DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dark matter axion search using a Josephson Traveling wave parametric amplifier

Abstract

We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion–photon couplings above 10 −13  Ge V −1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7–4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3];  [4]; ORCiD logo [4];  [4]; ORCiD logo [4];  [4] more »; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [8];  [8]; ORCiD logo [8];  [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [10]; ORCiD logo [10]; ORCiD logo [10]; ORCiD logo [10]; ORCiD logo [11]; ORCiD logo [11]; ORCiD logo [12]; ORCiD logo [12]; ORCiD logo [12]; ORCiD logo [12]; ORCiD logo [13]; ORCiD logo [13]; ORCiD logo [13];  [13];  [13]; ORCiD logo [14]; ORCiD logo [14]; ORCiD logo [15]; ORCiD logo [14] « less
  1. University of Washington 1 , Seattle, Washington 98195, USA
  2. University of California 2 , Berkeley, California 94720, USA
  3. University of Chicago 3 , Chicago, Illinois 60637, USA
  4. Fermi National Accelerator Laboratory 4 , Batavia, Illinois 60510, USA
  5. University of Florida 5 , Gainesville, Florida 32611, USA
  6. University of Göttingen 6 , Göttingen 37077, Germany
  7. Fermi National Accelerator Laboratory 4 , Batavia, Illinois 60510, USA;Illinois Institute of Technology 7 , Chicago, Illinois 60616, USA
  8. Lawrence Livermore National Laboratory 8 , Livermore, California 94550, USA
  9. Los Alamos National Laboratory 9 , Los Alamos, New Mexico 87545, USA
  10. Pacific Northwest National Laboratory 10 , Richland, Washington 99354, USA
  11. University of Sheffield 11 , Sheffield S10 2TN, United Kingdom
  12. Washington University 12 , St. Louis, Missouri 63130, USA
  13. University of Western Australia 13 , Perth, Western Australia 6009, Australia
  14. MIT Lincoln Laboratory 14 , 244 Wood Street, Lexington, Massachusetts 02421, USA
  15. Massachusetts Institute of Technology 15 , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); USDOE
Contributing Org.:
ADMX Collaboration
OSTI Identifier:
1995956
Alternate Identifier(s):
OSTI ID: 1968073
Report Number(s):
PNNL-SA-168876
Journal ID: ISSN 0034-6748; TRN: US2405256
Grant/Contract Number:  
AC05-76RL01830; SC0009800; DESC0009723; SC0010296; SC0010280; SC0011665; DEFG02-97ER41029; DEFG02-96ER40956; DEAC52-07NA27344; DEC03-76SF00098; SC0017987; AC02-07CH11359.; AC02-07CH11359; CE170100009; CE20010000; 202060305; LLNL-JRNL-825283
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 94; Journal Issue: 4; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Superconducting devices; Microwave cavity; Amplifiers; Magnetic fields; Dilution refrigerators; Data acquisition; Signal processing; Dark matter; Astrophysics; Standard quantum limit

Citation Formats

Bartram, C., Braine, T., Cervantes, R., Crisosto, N., Du, N., Leum, G., Mohapatra, P., Nitta, T., Rosenberg, L. J., Rybka, G., Yang, J., Clarke, John, Siddiqi, I., Agrawal, A., Dixit, A. V., Awida, M. H., Chou, A. S., Hollister, M., Knirck, S., Sonnenschein, A., Wester, W., Gleason, J. R., Hipp, A. T., Jois, S., Sikivie, P., Sullivan, N. S., Tanner, D. B., Lentz, E., Khatiwada, R., Carosi, G., Cisneros, C., Robertson, N., Woollett, N., Duffy, L. D., Boutan, C., Jones, M., LaRoque, B. H., Oblath, N. S., Taubman, M. S., Daw, E. J., Perry, M. G., Buckley, J. H., Gaikwad, C., Hoffman, J., Murch, K., Goryachev, M., McAllister, B. T., Quiskamp, A., Thomson, C., Tobar, M. E., Bolkhovsky, V., Calusine, G., Oliver, W., and Serniak, K. Dark matter axion search using a Josephson Traveling wave parametric amplifier. United States: N. p., 2023. Web. doi:10.1063/5.0122907.
Bartram, C., Braine, T., Cervantes, R., Crisosto, N., Du, N., Leum, G., Mohapatra, P., Nitta, T., Rosenberg, L. J., Rybka, G., Yang, J., Clarke, John, Siddiqi, I., Agrawal, A., Dixit, A. V., Awida, M. H., Chou, A. S., Hollister, M., Knirck, S., Sonnenschein, A., Wester, W., Gleason, J. R., Hipp, A. T., Jois, S., Sikivie, P., Sullivan, N. S., Tanner, D. B., Lentz, E., Khatiwada, R., Carosi, G., Cisneros, C., Robertson, N., Woollett, N., Duffy, L. D., Boutan, C., Jones, M., LaRoque, B. H., Oblath, N. S., Taubman, M. S., Daw, E. J., Perry, M. G., Buckley, J. H., Gaikwad, C., Hoffman, J., Murch, K., Goryachev, M., McAllister, B. T., Quiskamp, A., Thomson, C., Tobar, M. E., Bolkhovsky, V., Calusine, G., Oliver, W., & Serniak, K. Dark matter axion search using a Josephson Traveling wave parametric amplifier. United States. https://doi.org/10.1063/5.0122907
Bartram, C., Braine, T., Cervantes, R., Crisosto, N., Du, N., Leum, G., Mohapatra, P., Nitta, T., Rosenberg, L. J., Rybka, G., Yang, J., Clarke, John, Siddiqi, I., Agrawal, A., Dixit, A. V., Awida, M. H., Chou, A. S., Hollister, M., Knirck, S., Sonnenschein, A., Wester, W., Gleason, J. R., Hipp, A. T., Jois, S., Sikivie, P., Sullivan, N. S., Tanner, D. B., Lentz, E., Khatiwada, R., Carosi, G., Cisneros, C., Robertson, N., Woollett, N., Duffy, L. D., Boutan, C., Jones, M., LaRoque, B. H., Oblath, N. S., Taubman, M. S., Daw, E. J., Perry, M. G., Buckley, J. H., Gaikwad, C., Hoffman, J., Murch, K., Goryachev, M., McAllister, B. T., Quiskamp, A., Thomson, C., Tobar, M. E., Bolkhovsky, V., Calusine, G., Oliver, W., and Serniak, K. Mon . "Dark matter axion search using a Josephson Traveling wave parametric amplifier". United States. https://doi.org/10.1063/5.0122907. https://www.osti.gov/servlets/purl/1995956.
@article{osti_1995956,
title = {Dark matter axion search using a Josephson Traveling wave parametric amplifier},
author = {Bartram, C. and Braine, T. and Cervantes, R. and Crisosto, N. and Du, N. and Leum, G. and Mohapatra, P. and Nitta, T. and Rosenberg, L. J. and Rybka, G. and Yang, J. and Clarke, John and Siddiqi, I. and Agrawal, A. and Dixit, A. V. and Awida, M. H. and Chou, A. S. and Hollister, M. and Knirck, S. and Sonnenschein, A. and Wester, W. and Gleason, J. R. and Hipp, A. T. and Jois, S. and Sikivie, P. and Sullivan, N. S. and Tanner, D. B. and Lentz, E. and Khatiwada, R. and Carosi, G. and Cisneros, C. and Robertson, N. and Woollett, N. and Duffy, L. D. and Boutan, C. and Jones, M. and LaRoque, B. H. and Oblath, N. S. and Taubman, M. S. and Daw, E. J. and Perry, M. G. and Buckley, J. H. and Gaikwad, C. and Hoffman, J. and Murch, K. and Goryachev, M. and McAllister, B. T. and Quiskamp, A. and Thomson, C. and Tobar, M. E. and Bolkhovsky, V. and Calusine, G. and Oliver, W. and Serniak, K.},
abstractNote = {We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion–photon couplings above 10 −13  Ge V −1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7–4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.},
doi = {10.1063/5.0122907},
journal = {Review of Scientific Instruments},
number = 4,
volume = 94,
place = {United States},
year = {Mon Apr 03 00:00:00 EDT 2023},
month = {Mon Apr 03 00:00:00 EDT 2023}
}

Works referenced in this record:

Axion Dark Matter Experiment: Detailed design and operations
journal, December 2021

  • Khatiwada, R.; Bowring, D.; Chou, A. S.
  • Review of Scientific Instruments, Vol. 92, Issue 12
  • DOI: 10.1063/5.0037857

The not-so-harmless axion
journal, January 1983


Effect of Higher-Order Nonlinearities on Amplification and Squeezing in Josephson Parametric Amplifiers
journal, November 2017


Experimental Constraints on the Axion Dark Matter Halo Density
journal, May 2002

  • Asztalos, S. J.; Daw, E.; Peng, H.
  • The Astrophysical Journal, Vol. 571, Issue 1
  • DOI: 10.1086/341130

Cosmology of the invisible axion
journal, January 1983


Radio-frequency amplifier based on a niobium dc superconducting quantum interference device with microstrip input coupling
journal, June 1998

  • Mück, Michael; André, Marc-Olivier; Clarke, John
  • Applied Physics Letters, Vol. 72, Issue 22
  • DOI: 10.1063/1.121490

Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product
journal, December 2015

  • Roy, Tanay; Kundu, Suman; Chand, Madhavi
  • Applied Physics Letters, Vol. 107, Issue 26
  • DOI: 10.1063/1.4939148

A haloscope amplification chain based on a traveling wave parametric amplifier
journal, September 2022

  • Braggio, Caterina; Cappelli, Giulio; Carugno, Giovanni
  • Review of Scientific Instruments, Vol. 93, Issue 9
  • DOI: 10.1063/5.0098039

Can confinement ensure natural CP invariance of strong interactions?
journal, April 1980


New CAST limit on the axion–photon interaction
journal, May 2017


A near-quantum-limited Josephson traveling-wave parametric amplifier
journal, September 2015


US invests $249m in quantum tech
journal, November 2018


A simple solution to the strong CP problem with a harmless axion
journal, August 1981


Planck 2013 results. XVI. Cosmological parameters
journal, October 2014


First Results from a Microwave Cavity Axion Search at 24 μ eV
journal, February 2017


Characterizing cryogenic amplifiers with a matched temperature-variable noise source
journal, March 2021

  • Simbierowicz, Slawomir; Vesterinen, Visa; Milem, Joshua
  • Review of Scientific Instruments, Vol. 92, Issue 3
  • DOI: 10.1063/5.0028951

Mapping the dark matter with weak gravitational lensing
journal, February 1993

  • Kaiser, Nick; Squires, Gordon
  • The Astrophysical Journal, Vol. 404
  • DOI: 10.1086/172297

Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/
journal, May 1980

  • Rubin, V. C.; Thonnard, N.; Ford, W. K. , Jr.
  • The Astrophysical Journal, Vol. 238
  • DOI: 10.1086/158003

Search for invisible axion dark matter of mass m a = 43 μ eV with the QUAX– a γ experiment
journal, May 2021


CAPP-8TB: Axion dark matter search experiment around 6.7 μev
journal, October 2021

  • Choi, J.; Ahn, S.; Ko, B. R.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 1013
  • DOI: 10.1016/j.nima.2021.165667

Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers
journal, October 2014


Effect of high magnetic fields on the noise temperature of a heterostructure field-effect transistor low-noise amplifier
journal, August 1997

  • Daw, Edward; Bradley, Richard F.
  • Journal of Applied Physics, Vol. 82, Issue 4
  • DOI: 10.1063/1.366000