma, S., Sauter, O., Snyder, P., Staebler, G., Thome, K., & Turnbull, A. Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics. United States. https://doi.org/10.1063/5.0156877
Lyons, Brendan, McClenaghan, J., Slendebroek, T., Meneghini, O., Neiser, T., Smith, S., Weisberg, D., Belli, E., Candy, J., Hanson, J., Lao, L., Logan, N., Saarelma, S., Sauter, O., Snyder, P., Staebler, G., Thome, K., and Turnbull, A. Sun . "Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics". United States. https://doi.org/10.1063/5.0156877. https://www.osti.gov/servlets/purl/1996416.
@article{osti_1996416,
title = {Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics},
author = {Lyons, Brendan and McClenaghan, J. and Slendebroek, T. and Meneghini, O. and Neiser, T. and Smith, S. and Weisberg, D. and Belli, E. and Candy, J. and Hanson, J. and Lao, L. and Logan, N. and Saarelma, S. and Sauter, O. and Snyder, P. and Staebler, G. and Thome, K. and Turnbull, A.},
abstractNote = {The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including MHD stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-IMAS data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization work-flows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six differ-ent integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 dis-charges of the H98,y2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenar-ios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment (EXCITE), including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.},
doi = {10.1063/5.0156877},
journal = {Physics of Plasmas (PoP)},
number = 9,
volume = 30,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2023},
month = {Sun Jan 01 00:00:00 EST 2023}
}

Works referenced in this record:

Progress in the ITER Physics Basis
journal, June 2007


Status of the SPARC physics basis
journal, September 2020


Integrated Modeling of Tokamak Experiments with OMFIT
journal, January 2013


Integrated modeling applications for tokamak experiments with OMFIT
journal, July 2015


The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results
journal, March 2014


Design and first applications of the ITER integrated modelling & analysis suite
journal, October 2015


Tokamak coordinate conventions:
journal, February 2013


GATO: An MHD stability code for axisymmetric plasmas with internal separatrices
journal, December 1981


ONETWO: a computer code for modeling plasa transport in tokamaks
report, December 1980


New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks
journal, September 1981


The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library
journal, June 2004

  • Pankin, Alexei; McCune, Douglas; Andre, Robert
  • Computer Physics Communications, Vol. 159, Issue 3
  • DOI: 10.1016/j.cpc.2003.11.002

Ray tracing study of the electron cyclotron current drive in DIII-D using 60 GHz
journal, January 1989

  • Matsuda, K.
  • IEEE Transactions on Plasma Science, Vol. 17, Issue 1
  • DOI: 10.1109/27.21664

RABBIT: Real-time simulation of the NBI fast-ion distribution
journal, July 2018


Simulation of neutron emission in neutral beam injection heated plasmas with the real-time code RABBIT
journal, June 2019


Self-consistent investigation of density fueling needs on ITER and CFETR utilizing the new Pellet Ablation Module
journal, February 2023


Development and validation of a predictive model for the pedestal height
journal, May 2009

  • Snyder, P. B.; Groebner, R. J.; Leonard, A. W.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3122146

A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model
journal, August 2011


Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics
journal, July 2008


Full linearized Fokker–Planck collisions in neoclassical transport simulations
journal, December 2011


Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
journal, June 2009

  • Candy, J.; Holland, C.; Waltz, R. E.
  • Physics of Plasmas, Vol. 16, Issue 6
  • DOI: 10.1063/1.3167820

A theory-based transport model with comprehensive physics
journal, May 2007

  • Staebler, G. M.; Kinsey, J. E.; Waltz, R. E.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436852

Self-consistent core-pedestal transport simulations with neural network accelerated models
journal, July 2017


A gyro-Landau-fluid transport model
journal, July 1997

  • Waltz, R. E.; Staebler, G. M.; Dorland, W.
  • Physics of Plasmas, Vol. 4, Issue 7
  • DOI: 10.1063/1.872228

Reconstruction of current profile parameters and plasma shapes in tokamaks
journal, November 1985


Equilibrium analysis of current profiles in tokamaks
journal, June 1990


MHD Equilibrium Reconstruction in the DIII-D Tokamak
journal, October 2005

  • Lao, L. L.; John, H. E. St.; Peng, Q.
  • Fusion Science and Technology, Vol. 48, Issue 2
  • DOI: 10.13182/FST48-968

The CHEASE code for toroidal MHD equilibria
journal, September 1996


Integrated fusion simulation with self-consistent core-pedestal coupling
journal, April 2016

  • Meneghini, O.; Snyder, P. B.; Smith, S. P.
  • Physics of Plasmas, Vol. 23, Issue 4
  • DOI: 10.1063/1.4947204

Integrated modeling of high β N steady state scenario on DIII-D
journal, January 2018

  • Park, J. M.; Ferron, J. R.; Holcomb, C. T.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5013021

Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER
journal, March 2020


Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER
journal, August 2011


Orchestrating TRANSP Simulations for Interpretative and Predictive Tokamak Modeling with OMFIT
journal, February 2018


Gyro-Landau fluid equations for trapped and passing particles
journal, October 2005

  • Staebler, G. M.; Kinsey, J. E.; Waltz, R. E.
  • Physics of Plasmas, Vol. 12, Issue 10
  • DOI: 10.1063/1.2044587

The first transport code simulations using the trapped gyro-Landau-fluid model
journal, May 2008

  • Kinsey, J. E.; Staebler, G. M.; Waltz, R. E.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2889008

The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
journal, June 2016

  • Staebler, G. M.; Candy, J.; Howard, N. T.
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4954905

Geometry dependence of the fluctuation intensity in gyrokinetic turbulence
journal, November 2020

  • Staebler, G. M.; Candy, J.; Belli, E. A.
  • Plasma Physics and Controlled Fusion, Vol. 63, Issue 1
  • DOI: 10.1088/1361-6587/abc861

Verification of a quasi-linear model for gyrokinetic turbulent transport
journal, September 2021


Chapter 2: Plasma confinement and transport
journal, December 1999

  • Transport, ITER Physics Expert Group on Confin; Database, ITER Physics Expert Group on Confin; Editors, ITER Physics Basis
  • Nuclear Fusion, Vol. 39, Issue 12
  • DOI: 10.1088/0029-5515/39/12/302

Elevating zero dimensional global scaling predictions to self-consistent theory-based simulations
journal, July 2023

  • Slendebroek, T.; McClenaghan, J.; Meneghini, O. M.
  • Physics of Plasmas, Vol. 30, Issue 7
  • DOI: 10.1063/5.0148886

Edge localized modes (ELMs)
journal, February 1996


Stability of DIII-D high-performance, negative central shear discharges
journal, March 2017


Determination of the Noninductive Current Profile in Tokamak Plasmas
journal, October 1994


Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas
journal, June 2007


Achievement of Reactor-Relevant Performance in Negative Triangularity Shape in the DIII-D Tokamak
journal, March 2019


Recent TCV Results - Innovative Plasma Shaping to Improve Plasma Properties and Insight
journal, January 2012

  • Pochelon, Antoine; Angelino, Paolo; Behn, Roland
  • Plasma and Fusion Research, Vol. 7, Issue 0
  • DOI: 10.1585/pfr.7.2502148

Pedestal properties of H-modes with negative triangularity using the EPED-CH model
journal, August 2017

  • Merle, A.; Sauter, O.; Medvedev, S. Yu
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 10
  • DOI: 10.1088/1361-6587/aa7ac0

Electromagnetic kinetic toroidal eigenmodes for general magnetohydrodynamic equilibria
journal, January 1982


Designing a tokamak fusion reactor—How does plasma physics fit in?
journal, July 2015

  • Freidberg, J. P.; Mangiarotti, F. J.; Minervini, J.
  • Physics of Plasmas, Vol. 22, Issue 7
  • DOI: 10.1063/1.4923266

An Integrated Design Study for an Advanced Tokamak to Close Physics Gaps in Energy Confinement and Power Exhaust
journal, February 2023


Fusion Nuclear Science Facility Candidates
journal, February 2011

  • Stambaugh, R. D.; Chan, V. S.; Garofalo, A. M.
  • Fusion Science and Technology, Vol. 59, Issue 2
  • DOI: 10.13182/FST59-279

Feasibility Study of a Compact Ignition Tokamak Based upon GyroBohm Scaling Physics
journal, January 2003

  • Petty, Clinton Craig; DeBoo, James Craig; Haye, Robert John La
  • Fusion Science and Technology, Vol. 43, Issue 1
  • DOI: 10.13182/FST03-A245

Chapter 1: Overview and summary
journal, June 2007


Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices
journal, March 2016

  • Solomon, W. M.; Snyder, P. B.; Bortolon, A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4944822

Optimizing the Super H-mode pedestal to improve performance and facilitate divertor integration
journal, October 2020

  • Knolker, M.; Snyder, P. B.; Evans, T. E.
  • Physics of Plasmas, Vol. 27, Issue 10
  • DOI: 10.1063/5.0011008

Development of advanced inductive scenarios for ITER
journal, December 2013


Overview of the SPARC tokamak
journal, September 2020

  • Creely, A. J.; Greenwald, M. J.; Ballinger, S. B.
  • Journal of Plasma Physics, Vol. 86, Issue 5
  • DOI: 10.1017/S0022377820001257

Predictions of core plasma performance for the SPARC tokamak
journal, September 2020

  • Rodriguez-Fernandez, P.; Howard, N. T.; Greenwald, M. J.
  • Journal of Plasma Physics, Vol. 86, Issue 5
  • DOI: 10.1017/S0022377820001075

Physics basis for the ICRF system of the SPARC tokamak
journal, September 2020