DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DeePMD-kit v2: A software package for deep potential models

Abstract

DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9];  [8]; ORCiD logo [3]; ORCiD logo [10];  [11]; ORCiD logo [12]; ORCiD logo [5]; ORCiD logo [13]; ORCiD logo [14]; ORCiD logo [15]; ORCiD logo [9] more »; ORCiD logo [8]; ORCiD logo [16]; ORCiD logo [17]; ORCiD logo [8]; ORCiD logo [17]; ORCiD logo [18]; ORCiD logo [19]; ORCiD logo [3]; ORCiD logo [20]; ORCiD logo [21]; ORCiD logo [22]; ORCiD logo [23]; ORCiD logo [17]; ORCiD logo [24]; ORCiD logo [17]; ORCiD logo [25]; ORCiD logo [17]; ORCiD logo [26]; ORCiD logo [23]; ORCiD logo [27]; ORCiD logo [4]; ORCiD logo [15]; ORCiD logo [1]; ORCiD logo [28]; ORCiD logo [5]; ORCiD logo [19]; ORCiD logo [29] « less
  1. Rutgers Univ., Piscataway, NJ (United States)
  2. AI for Science Institute, Beijing (China); DP Technology, Beijing (China); Peking Univ., Beijing (China)
  3. Peking Univ., Beijing (China)
  4. Hunan Univ., Changsha (China)
  5. Princeton Univ., NJ (United States)
  6. Comenius Univ., Bratislava (Slovakia)
  7. Tsinghua Univ., Beijing (China)
  8. DP Technology, Beijing (China); Peking Univ., Beijing (China)
  9. ByteDance Research, Beijing (China)
  10. AI for Science Institute, Beijing (China)
  11. Baidu, Inc., Beijing (China)
  12. Westlake Univ., Hangzhou (China); Westlake AI Therapeutics Lab, Hangzhou (China); Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou (China)
  13. International School for Advanced Studies (SISSA), Trieste (Italy); Ecole Polytechnique Federale Lausanne (EPFL) (Switzerland)
  14. National University of Defense Technology, Changsha (China)
  15. Chinese Academy of Sciences (CAS), Beijing (China). Institute of Computing Technology; University of Chinese Academy of Sciences, Beijing (China)
  16. Univ. of Tokyo (Japan)
  17. DP Technology, Beijing (China)
  18. Univ. of Oslo (Norway)
  19. AI for Science Institute, Beijing (China); DP Technology, Beijing (China)
  20. East China Normal Univ. (ECNU), Shanghai (China)
  21. Queen's Univ., Belfast, Northern Ireland (United Kingdom)
  22. Xiamen University (China)
  23. Columbia Univ., New York, NY (United States)
  24. Independent Researcher, London (United Kingdom)
  25. Indian Inst. of Technology (IIT), Palakkad (India)
  26. NVIDIA AI Technology Center (NVAITC), Santa Clara, CA (United States)
  27. Flatiron Institute, New York, NY (United States)
  28. AI for Science Institute, Beijing (China); Peking Univ., Beijing (China)
  29. Peking Univ., Beijing (China); Institute of Applied Physics and Computational Mathematics, Beijing (China)
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Institutes of Health (NIH); National Science Foundation (NSF); Slovak Research and Development Agency; Science and Technology Innovation Program of Hunan Province; Research Council of Norway; National Key Research and Development Program of China; National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1994160
Grant/Contract Number:  
SC0019394; GM107485; 2209718; APVV-19-0371; 2021RC4026; 262695; SC0019759; 2022YFA1004300; 12122103; 2138259; 2138286; 2138307; 2137603; 2138296; CHE190067; CHE20002
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 159; Journal Issue: 5; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; molecular dynamics; computer software; deep learning; artificial neural networks; machine learning; application programming interface; graphical user interface; graphics processing units; tensile properties; peptides

Citation Formats

Zeng, Jinzhe, Zhang, Duo, Lu, Denghui, Mo, Pinghui, Li, Zeyu, Chen, Yixiao, Rynik, Marián, Huang, Li’ang, Li, Ziyao, Shi, Shaochen, Wang, Yingze, Ye, Haotian, Tuo, Ping, Yang, Jiabin, Ding, Ye, Li, Yifan, Tisi, Davide, Zeng, Qiyu, Bao, Han, Xia, Yu, Huang, Jiameng, Muraoka, Koki, Wang, Yibo, Chang, Junhan, Yuan, Fengbo, Bore, Sigbjørn Løland, Cai, Chun, Lin, Yinnian, Wang, Bo, Xu, Jiayan, Zhu, Jia-Xin, Luo, Chenxing, Zhang, Yuzhi, Goodall, Rhys A., Liang, Wenshuo, Singh, Anurag Kumar, Yao, Sikai, Zhang, Jingchao, Wentzcovitch, Renata, Han, Jiequn, Liu, Jie, Jia, Weile, York, Darrin M., E, Weinan, Car, Roberto, Zhang, Linfeng, and Wang, Han. DeePMD-kit v2: A software package for deep potential models. United States: N. p., 2023. Web. doi:10.1063/5.0155600.
Zeng, Jinzhe, Zhang, Duo, Lu, Denghui, Mo, Pinghui, Li, Zeyu, Chen, Yixiao, Rynik, Marián, Huang, Li’ang, Li, Ziyao, Shi, Shaochen, Wang, Yingze, Ye, Haotian, Tuo, Ping, Yang, Jiabin, Ding, Ye, Li, Yifan, Tisi, Davide, Zeng, Qiyu, Bao, Han, Xia, Yu, Huang, Jiameng, Muraoka, Koki, Wang, Yibo, Chang, Junhan, Yuan, Fengbo, Bore, Sigbjørn Løland, Cai, Chun, Lin, Yinnian, Wang, Bo, Xu, Jiayan, Zhu, Jia-Xin, Luo, Chenxing, Zhang, Yuzhi, Goodall, Rhys A., Liang, Wenshuo, Singh, Anurag Kumar, Yao, Sikai, Zhang, Jingchao, Wentzcovitch, Renata, Han, Jiequn, Liu, Jie, Jia, Weile, York, Darrin M., E, Weinan, Car, Roberto, Zhang, Linfeng, & Wang, Han. DeePMD-kit v2: A software package for deep potential models. United States. https://doi.org/10.1063/5.0155600
Zeng, Jinzhe, Zhang, Duo, Lu, Denghui, Mo, Pinghui, Li, Zeyu, Chen, Yixiao, Rynik, Marián, Huang, Li’ang, Li, Ziyao, Shi, Shaochen, Wang, Yingze, Ye, Haotian, Tuo, Ping, Yang, Jiabin, Ding, Ye, Li, Yifan, Tisi, Davide, Zeng, Qiyu, Bao, Han, Xia, Yu, Huang, Jiameng, Muraoka, Koki, Wang, Yibo, Chang, Junhan, Yuan, Fengbo, Bore, Sigbjørn Løland, Cai, Chun, Lin, Yinnian, Wang, Bo, Xu, Jiayan, Zhu, Jia-Xin, Luo, Chenxing, Zhang, Yuzhi, Goodall, Rhys A., Liang, Wenshuo, Singh, Anurag Kumar, Yao, Sikai, Zhang, Jingchao, Wentzcovitch, Renata, Han, Jiequn, Liu, Jie, Jia, Weile, York, Darrin M., E, Weinan, Car, Roberto, Zhang, Linfeng, and Wang, Han. Tue . "DeePMD-kit v2: A software package for deep potential models". United States. https://doi.org/10.1063/5.0155600. https://www.osti.gov/servlets/purl/1994160.
@article{osti_1994160,
title = {DeePMD-kit v2: A software package for deep potential models},
author = {Zeng, Jinzhe and Zhang, Duo and Lu, Denghui and Mo, Pinghui and Li, Zeyu and Chen, Yixiao and Rynik, Marián and Huang, Li’ang and Li, Ziyao and Shi, Shaochen and Wang, Yingze and Ye, Haotian and Tuo, Ping and Yang, Jiabin and Ding, Ye and Li, Yifan and Tisi, Davide and Zeng, Qiyu and Bao, Han and Xia, Yu and Huang, Jiameng and Muraoka, Koki and Wang, Yibo and Chang, Junhan and Yuan, Fengbo and Bore, Sigbjørn Løland and Cai, Chun and Lin, Yinnian and Wang, Bo and Xu, Jiayan and Zhu, Jia-Xin and Luo, Chenxing and Zhang, Yuzhi and Goodall, Rhys A. and Liang, Wenshuo and Singh, Anurag Kumar and Yao, Sikai and Zhang, Jingchao and Wentzcovitch, Renata and Han, Jiequn and Liu, Jie and Jia, Weile and York, Darrin M. and E, Weinan and Car, Roberto and Zhang, Linfeng and Wang, Han},
abstractNote = {DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.},
doi = {10.1063/5.0155600},
journal = {Journal of Chemical Physics},
number = 5,
volume = 159,
place = {United States},
year = {Tue Aug 01 00:00:00 EDT 2023},
month = {Tue Aug 01 00:00:00 EDT 2023}
}

Works referenced in this record:

Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air–Water Interfaces Depend on Depth and on Interface Specific Area
journal, June 2022

  • de la Puente, Miguel; David, Rolf; Gomez, Axel
  • Journal of the American Chemical Society, Vol. 144, Issue 23
  • DOI: 10.1021/jacs.2c03099

AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials
journal, July 2020

  • Glick, Zachary L.; Metcalf, Derek P.; Koutsoukas, Alexios
  • The Journal of Chemical Physics, Vol. 153, Issue 4
  • DOI: 10.1063/5.0011521

wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
journal, June 2018

  • Gastegger, M.; Schwiedrzik, L.; Bittermann, M.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019667

Facilitating ab initio QM/MM free energy simulations by Gaussian process regression with derivative observations
journal, January 2022

  • Snyder, Ryan; Kim, Bryant; Pan, Xiaoliang
  • Physical Chemistry Chemical Physics, Vol. 24, Issue 41
  • DOI: 10.1039/d2cp02820d

Atomic Energies from a Convolutional Neural Network
journal, May 2018

  • Chen, Xin; Jørgensen, Mathias S.; Li, Jun
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 7
  • DOI: 10.1021/acs.jctc.8b00149

Ab initio neural network MD simulation of thermal decomposition of a high energy material CL-20/TNT
journal, January 2022

  • Cao, Liqun; Zeng, Jinzhe; Wang, Bo
  • Physical Chemistry Chemical Physics, Vol. 24, Issue 19
  • DOI: 10.1039/d2cp00710j

Learning intermolecular forces at liquid–vapor interfaces
journal, October 2021

  • Niblett, Samuel P.; Galib, Mirza; Limmer, David T.
  • The Journal of Chemical Physics, Vol. 155, Issue 16
  • DOI: 10.1063/5.0067565

A deep learning interatomic potential developed for atomistic simulation of carbon materials
journal, January 2022


GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
journal, September 2022

  • Fan, Zheyong; Wang, Yanzhou; Ying, Penghua
  • The Journal of Chemical Physics, Vol. 157, Issue 11
  • DOI: 10.1063/5.0106617

Deep Learning for Nonadiabatic Excited-State Dynamics
journal, November 2018

  • Chen, Wen-Kai; Liu, Xiang-Yang; Fang, Wei-Hai
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 23
  • DOI: 10.1021/acs.jpclett.8b03026

Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements
journal, May 2022


OpenMP: an industry standard API for shared-memory programming
journal, January 1998

  • Dagum, L.; Menon, R.
  • IEEE Computational Science and Engineering, Vol. 5, Issue 1
  • DOI: 10.1109/99.660313

i-PI 2.0: A universal force engine for advanced molecular simulations
journal, March 2019


AMBER Free Energy Tools: A New Framework for the Design of Optimized Alchemical Transformation Pathways
journal, January 2023

  • Tsai, Hsu-Chun; Lee, Tai-Sung; Ganguly, Abir
  • Journal of Chemical Theory and Computation, Vol. 19, Issue 2
  • DOI: 10.1021/acs.jctc.2c00725

A “short blanket” dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?
journal, February 2023

  • Zhai, Yaoguang; Caruso, Alessandro; Bore, Sigbjørn Løland
  • The Journal of Chemical Physics, Vol. 158, Issue 8
  • DOI: 10.1063/5.0142843

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


A deep potential model with long-range electrostatic interactions
journal, March 2022

  • Zhang, Linfeng; Wang, Han; Muniz, Maria Carolina
  • The Journal of Chemical Physics, Vol. 156, Issue 12
  • DOI: 10.1063/5.0083669

SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
journal, July 2018


Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions
journal, June 2022

  • Giese, Timothy J.; Zeng, Jinzhe; Ekesan, Şölen
  • Journal of Chemical Theory and Computation, Vol. 18, Issue 7
  • DOI: 10.1021/acs.jctc.2c00151

Machine Learning Force Fields
journal, March 2021


Neural Network Potential Energy Surfaces for Small Molecules and Reactions
journal, October 2020


PyXtal_FF: a python library for automated force field generation
journal, December 2020

  • Yanxon, Howard; Zagaceta, David; Tang, Binh
  • Machine Learning: Science and Technology, Vol. 2, Issue 2
  • DOI: 10.1088/2632-2153/abc940

Resolving the odd–even oscillation of water dissociation at rutile TiO2(110)–water interface by machine learning accelerated molecular dynamics
journal, October 2022

  • Zhuang, Yong-Bin; Bi, Rui-Hao; Cheng, Jun
  • The Journal of Chemical Physics, Vol. 157, Issue 16
  • DOI: 10.1063/5.0126333

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges
journal, April 2019

  • Unke, Oliver T.; Meuwly, Markus
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 6
  • DOI: 10.1021/acs.jctc.9b00181

DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models
journal, January 2023


Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
journal, April 2018


Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states
journal, March 2023

  • Zeng, Jinzhe; Tao, Yujun; Giese, Timothy J.
  • The Journal of Chemical Physics, Vol. 158, Issue 12
  • DOI: 10.1063/5.0139281

A universal graph deep learning interatomic potential for the periodic table
journal, November 2022


Raman spectrum and polarizability of liquid water from deep neural networks
journal, January 2020

  • Sommers, Grace M.; Calegari Andrade, Marcos F.; Zhang, Linfeng
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 19
  • DOI: 10.1039/d0cp01893g

Realistic phase diagram of water from “first principles” data-driven quantum simulations
journal, June 2023


REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems
journal, March 2022

  • Zhang, Yaolong; Xia, Junfan; Jiang, Bin
  • The Journal of Chemical Physics, Vol. 156, Issue 11
  • DOI: 10.1063/5.0080766

Open Catalyst 2020 (OC20) Dataset and Community Challenges
journal, May 2021


Simulating water with rigid non-polarizable models: a general perspective
journal, January 2011

  • Vega, Carlos; Abascal, Jose L. F.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22168j

Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution
journal, October 2021

  • Zeng, Jinzhe; Giese, Timothy J.; Ekesan, Şölen
  • Journal of Chemical Theory and Computation, Vol. 17, Issue 11
  • DOI: 10.1021/acs.jctc.1c00201

Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions
journal, September 2021

  • Pan, Xiaoliang; Yang, Junjie; Van, Richard
  • Journal of Chemical Theory and Computation, Vol. 17, Issue 9
  • DOI: 10.1021/acs.jctc.1c00565

Deep learning inter-atomic potential model for accurate irradiation damage simulations
journal, June 2019

  • Wang, Hao; Guo, Xun; Zhang, Linfeng
  • Applied Physics Letters, Vol. 114, Issue 24
  • DOI: 10.1063/1.5098061

3Dmol.js: molecular visualization with WebGL
journal, December 2014


Deep potentials for materials science
journal, May 2022


Multipolar Ewald Methods, 1: Theory, Accuracy, and Performance
journal, January 2015

  • Giese, Timothy J.; Panteva, Maria T.; Chen, Haoyuan
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 2
  • DOI: 10.1021/ct5007983

Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66
journal, June 2022

  • Achar, Siddarth K.; Wardzala, Jacob J.; Bernasconi, Leonardo
  • Journal of Chemical Theory and Computation, Vol. 18, Issue 6
  • DOI: 10.1021/acs.jctc.2c00010

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations
journal, October 2004

  • Nam, Kwangho; Gao, Jiali; York, Darrin M.
  • Journal of Chemical Theory and Computation, Vol. 1, Issue 1
  • DOI: 10.1021/ct049941i

AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-Energy Simulation Setup and Analysis (ProFESSA)
journal, November 2022

  • Ganguly, Abir; Tsai, Hsu-Chun; Fernández-Pendás, Mario
  • Journal of Chemical Information and Modeling, Vol. 62, Issue 23
  • DOI: 10.1021/acs.jcim.2c00879

MAGUS: machine learning and graph theory assisted universal structure searcher
journal, May 2023

  • Wang, Junjie; Gao, Hao; Han, Yu
  • National Science Review, Vol. 10, Issue 7
  • DOI: 10.1093/nsr/nwad128

Signatures of a liquid–liquid transition in an ab initio deep neural network model for water
journal, October 2020

  • Gartner, Thomas E.; Zhang, Linfeng; Piaggi, Pablo M.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 42
  • DOI: 10.1073/pnas.2015440117

The MLIP package: Moment Tensor Potentials with MPI and Active Learning
journal, November 2020

  • Novikov, Ivan S.; Gubaev, Konstantin; Podryabinkin, Evgeny
  • Machine Learning: Science and Technology
  • DOI: 10.1088/2632-2153/abc9fe

Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: a study by deep potential molecular dynamics
journal, January 2023

  • Liu, Jianchuan; Liu, Renxi; Cao, Yu
  • Physical Chemistry Chemical Physics, Vol. 25, Issue 2
  • DOI: 10.1039/d2cp04105g

Die Berechnung optischer und elektrostatischer Gitterpotentiale
journal, January 1921


DeepFlame: A deep learning empowered open-source platform for reacting flow simulations
journal, October 2023


Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Viscosity in water from first-principles and deep-neural-network simulations
journal, July 2022


Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation
journal, May 2016

  • Giese, Timothy J.; York, Darrin M.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 6
  • DOI: 10.1021/acs.jctc.6b00198

Machine learning for molecular and materials science
journal, July 2018


SIMPLE-NN: An efficient package for training and executing neural-network interatomic potentials
journal, September 2019


Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation
journal, November 2020


OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
journal, July 2017


ReacNetGenerator: an automatic reaction network generator for reactive molecular dynamics simulations
journal, January 2020

  • Zeng, Jinzhe; Cao, Liqun; Chin, Chih-Hao
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 2
  • DOI: 10.1039/c9cp05091d

Isotope effects in liquid water via deep potential molecular dynamics
journal, October 2019


QDπ: A Quantum Deep Potential Interaction Model for Drug Discovery
journal, January 2023

  • Zeng, Jinzhe; Tao, Yujun; Giese, Timothy J.
  • Journal of Chemical Theory and Computation, Vol. 19, Issue 4
  • DOI: 10.1021/acs.jctc.2c01172

Homogeneous ice nucleation in an ab initio machine-learning model of water
journal, August 2022

  • Piaggi, Pablo M.; Weis, Jack; Panagiotopoulos, Athanassios Z.
  • Proceedings of the National Academy of Sciences, Vol. 119, Issue 33
  • DOI: 10.1073/pnas.2207294119

Reactive uptake of N 2 O 5 by atmospheric aerosol is dominated by interfacial processes
journal, February 2021


A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment
journal, October 2022


Machine Learning for Molecular Simulation
journal, April 2020


Multipolar Ewald Methods, 2: Applications Using a Quantum Mechanical Force Field
journal, January 2015

  • Giese, Timothy J.; Panteva, Maria T.; Chen, Haoyuan
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 2
  • DOI: 10.1021/ct500799g

Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics
journal, December 2020

  • Zhang, Yuzhi; Gao, Chang; Liu, Qianrui
  • Physics of Plasmas, Vol. 27, Issue 12
  • DOI: 10.1063/5.0023265

Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation
journal, May 2022

  • Chu, Qingzhao; Luo, Kai H.; Chen, Dongping
  • The Journal of Physical Chemistry Letters, Vol. 13, Issue 18
  • DOI: 10.1021/acs.jpclett.2c00647

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy
journal, February 2021


Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


Dissolving salt is not equivalent to applying a pressure on water
journal, February 2022

  • Zhang, Chunyi; Yue, Shuwen; Panagiotopoulos, Athanassios Z.
  • Nature Communications, Vol. 13, Issue 1
  • DOI: 10.1038/s41467-022-28538-8

TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials
journal, June 2020

  • Gao, Xiang; Ramezanghorbani, Farhad; Isayev, Olexandr
  • Journal of Chemical Information and Modeling, Vol. 60, Issue 7
  • DOI: 10.1021/acs.jcim.0c00451

Deep machine learning interatomic potential for liquid silica
journal, November 2020


Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations
journal, October 2020

  • Andreani, Carla; Romanelli, Giovanni; Parmentier, Alexandra
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 21
  • DOI: 10.1021/acs.jpclett.0c02547

DFT ‐D4 counterparts of leading meta‐ generalized‐gradient approximation and hybrid density functionals for energetics and geometries
journal, September 2020

  • Najibi, Asim; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 41, Issue 30
  • DOI: 10.1002/jcc.26411

Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy
journal, March 2020

  • Wang, Zhilong; Han, Yanqiang; Li, Jinjin
  • The Journal of Physical Chemistry B, Vol. 124, Issue 15
  • DOI: 10.1021/acs.jpcb.0c01370

SchNetPack: A Deep Learning Toolbox For Atomistic Systems
journal, November 2018

  • Schütt, K. T.; Kessel, P.; Gastegger, M.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00908

Machine learning builds full-QM precision protein force fields in seconds
journal, May 2021

  • Han, Yanqiang; Wang, Zhilong; Wei, Zhiyun
  • Briefings in Bioinformatics, Vol. 22, Issue 6
  • DOI: 10.1093/bib/bbab158

CENT2: Improved charge equilibration via neural network technique
journal, April 2022

  • Khajehpasha, Ehsan Rahmatizad; Finkler, Jonas A.; Kühne, Thomas D.
  • Physical Review B, Vol. 105, Issue 14
  • DOI: 10.1103/physrevb.105.144106

Ab Initio Reactive Computer Aided Molecular Design
journal, March 2017


MLatom 2: An Integrative Platform for Atomistic Machine Learning
journal, June 2021


Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence
journal, March 2021


sGDML: Constructing accurate and data efficient molecular force fields using machine learning
journal, July 2019

  • Chmiela, Stefan; Sauceda, Huziel E.; Poltavsky, Igor
  • Computer Physics Communications, Vol. 240
  • DOI: 10.1016/j.cpc.2019.02.007

Condensed Phase Water Molecular Multipole Moments from Deep Neural Network Models Trained on Ab Initio Simulation Data
journal, October 2021

  • Shi, Yu; Doyle, Carrie C.; Beck, Thomas L.
  • The Journal of Physical Chemistry Letters, Vol. 12, Issue 42
  • DOI: 10.1021/acs.jpclett.1c02328

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717

Recent Advances toward a General Purpose Linear-Scaling Quantum Force Field
journal, June 2014

  • Giese, Timothy J.; Huang, Ming; Chen, Haoyuan
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar500103g

DP Compress: A Model Compression Scheme for Generating Efficient Deep Potential Models
journal, August 2022

  • Lu, Denghui; Jiang, Wanrun; Chen, Yixiao
  • Journal of Chemical Theory and Computation, Vol. 18, Issue 9
  • DOI: 10.1021/acs.jctc.2c00102

Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
journal, November 2021

  • Kovács, Dávid Péter; Oord, Cas van der; Kucera, Jiri
  • Journal of Chemical Theory and Computation, Vol. 17, Issue 12
  • DOI: 10.1021/acs.jctc.1c00647

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator
journal, December 2020


GPU-Accelerated Molecular Dynamics and Free Energy Methods in Amber18: Performance Enhancements and New Features
journal, September 2018

  • Lee, Tai-Sung; Cerutti, David S.; Mermelstein, Dan
  • Journal of Chemical Information and Modeling, Vol. 58, Issue 10
  • DOI: 10.1021/acs.jcim.8b00462

Efficiently Trained Deep Learning Potential for Graphane
journal, July 2021

  • Achar, Siddarth K.; Zhang, Linfeng; Johnson, J. Karl
  • The Journal of Physical Chemistry C, Vol. 125, Issue 27
  • DOI: 10.1021/acs.jpcc.1c01411

Scalable parallel programming with CUDA
journal, March 2008


The MolSSI Driver Interface Project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes
journal, April 2021

  • Barnes, Taylor A.; Marin-Rimoldi, Eliseo; Ellis, Samuel
  • Computer Physics Communications, Vol. 261
  • DOI: 10.1016/j.cpc.2020.107688

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
journal, February 2020


Learning local equivariant representations for large-scale atomistic dynamics
journal, February 2023


Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials
journal, January 2019

  • Singraber, Andreas; Behler, Jörg; Dellago, Christoph
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 3
  • DOI: 10.1021/acs.jctc.8b00770

Development of a Robust Indirect Approach for MM → QM Free Energy Calculations That Combines Force-Matched Reference Potential and Bennett’s Acceptance Ratio Methods
journal, September 2019

  • Giese, Timothy J.; York, Darrin M.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 10
  • DOI: 10.1021/acs.jctc.9b00401

Plastic deformation of superionic water ices
journal, November 2022

  • Matusalem, Filipe; Santos Rego, Jéssica; de Koning, Maurice
  • Proceedings of the National Academy of Sciences, Vol. 119, Issue 45
  • DOI: 10.1073/pnas.2203397119

ω B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
journal, June 2016

  • Mardirossian, Narbe; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 144, Issue 21
  • DOI: 10.1063/1.4952647

Array programming with NumPy
journal, September 2020

  • Harris, Charles R.; Millman, K. Jarrod; van der Walt, Stéfan J.
  • Nature, Vol. 585, Issue 7825
  • DOI: 10.1038/s41586-020-2649-2

Large-scale ab initio simulations based on systematically improvable atomic basis
journal, February 2016


ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/c6sc05720a

SchNetPack 2.0: A neural network toolbox for atomistic machine learning
journal, April 2023

  • Schütt, Kristof T.; Hessmann, Stefaan S. P.; Gebauer, Niklas W. A.
  • The Journal of Chemical Physics, Vol. 158, Issue 14
  • DOI: 10.1063/5.0138367

LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
journal, February 2022

  • Thompson, Aidan P.; Aktulga, H. Metin; Berger, Richard
  • Computer Physics Communications, Vol. 271
  • DOI: 10.1016/j.cpc.2021.108171

ACES: Optimized Alchemically Enhanced Sampling
journal, January 2023

  • Lee, Tai-Sung; Tsai, Hsu-Chun; Ganguly, Abir
  • Journal of Chemical Theory and Computation, Vol. 19, Issue 2
  • DOI: 10.1021/acs.jctc.2c00697

Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation
journal, June 2022


Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation
journal, August 2019


E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
journal, May 2022


Multireference Generalization of the Weighted Thermodynamic Perturbation Method
journal, October 2022

  • Giese, Timothy J.; Zeng, Jinzhe; York, Darrin M.
  • The Journal of Physical Chemistry A, Vol. 126, Issue 45
  • DOI: 10.1021/acs.jpca.2c06201

Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture
journal, May 2022


Effective Approaches to Attention-based Neural Machine Translation
conference, January 2015

  • Luong, Thang; Pham, Hieu; Manning, Christopher D.
  • Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
  • DOI: 10.18653/v1/D15-1166

Machine Learning Approach Based on a Range-Corrected Deep Potential Model for Efficient Vibrational Frequency Computation
journal, August 2023

  • Yang, Jitai; Cong, Yang; Li, You
  • Journal of Chemical Theory and Computation, Vol. 19, Issue 18
  • DOI: 10.1021/acs.jctc.3c00386