DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Asymmetric Miktoarm Star Polymers as Polyester Thermoplastic Elastomers

Abstract

A library of polyester-based A(BA')n asymmetric miktoarm star polymers was synthesized with A, A' = poly(l-lactide) (PLLA) as the semicrystalline hard blocks and B = poly(4-methylcaprolactone) (PMCL) as the soft segment using a grafting-through platform known as μSTAR. The synthetic versatility of μSTAR enabled a systematic investigation of architectural design parameters, in particular the number of BA' arms (n), while holding the A, A', and B block lengths constant. The value of n has a pronounced impact on the mechanical properties of these high-molecular-weight miktoarm materials. Tensile toughness increases with n, an effect likely related to bridging, as the modulus drops because the hard-block volume fraction decreases. Furthermore, these insights expand our understanding of architecture effects in sustainable thermoplastic elastomers.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of California, Santa Barbara, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Santa Barbara, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1971662
Grant/Contract Number:  
SC0019001
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecules
Additional Journal Information:
Journal Volume: 55; Journal Issue: 12; Journal ID: ISSN 0024-9297
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Materials; Plastics; Star polymers; Stress; Testing and assessment

Citation Formats

Blankenship, Jacob R., Levi, Adam E., Goldfeld, David J., Self, Jeffrey L., Alizadeh, Nima, Chen, Duyu, Fredrickson, Glenn H., and Bates, Christopher M. Asymmetric Miktoarm Star Polymers as Polyester Thermoplastic Elastomers. United States: N. p., 2022. Web. doi:10.1021/acs.macromol.2c00214.
Blankenship, Jacob R., Levi, Adam E., Goldfeld, David J., Self, Jeffrey L., Alizadeh, Nima, Chen, Duyu, Fredrickson, Glenn H., & Bates, Christopher M. Asymmetric Miktoarm Star Polymers as Polyester Thermoplastic Elastomers. United States. https://doi.org/10.1021/acs.macromol.2c00214
Blankenship, Jacob R., Levi, Adam E., Goldfeld, David J., Self, Jeffrey L., Alizadeh, Nima, Chen, Duyu, Fredrickson, Glenn H., and Bates, Christopher M. Fri . "Asymmetric Miktoarm Star Polymers as Polyester Thermoplastic Elastomers". United States. https://doi.org/10.1021/acs.macromol.2c00214. https://www.osti.gov/servlets/purl/1971662.
@article{osti_1971662,
title = {Asymmetric Miktoarm Star Polymers as Polyester Thermoplastic Elastomers},
author = {Blankenship, Jacob R. and Levi, Adam E. and Goldfeld, David J. and Self, Jeffrey L. and Alizadeh, Nima and Chen, Duyu and Fredrickson, Glenn H. and Bates, Christopher M.},
abstractNote = {A library of polyester-based A(BA')n asymmetric miktoarm star polymers was synthesized with A, A' = poly(l-lactide) (PLLA) as the semicrystalline hard blocks and B = poly(4-methylcaprolactone) (PMCL) as the soft segment using a grafting-through platform known as μSTAR. The synthetic versatility of μSTAR enabled a systematic investigation of architectural design parameters, in particular the number of BA' arms (n), while holding the A, A', and B block lengths constant. The value of n has a pronounced impact on the mechanical properties of these high-molecular-weight miktoarm materials. Tensile toughness increases with n, an effect likely related to bridging, as the modulus drops because the hard-block volume fraction decreases. Furthermore, these insights expand our understanding of architecture effects in sustainable thermoplastic elastomers.},
doi = {10.1021/acs.macromol.2c00214},
journal = {Macromolecules},
number = 12,
volume = 55,
place = {United States},
year = {Fri Jun 10 00:00:00 EDT 2022},
month = {Fri Jun 10 00:00:00 EDT 2022}
}

Works referenced in this record:

Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts
journal, February 2012


Efficient Synthesis of Asymmetric Miktoarm Star Polymers
journal, January 2020


Extreme Deflection of Phase Boundaries and Chain Bridging in A(BA′) n Miktoarm Star Polymers
journal, January 2020


Design of Soft and Strong Thermoplastic Elastomers Based on Nonlinear Block Copolymer Architectures Using Self-Consistent-Field Theory
journal, April 2010

  • Lynd, Nathaniel A.; Oyerokun, Folusho T.; O’Donoghue, Donal L.
  • Macromolecules, Vol. 43, Issue 7
  • DOI: 10.1021/ma902517v

Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures
journal, March 2014

  • Shi, Weichao; Lynd, Nathaniel A.; Montarnal, Damien
  • Macromolecules, Vol. 47, Issue 6
  • DOI: 10.1021/ma402566g

Synthesis and Self-Assembly of AB n Miktoarm Star Polymers
journal, February 2020


Miktoarm Stars via Grafting-Through Copolymerization: Self-Assembly and the Star-to-Bottlebrush Transition
journal, February 2019


Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers
journal, May 2017


Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups
journal, June 2019


Enhanced Mechanical Properties of Aliphatic Polyester Thermoplastic Elastomers through Star Block Architectures
journal, October 2021


Relay Conjugation of Living Metathesis Polymers
journal, August 2018

  • Fu, Liangbing; Zhang, Tianqi; Fu, Guanyao
  • Journal of the American Chemical Society, Vol. 140, Issue 38
  • DOI: 10.1021/jacs.8b07315

Stability of the A15 phase in diblock copolymer melts
journal, June 2019

  • Bates, Morgan W.; Lequieu, Joshua; Barbon, Stephanie M.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 27
  • DOI: 10.1073/pnas.1900121116

Melt Chain Dimensions of Polylactide
journal, March 2004

  • Anderson, Kelly S.; Hillmyer, Marc A.
  • Macromolecules, Vol. 37, Issue 5
  • DOI: 10.1021/ma0357523

Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review
journal, December 2016


Tough and Sustainable Graft Block Copolymer Thermoplastics
journal, March 2016


ε-Decalactone: A Thermoresilient and Toughening Comonomer to Poly( l -lactide)
journal, July 2013

  • Olsén, Peter; Borke, Tina; Odelius, Karin
  • Biomacromolecules, Vol. 14, Issue 8
  • DOI: 10.1021/bm400733e

Multiblock Thermoplastic Elastomers Derived from Biodiesel, Poly(propylene glycol), and l -Lactide
journal, August 2017


Synthesis of biodegradable thermoplastic elastomers from ε -caprolactone and lactide
journal, November 2014

  • Nakayama, Yuushou; Aihara, Kazuki; Yamanishi, Hitomi
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 53, Issue 3
  • DOI: 10.1002/pola.27463

Crystallization and Mechanical Properties of Poly( l -lactide)-Based Rubbery/Semicrystalline Multiblock Copolymers
journal, June 2015


Thermoplastic elastomers
journal, January 1969

  • Holden, G.; Bishop, E. T.; Legge, N. R.
  • Journal of Polymer Science Part C: Polymer Symposia, Vol. 26, Issue 1
  • DOI: 10.1002/polc.5070260104

Domain Bridging in Thermoplastic Elastomers of Star Block Copolymer
journal, February 2017


Synthesis and Melt Processing of Sustainable Poly(ε-decalactone)- block -Poly(lactide) Multiblock Thermoplastic Elastomers
journal, October 2014

  • Martello, Mark T.; Schneiderman, Deborah K.; Hillmyer, Marc A.
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 11
  • DOI: 10.1021/sc500412a

Stress Relaxation in Transient Networks of Symmetric Triblock Styrene−Isoprene−Styrene Copolymer
journal, January 2002

  • Hotta, A.; Clarke, S. M.; Terentjev, E. M.
  • Macromolecules, Vol. 35, Issue 1
  • DOI: 10.1021/ma001976z

Crystallization assisted self-assembly of semicrystalline block copolymers
journal, October 2012


Hysteresis in Rubber
journal, November 1952


Processing temperature dependent mechanical response of a thermoplastic elastomer with low hard segment
journal, August 2012