DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV

Abstract

The performance of overall solar water splitting has been largely limited by the half-reaction of water oxidation. Here, we report a 1.7 eV bandgap InGaN nanowire photoanode for efficient solar water oxidation. It produces a low onset potential of 0.1 V versus a reversible hydrogen electrode (RHE) and a high photocurrent density of 5.2 mA/cm2 at a potential as low as 0.6 V versus RHE. The photoanode yields a half-cell solar energy conversion efficiency up to 3.6%, a record for a single-photon photoanode to our knowledge. Furthermore, in the presence of hole scavengers, the photocurrent density of the InGaN photoanode reaches 21.2 mA/cm2 at 1.23 V versus RHE, which approaches the theoretical limit for a 1.7 eV InGaN absorber. Furthermore, the InGaN nanowire photoanode may serve as an ideal top cell in a photoelectrochemical tandem device when stacked with a 0.9–1.2 eV bandgap bottom cell, which can potentially deliver solar-to-hydrogen efficiency over 25%.

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [3];  [1];  [3];  [1];  [1];  [2]
  1. McGill University, Quebec (Canada)
  2. McGill University, Quebec (Canada); University of Michigan, Ann Arbor, MI (United States)
  3. University of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1984375
Grant/Contract Number:  
EE0008086; SC0011385
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 3; Journal Issue: 2; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrical conductivity; Nanowires; Oxides; Photonics; Water oxidation

Citation Formats

Chu, Sheng, Vanka, Srinivas, Wang, Yichen, Gim, Jiseok, Wang, Yongjie, Ra, Yong-Ho, Hovden, Robert, Guo, Hong, Shih, Ishiang, and Mi, Zetian. Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV. United States: N. p., 2018. Web. doi:10.1021/acsenergylett.7b01138.
Chu, Sheng, Vanka, Srinivas, Wang, Yichen, Gim, Jiseok, Wang, Yongjie, Ra, Yong-Ho, Hovden, Robert, Guo, Hong, Shih, Ishiang, & Mi, Zetian. Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV. United States. https://doi.org/10.1021/acsenergylett.7b01138
Chu, Sheng, Vanka, Srinivas, Wang, Yichen, Gim, Jiseok, Wang, Yongjie, Ra, Yong-Ho, Hovden, Robert, Guo, Hong, Shih, Ishiang, and Mi, Zetian. Tue . "Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV". United States. https://doi.org/10.1021/acsenergylett.7b01138. https://www.osti.gov/servlets/purl/1984375.
@article{osti_1984375,
title = {Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV},
author = {Chu, Sheng and Vanka, Srinivas and Wang, Yichen and Gim, Jiseok and Wang, Yongjie and Ra, Yong-Ho and Hovden, Robert and Guo, Hong and Shih, Ishiang and Mi, Zetian},
abstractNote = {The performance of overall solar water splitting has been largely limited by the half-reaction of water oxidation. Here, we report a 1.7 eV bandgap InGaN nanowire photoanode for efficient solar water oxidation. It produces a low onset potential of 0.1 V versus a reversible hydrogen electrode (RHE) and a high photocurrent density of 5.2 mA/cm2 at a potential as low as 0.6 V versus RHE. The photoanode yields a half-cell solar energy conversion efficiency up to 3.6%, a record for a single-photon photoanode to our knowledge. Furthermore, in the presence of hole scavengers, the photocurrent density of the InGaN photoanode reaches 21.2 mA/cm2 at 1.23 V versus RHE, which approaches the theoretical limit for a 1.7 eV InGaN absorber. Furthermore, the InGaN nanowire photoanode may serve as an ideal top cell in a photoelectrochemical tandem device when stacked with a 0.9–1.2 eV bandgap bottom cell, which can potentially deliver solar-to-hydrogen efficiency over 25%.},
doi = {10.1021/acsenergylett.7b01138},
journal = {ACS Energy Letters},
number = 2,
volume = 3,
place = {United States},
year = {Tue Jan 02 00:00:00 EST 2018},
month = {Tue Jan 02 00:00:00 EST 2018}
}

Works referenced in this record:

Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation
journal, January 2016

  • Zhang, Peng; Wang, Tuo; Gong, Jinlong
  • Chemical Communications, Vol. 52, Issue 57
  • DOI: 10.1039/C6CC03411J

Insights into Interfacial Changes and Photoelectrochemical Stability of In x Ga 1– x N (0001) Photoanode Surfaces in Liquid Environments
journal, March 2016

  • Caccamo, Lorenzo; Cocco, Giulio; Martín, Gemma
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 12
  • DOI: 10.1021/acsami.5b12583

Strategies for stable water splitting via protected photoelectrodes
journal, January 2017

  • Bae, Dowon; Seger, Brian; Vesborg, Peter C. K.
  • Chemical Society Reviews, Vol. 46, Issue 7
  • DOI: 10.1039/C6CS00918B

Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics
journal, January 2016

  • Shen, Shaohua; Lindley, Sarah A.; Chen, Xiangyan
  • Energy & Environmental Science, Vol. 9, Issue 9
  • DOI: 10.1039/C6EE01845A

Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis
journal, July 2010

  • Tilley, S. David; Cornuz, Maurin; Sivula, Kevin
  • Angewandte Chemie International Edition, Vol. 49, Issue 36
  • DOI: 10.1002/anie.201003110

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Atomic-Scale Origin of Long-Term Stability and High Performance of p -GaN Nanowire Arrays for Photocatalytic Overall Pure Water Splitting
journal, July 2016

  • Kibria, Md Golam; Qiao, Ruimin; Yang, Wanli
  • Advanced Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adma.201602274

A Co-catalyst-Loaded Ta 3 N 5 Photoanode with a High Solar Photocurrent for Water Splitting upon Facile Removal of the Surface Layer
journal, August 2013

  • Li, Mingxue; Luo, Wenjun; Cao, Dapeng
  • Angewandte Chemie International Edition, Vol. 52, Issue 42
  • DOI: 10.1002/anie.201305350

III-Nitride nanowire optoelectronics
journal, November 2015


Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO 2 /Ni Coatings
journal, August 2014

  • McDowell, Matthew T.; Lichterman, Michael F.; Spurgeon, Joshua M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506133y

Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p + n Si/W-Doped BiVO 4 Photoanode for Unassisted Water Splitting
journal, August 2017

  • Chakthranont, Pongkarn; Hellstern, Thomas R.; McEnaney, Joshua M.
  • Advanced Energy Materials, Vol. 7, Issue 22
  • DOI: 10.1002/aenm.201701515

Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition-Metal Oxide Photoanodes
journal, December 2016


Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes
journal, January 2017

  • Ye, Kai-Hang; Wang, Zilong; Gu, Jiuwang
  • Energy & Environmental Science, Vol. 10, Issue 3
  • DOI: 10.1039/C6EE03442J

Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode
journal, August 2013

  • AlOtaibi, B.; Nguyen, H. P. T.; Zhao, S.
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402156e

Multifunctional Coatings from Scalable Single Source Precursor Chemistry in Tandem Photoelectrochemical Water Splitting
journal, November 2015

  • Lai, Yi-Hsuan; Palm, David W.; Reisner, Erwin
  • Advanced Energy Materials, Vol. 5, Issue 24
  • DOI: 10.1002/aenm.201501668

Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays
journal, April 2015

  • Kibria, M. G.; Chowdhury, F. A.; Zhao, S.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7797

A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes
journal, November 2016

  • Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.
  • Nature Materials, Vol. 16, Issue 3
  • DOI: 10.1038/nmat4794

Direct Water Splitting under Visible Light with Nanostructured Hematite and WO[sub 3] Photoanodes and a GaInP[sub 2] Photocathode
journal, January 2008

  • Wang, Heli; Deutsch, Todd; Turner, John A.
  • Journal of The Electrochemical Society, Vol. 155, Issue 5
  • DOI: 10.1149/1.2888477

Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research
journal, April 2014


What Limits the Performance of Ta 3 N 5 for Solar Water Splitting?
journal, October 2016


p-Type Modulation Doped InGaN/GaN Dot-in-a-Wire White-Light-Emitting Diodes Monolithically Grown on Si(111)
journal, May 2011

  • Nguyen, H. P. T.; Zhang, S.; Cui, K.
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl104536x

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

Band Engineered Epitaxial 3D GaN-InGaN Core–Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting
journal, February 2014

  • Caccamo, Lorenzo; Hartmann, Jana; Fàbrega, Cristian
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 4
  • DOI: 10.1021/am4058937

Sputtered NiO x Films for Stabilization of p + n-InP Photoanodes for Solar-Driven Water Oxidation
journal, March 2015

  • Sun, Ke; Kuang, Yanjin; Verlage, Erik
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201402276

Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Complete composition tunability of InGaN nanowires using a combinatorial approach
journal, October 2007

  • Kuykendall, Tevye; Ulrich, Philipp; Aloni, Shaul
  • Nature Materials, Vol. 6, Issue 12
  • DOI: 10.1038/nmat2037

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Semiconductor Nanowires for Artificial Photosynthesis
journal, September 2013

  • Liu, Chong; Dasgupta, Neil P.; Yang, Peidong
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4023198

Molecular beam epitaxial growth and characterization of non-tapered InN nanowires on Si(111)
journal, August 2009


Roadmap on solar water splitting: current status and future prospects
journal, September 2017


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Highly Active GaN-Stabilized Ta 3 N 5 Thin-Film Photoanode for Solar Water Oxidation
journal, March 2017

  • Zhong, Miao; Hisatomi, Takashi; Sasaki, Yutaka
  • Angewandte Chemie International Edition, Vol. 56, Issue 17
  • DOI: 10.1002/anie.201700117

An In 0.5 Ga 0.5 N nanowire photoanode for harvesting deep visible light photons
journal, July 2016

  • Fan, S.; Woo, S. Y.; Vanka, S.
  • APL Materials, Vol. 4, Issue 7
  • DOI: 10.1063/1.4958964

Improving the Performance of Hybrid Photoanodes for Water Splitting by Photodeposition of Iridium Oxide Nanoparticles
journal, August 2014

  • Bledowski, Michal; Wang, Lidong; Neubert, Susann
  • The Journal of Physical Chemistry C, Vol. 118, Issue 33
  • DOI: 10.1021/jp506434a

Full-Color Single Nanowire Pixels for Projection Displays
journal, June 2016


Limiting and realizable efficiencies of solar photolysis of water
journal, August 1985

  • Bolton, James R.; Strickler, Stewart J.; Connolly, John S.
  • Nature, Vol. 316, Issue 6028, p. 495-500
  • DOI: 10.1038/316495a0

Probing the photoelectrochemical properties of hematite (α-Fe 2 O 3 ) electrodes using hydrogen peroxide as a hole scavenger
journal, January 2011

  • Dotan, Hen; Sivula, Kevin; Grätzel, Michael
  • Energy Environ. Sci., Vol. 4, Issue 3
  • DOI: 10.1039/C0EE00570C

NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting
journal, November 2016


570 mV photovoltage, stabilized n-Si/CoO x heterojunction photoanodes fabricated using atomic layer deposition
journal, January 2016

  • Zhou, Xinghao; Liu, Rui; Sun, Ke
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03655K

Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO 4 photoanode and Si nanoarray photocathode
journal, January 2016

  • Xu, Pan; Feng, Jianyong; Fang, Tao
  • RSC Advances, Vol. 6, Issue 12
  • DOI: 10.1039/C5RA20115B

A Monolithically Integrated InGaN Nanowire/Si Tandem Photoanode Approaching the Ideal Bandgap Configuration of 1.75/1.13 eV
journal, September 2016

  • Fan, Shizhao; Shih, Ishiang; Mi, Zetian
  • Advanced Energy Materials, Vol. 7, Issue 2
  • DOI: 10.1002/aenm.201600952

Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties
journal, February 2012

  • Hwang, Yun Jeong; Wu, Cheng Hao; Hahn, Chris
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl3001138

Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H 2 and O 2 under Visible Light Irradiation
journal, September 2010

  • Abe, Ryu; Higashi, Masanobu; Domen, Kazunari
  • Journal of the American Chemical Society, Vol. 132, Issue 34
  • DOI: 10.1021/ja1016552

Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells
journal, June 2016

  • Scheuermann, Andrew G.; McIntyre, Paul C.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 14
  • DOI: 10.1021/acs.jpclett.6b00631

Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO 4 Photoanodes
journal, April 2012

  • Abdi, Fatwa F.; van de Krol, Roel
  • The Journal of Physical Chemistry C, Vol. 116, Issue 17
  • DOI: 10.1021/jp3007552

Photoelectrochemical Tandem Cells for Solar Water Splitting
journal, July 2013

  • Prévot, Mathieu S.; Sivula, Kevin
  • The Journal of Physical Chemistry C, Vol. 117, Issue 35
  • DOI: 10.1021/jp405291g

Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting
journal, October 2015

  • Kim, Tae Woo; Ping, Yuan; Galli, Giulia A.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9769

Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes
journal, March 2011

  • Sivula, Kevin; Le Formal, Florian; Grätzel, Michael
  • ChemSusChem, Vol. 4, Issue 4
  • DOI: 10.1002/cssc.201000416

Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting
journal, January 2016

  • Liu, Guiji; Ye, Sheng; Yan, Pengli
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03802B

Progress in bismuth vanadate photoanodes for use in solar water oxidation
journal, January 2013

  • Park, Yiseul; McDonald, Kenneth J.; Choi, Kyoung-Shin
  • Chem. Soc. Rev., Vol. 42, Issue 6, p. 2321-2337
  • DOI: 10.1039/C2CS35260E

Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015

  • Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05976

Protection of p + -n-Si Photoanodes by Sputter-Deposited Ir/IrO x Thin Films
journal, May 2014

  • Mei, Bastian; Seger, Brian; Pedersen, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 11
  • DOI: 10.1021/jz500865g

Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook
journal, January 2013

  • Li, Zhaosheng; Luo, Wenjun; Zhang, Minglong
  • Energy Environ. Sci., Vol. 6, Issue 2
  • DOI: 10.1039/C2EE22618A

Semiconducting materials for photoelectrochemical energy conversion
journal, January 2016


Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation
journal, October 2014

  • Liu, Qinghua; He, Jingfu; Yao, Tao
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6122

A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting
journal, April 2014

  • Bornoz, Pauline; Abdi, Fatwa F.; Tilley, S. David
  • The Journal of Physical Chemistry C, Vol. 118, Issue 30
  • DOI: 10.1021/jp500441h

A Front-Illuminated Nanostructured Transparent BiVO 4 Photoanode for >2% Efficient Water Splitting
journal, November 2015

  • Kuang, Yongbo; Jia, Qingxin; Nishiyama, Hiroshi
  • Advanced Energy Materials, Vol. 6, Issue 2
  • DOI: 10.1002/aenm.201501645

Efficiency limits for photoelectrochemical water-splitting
journal, December 2016

  • Fountaine, Katherine T.; Lewerenz, Hans Joachim; Atwater, Harry A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13706

Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
journal, January 2014

  • Ran, Jingrun; Zhang, Jun; Yu, Jiaguo
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60425J

Modeling, synthesis and study of highly efficient solar cells based on III-nitride nanowire arrays grown on Si substrates
journal, November 2015


Band bowing and band alignment in InGaN alloys
journal, January 2010

  • Moses, Poul Georg; Van de Walle, Chris G.
  • Applied Physics Letters, Vol. 96, Issue 2
  • DOI: 10.1063/1.3291055

A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
journal, May 2013

  • Liu, Chong; Tang, Jinyao; Chen, Hao Ming
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl401615t

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Nanowires as semi-rigid substrates for growth of thick, InxGa1−xN (x > 0.4) epi-layers without phase segregation for photoelectrochemical water splitting
journal, January 2012

  • Pendyala, Chandrashekhar; Jasinski, Jacek B.; Kim, Jeong H.
  • Nanoscale, Vol. 4, Issue 20
  • DOI: 10.1039/c2nr32020g

Small band gap bowing in In1−xGaxN alloys
journal, June 2002

  • Wu, J.; Walukiewicz, W.; Yu, K. M.
  • Applied Physics Letters, Vol. 80, Issue 25
  • DOI: 10.1063/1.1489481

Photoelectrochemical Properties of (In,Ga)N Nanowires for Water Splitting Investigated by in Situ Electrochemical Mass Spectroscopy
journal, May 2013

  • Kamimura, Jumpei; Bogdanoff, Peter; Lähnemann, Jonas
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404043k

Enabling unassisted solar water splitting by iron oxide and silicon
journal, June 2015

  • Jang, Ji-Wook; Du, Chun; Ye, Yifan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8447

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

A Flexible Web-Based Approach to Modeling Tandem Photocatalytic Devices
journal, December 2016


Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation
journal, January 2016

  • Li, Wei; He, Da; Sheehan, Stafford W.
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE03871E

pn photoelectrolysis cells
journal, August 1976

  • Nozik, A. J.
  • Applied Physics Letters, Vol. 29, Issue 3
  • DOI: 10.1063/1.89004

High-Performance Ultrathin BiVO 4 Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting
journal, April 2016


Stable response to visible light of InGaN photoelectrodes
journal, June 2008

  • Luo, Wenjun; Liu, Bin; Li, Zhaosheng
  • Applied Physics Letters, Vol. 92, Issue 26
  • DOI: 10.1063/1.2955828

Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014

  • Döscher, H.; Geisz, J. F.; Deutsch, T. G.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01753F

Investigation of (Leaky) ALD TiO 2 Protection Layers for Water-Splitting Photoelectrodes
journal, December 2017

  • Moehl, Thomas; Suh, Jihye; Sévery, Laurent
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 50
  • DOI: 10.1021/acsami.7b12564

p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation
journal, July 2015

  • Chen, Le; Yang, Jinhui; Klaus, Shannon
  • Journal of the American Chemical Society, Vol. 137, Issue 30
  • DOI: 10.1021/jacs.5b03536