DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Artificial cathode electrolyte interphase for improving high voltage cycling stability of thick electrode with Co-free 5 V spinel oxides

Abstract

Spinel-type cathode LiNi0.5Mn1.5O4 (LNMO) has intrigued the transportation industry due to its high operating voltage and total elimination of the expensive cobalt element. However, LNMO cathode with high mass loading (> 3 mAh/cm2 in areal capacity) has suffered from excessive capacity degradation upon long cycling. Here, a robust Al2O3 surface layer is introduced to the thick LNMO electrode via atomic layer deposition (ALD). The capacity retention in full cells with the graphite anode is improved from 46.3% to 75.3% after 300 cycles with cutoff voltage up to 4.85 V, while enabling average Coulombic efficiency of 99.9% during the cycling. The post-mortem analyses reveal that the Al2O3 surface layer would convert to Al-O-F /Al-F species upon cycling, offering stable interphase to protect the cathode material. Furthermore, these results demonstrate the significance of surface modification enabling high voltage cathode for next-generation LIBs.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2]
  1. Univ. of California San Diego, La Jolla, CA (United States)
  2. Univ. of California San Diego, La Jolla, CA (United States); Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF); National Science Foundation Major Research Instrumentation Program
OSTI Identifier:
1969521
Grant/Contract Number:  
EE0008442; ECCS-1542148; CHE-1338173
Resource Type:
Accepted Manuscript
Journal Name:
Energy Storage Materials
Additional Journal Information:
Journal Volume: 49; Journal ID: ISSN 2405-8297
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Li, Weikang, Cheng, Diyi, Shimizu, Ryosuke, Li, Yixuan, Yao, Weiliang, Raghavendran, Ganesh, Zhang, Minghao, and Meng, Ying Shirley. Artificial cathode electrolyte interphase for improving high voltage cycling stability of thick electrode with Co-free 5 V spinel oxides. United States: N. p., 2022. Web. doi:10.1016/j.ensm.2022.04.002.
Li, Weikang, Cheng, Diyi, Shimizu, Ryosuke, Li, Yixuan, Yao, Weiliang, Raghavendran, Ganesh, Zhang, Minghao, & Meng, Ying Shirley. Artificial cathode electrolyte interphase for improving high voltage cycling stability of thick electrode with Co-free 5 V spinel oxides. United States. https://doi.org/10.1016/j.ensm.2022.04.002
Li, Weikang, Cheng, Diyi, Shimizu, Ryosuke, Li, Yixuan, Yao, Weiliang, Raghavendran, Ganesh, Zhang, Minghao, and Meng, Ying Shirley. Mon . "Artificial cathode electrolyte interphase for improving high voltage cycling stability of thick electrode with Co-free 5 V spinel oxides". United States. https://doi.org/10.1016/j.ensm.2022.04.002. https://www.osti.gov/servlets/purl/1969521.
@article{osti_1969521,
title = {Artificial cathode electrolyte interphase for improving high voltage cycling stability of thick electrode with Co-free 5 V spinel oxides},
author = {Li, Weikang and Cheng, Diyi and Shimizu, Ryosuke and Li, Yixuan and Yao, Weiliang and Raghavendran, Ganesh and Zhang, Minghao and Meng, Ying Shirley},
abstractNote = {Spinel-type cathode LiNi0.5Mn1.5O4 (LNMO) has intrigued the transportation industry due to its high operating voltage and total elimination of the expensive cobalt element. However, LNMO cathode with high mass loading (> 3 mAh/cm2 in areal capacity) has suffered from excessive capacity degradation upon long cycling. Here, a robust Al2O3 surface layer is introduced to the thick LNMO electrode via atomic layer deposition (ALD). The capacity retention in full cells with the graphite anode is improved from 46.3% to 75.3% after 300 cycles with cutoff voltage up to 4.85 V, while enabling average Coulombic efficiency of 99.9% during the cycling. The post-mortem analyses reveal that the Al2O3 surface layer would convert to Al-O-F /Al-F species upon cycling, offering stable interphase to protect the cathode material. Furthermore, these results demonstrate the significance of surface modification enabling high voltage cathode for next-generation LIBs.},
doi = {10.1016/j.ensm.2022.04.002},
journal = {Energy Storage Materials},
number = ,
volume = 49,
place = {United States},
year = {Mon Apr 04 00:00:00 EDT 2022},
month = {Mon Apr 04 00:00:00 EDT 2022}
}

Works referenced in this record:

Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime
journal, February 2016


Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries
journal, April 2010

  • Jung, Yoon Seok; Cavanagh, Andrew S.; Riley, Leah A.
  • Advanced Materials, Vol. 22, Issue 19
  • DOI: 10.1002/adma.200903951

Hydrolysis of LiPF 6 -Containing Electrolyte at High Voltage
journal, May 2021


Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications
journal, February 2011

  • Scott, Isaac D.; Jung, Yoon Seok; Cavanagh, Andrew S.
  • Nano Letters, Vol. 11, Issue 2, p. 414-418
  • DOI: 10.1021/nl1030198

Ultrathin Surface Modification by Atomic Layer Deposition on High Voltage Cathode LiNi 0.5 Mn 1.5 O 4 for Lithium Ion Batteries
journal, December 2013


Performance and cost of materials for lithium-based rechargeable automotive batteries
journal, April 2018


Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Enhanced electrochemical stability of high-voltage LiNi0.5Mn1.5O4 cathode by surface modification using atomic layer deposition
journal, November 2014

  • Song, Jaehee; Han, Xiaogang; Gaskell, Karen J.
  • Journal of Nanoparticle Research, Vol. 16, Issue 11
  • DOI: 10.1007/s11051-014-2745-z

Additives for Cycle Life Improvement of High‐Voltage LNMO‐Based Li‐Ion Cells
journal, October 2019

  • Hofmann, Andreas; Höweling, Andres; Bohn, Nicole
  • ChemElectroChem, Vol. 6, Issue 20
  • DOI: 10.1002/celc.201901120

Extremely conductive RuO2-coated LiNi0.5Mn1.5O4 for lithium-ion batteries
journal, April 2017


Robust AlF 3 Atomic Layer Deposition Protective Coating on LiMn 1.5 Ni 0.5 O 4 Particles: An Advanced Li-Ion Battery Cathode Material Powder
journal, October 2018

  • Shapira, A.; Tiurin, Ortal; Solomatin, N.
  • ACS Applied Energy Materials, Vol. 1, Issue 12
  • DOI: 10.1021/acsaem.8b01048

Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries
journal, January 2015


Atomic Layer Deposition of a Nanometer-Thick Li 3 PO 4 Protective Layer on LiNi 0.5 Mn 1.5 O 4 Films: Dream or Reality for Long-Term Cycling?
journal, March 2021

  • Hallot, Maxime; Caja-Munoz, Borja; Leviel, Clement
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 13
  • DOI: 10.1021/acsami.0c21961

Mechanism for Al2O3 Atomic Layer Deposition on LiMn2O4 from In Situ Measurements and Ab Initio Calculations
journal, October 2018


Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries
journal, August 2016


Effects of Atomic Layer Deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 Cathode for Lithium-Ion Batteries
journal, January 2011

  • Seok Jung, Yoon; Cavanagh, Andrew S.; Yan, Yanfa
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.030112jes

Fe Doping in LiMn1.5Ni0.5O4 by Atomic Layer Deposition Followed by Annealing: Depths and Occupation Sites
journal, March 2021

  • Gao, Yan; Yu, Han; Sandineni, Prashanth
  • The Journal of Physical Chemistry C, Vol. 125, Issue 14
  • DOI: 10.1021/acs.jpcc.1c00225

Dissolution of cathode–electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries
journal, August 2021


Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy
journal, January 2020

  • Zhang, Yirui; Katayama, Yu; Tatara, Ryoichi
  • Energy & Environmental Science, Vol. 13, Issue 1
  • DOI: 10.1039/C9EE02543J

Effect of Surface Modification on Nano-Structured LiNi 0.5 Mn 1.5 O 4 Spinel Materials
journal, July 2015

  • Cho, Hyung-Man; Chen, Michael Vincent; MacRae, Alex C.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b01392

Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material
journal, March 2011


Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries
journal, April 2010


Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings
journal, January 2011

  • Guan, Dongsheng; Jeevarajan, Judith A.; Wang, Ying
  • Nanoscale, Vol. 3, Issue 4
  • DOI: 10.1039/c0nr00939c

A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries
journal, May 2018


Releasing oxygen from the bulk
journal, June 2021


A Long Cycle‐Life High‐Voltage Spinel Lithium‐Ion Battery Electrode Achieved by Site‐Selective Doping
journal, April 2020

  • Liang, Gemeng; Wu, Zhibin; Didier, Christophe
  • Angewandte Chemie International Edition, Vol. 59, Issue 26
  • DOI: 10.1002/anie.202001454

High-nickel layered oxide cathodes for lithium-based automotive batteries
journal, January 2020


Atomic Layer Deposition of a Particularized Protective MgF 2 Film on a Li-Ion Battery LiMn 1.5 Ni 0.5 O 4 Cathode Powder Material
journal, November 2015

  • Kraytsberg, Alexander; Drezner, Haika; Auinat, Mahmud
  • ChemNanoMat, Vol. 1, Issue 8
  • DOI: 10.1002/cnma.201500149

Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material
journal, February 2020


Ultra-Thin Coating and Three-Dimensional Electrode Structures to Boosted Thick Electrode Lithium-Ion Battery Performance
journal, November 2018


Coupled LiPF 6 Decomposition and Carbonate Dehydrogenation Enhanced by Highly Covalent Metal Oxides in High-Energy Li-Ion Batteries
journal, October 2018

  • Yu, Yang; Karayaylali, Pinar; Katayama, Yu
  • The Journal of Physical Chemistry C, Vol. 122, Issue 48
  • DOI: 10.1021/acs.jpcc.8b07848

Structural and Electrochemical Study of Al 2 O 3 and TiO 2 Coated Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 Cathode Material Using ALD
journal, June 2013

  • Zhang, Xiaofeng; Belharouak, Ilias; Li, Li
  • Advanced Energy Materials, Vol. 3, Issue 10
  • DOI: 10.1002/aenm.201300269

Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as High-Performance Cathode
journal, October 2017


Probing the Electrode-Electrolyte Interface in Cycled LiNi 0.5 Mn 1.5 O 4 by XPS Using Mg and Synchrotron X-rays
journal, January 2016

  • Mansour, Azzam N.; Kwabi, David G.; Quinlan, Ronald A.
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0331614jes

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Improved high-temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries
journal, November 2020


Developing high-voltage spinel LiNi 0.5 Mn 1.5 O 4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects
journal, January 2020

  • Liang, Gemeng; Peterson, Vanessa K.; See, Khay Wai
  • Journal of Materials Chemistry A, Vol. 8, Issue 31
  • DOI: 10.1039/D0TA02812F

Solubility of Fluorides of Metals in Liquid Hydrogen Fluoride
journal, September 1952

  • Jache, Albert W.; Cady, George H.
  • The Journal of Physical Chemistry, Vol. 56, Issue 9
  • DOI: 10.1021/j150501a018

Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure
journal, January 2021


Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries
journal, July 2013


Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries
journal, May 2014

  • Park, Joong Sun; Meng, Xiangbo; Elam, Jeffrey W.
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm500512n

Graphite//LiNi 0.5 Mn 1.5 O 4 Cells Based on Environmentally Friendly Made-in-Water Electrodes
journal, December 2016

  • De Giorgio, Francesca; Laszczynski, Nina; von Zamory, Jan
  • ChemSusChem, Vol. 10, Issue 2
  • DOI: 10.1002/cssc.201601249

Renovating the electrode-electrolyte interphase for layered lithium- & manganese-rich oxides
journal, June 2020


Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries
journal, October 2020