DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Periodic Trends within Actinyl(VI) Nitrates and Their Structures, Vibrational Spectra, and Electronic Properties

Abstract

In this work, a series of actinyl(VI) nitrate salts of the form MAnO2(NO3)3, where M = NH4+ K+, Rb+, Cs+, and Me4N+ and AnO22+ = U, Np, Pu, and AnO2(NO3)2(H2O)2·H2O, and the uranyl tetranitrates M2UO2(NO3)4 have been synthesized from aqueous solution and their structures determined using single-crystal X-ray diffraction. Together, these complexes represent an isostructural series of actinide complexes among the salts crystallized with the same charge-compensating cation and have been studied using vibrational spectroscopy including Raman and Fourier-transform infrared. Periodic trends in both the structural properties of these complexes and their vibrational spectra are presented and discussed, in particular the invariant nature of the O≡An≡O asymmetric stretching frequencies observed across the actinyl series. Electronic structure calculations were performed at a variety of levels of theory to aid in the interpretation of the vibrational data and to correlate trends in the data with the underlying electronic properties of these molecules.

Authors:
 [1]; ORCiD logo [1];  [2];  [2]; ORCiD logo [2]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Univ. of Alabama, Tuscaloosa, AL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1968737
Grant/Contract Number:  
AC02-06CH11357; SC0018921
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 61; Journal Issue: 39; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Anions; Cations; Infrared spectroscopy; Ions; Organic polymers

Citation Formats

Autillo, Matthieu, Wilson, Richard E., Vasiliu, Monica, de Melo, Gabriel F., and Dixon, David A. Periodic Trends within Actinyl(VI) Nitrates and Their Structures, Vibrational Spectra, and Electronic Properties. United States: N. p., 2022. Web. doi:10.1021/acs.inorgchem.2c02434.
Autillo, Matthieu, Wilson, Richard E., Vasiliu, Monica, de Melo, Gabriel F., & Dixon, David A. Periodic Trends within Actinyl(VI) Nitrates and Their Structures, Vibrational Spectra, and Electronic Properties. United States. https://doi.org/10.1021/acs.inorgchem.2c02434
Autillo, Matthieu, Wilson, Richard E., Vasiliu, Monica, de Melo, Gabriel F., and Dixon, David A. Wed . "Periodic Trends within Actinyl(VI) Nitrates and Their Structures, Vibrational Spectra, and Electronic Properties". United States. https://doi.org/10.1021/acs.inorgchem.2c02434. https://www.osti.gov/servlets/purl/1968737.
@article{osti_1968737,
title = {Periodic Trends within Actinyl(VI) Nitrates and Their Structures, Vibrational Spectra, and Electronic Properties},
author = {Autillo, Matthieu and Wilson, Richard E. and Vasiliu, Monica and de Melo, Gabriel F. and Dixon, David A.},
abstractNote = {In this work, a series of actinyl(VI) nitrate salts of the form MAnO2(NO3)3, where M = NH4+ K+, Rb+, Cs+, and Me4N+ and AnO22+ = U, Np, Pu, and AnO2(NO3)2(H2O)2·H2O, and the uranyl tetranitrates M2UO2(NO3)4 have been synthesized from aqueous solution and their structures determined using single-crystal X-ray diffraction. Together, these complexes represent an isostructural series of actinide complexes among the salts crystallized with the same charge-compensating cation and have been studied using vibrational spectroscopy including Raman and Fourier-transform infrared. Periodic trends in both the structural properties of these complexes and their vibrational spectra are presented and discussed, in particular the invariant nature of the O≡An≡O asymmetric stretching frequencies observed across the actinyl series. Electronic structure calculations were performed at a variety of levels of theory to aid in the interpretation of the vibrational data and to correlate trends in the data with the underlying electronic properties of these molecules.},
doi = {10.1021/acs.inorgchem.2c02434},
journal = {Inorganic Chemistry},
number = 39,
volume = 61,
place = {United States},
year = {Wed Sep 21 00:00:00 EDT 2022},
month = {Wed Sep 21 00:00:00 EDT 2022}
}

Works referenced in this record:

Electronic structure and bonding in actinyl ions
book, January 2006


Electronic Structure and Bonding in Actinyl Ions and their Analogs
journal, May 2007

  • Denning, Robert G.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 20
  • DOI: 10.1021/jp071061n

Structural and Vibrational Properties of U(VI)O 2 Cl 4 2- and Pu(VI)O 2 Cl 4 2- Complexes
journal, November 2013

  • Schnaars, David D.; Wilson, Richard E.
  • Inorganic Chemistry, Vol. 52, Issue 24
  • DOI: 10.1021/ic401991n

Lattice Solvent and Crystal Phase Effects on the Vibrational Spectra of UO 2 Cl 4 2–
journal, September 2014

  • Schnaars, David D.; Wilson, Richard E.
  • Inorganic Chemistry, Vol. 53, Issue 20
  • DOI: 10.1021/ic501553m

Synthesis, Structure, and Vibrational Properties of [Ph 4 P] 2 NpO 2 Cl 4 and [Ph 4 P] 2 PuO 2 Cl 4 Complexes
journal, March 2018


Molecular Hydroxo-Bridged Dimers of Uranium(VI), Neptunium(VI), and Plutonium(VI): [Me 4 N] 2 [(AnO 2 ) 2 (OH) 2 (NO 3 ) 4 ]
journal, February 2019


Infrared Spectra and Structure of Uranyl and Transuranium ( V ) and ( VI ) Ions in Aqueous Perchloric Acid Solution
journal, March 1953

  • Jones, Llewellyn H.; Penneman, Robert A.
  • The Journal of Chemical Physics, Vol. 21, Issue 3
  • DOI: 10.1063/1.1698941

Systematics in the vibrational spectra of uranyl complexes
journal, February 1958


Impacts of Oxo Interactions on Np(V) Crown Ether Complexes
journal, May 2018


Supramolecular Interactions in PuO 2 Cl 4 2– and PuCl 6 2– Complexes with Protonated Pyridines: Synthesis, Crystal Structures, and Raman Spectroscopy
journal, December 2013

  • Wilson, Richard E.; Schnaars, David D.; Andrews, Michael B.
  • Inorganic Chemistry, Vol. 53, Issue 1
  • DOI: 10.1021/ic4023294

Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly
journal, July 2017

  • Surbella, Robert G.; Ducati, Lucas C.; Pellegrini, Kristi L.
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b05689

Probing the Nature of Chemical Bonding in Uranyl(VI) Complexes with Quantum Chemical Methods
journal, November 2012

  • Vallet, Valérie; Wahlgren, Ulf; Grenthe, Ingmar
  • The Journal of Physical Chemistry A, Vol. 116, Issue 50
  • DOI: 10.1021/jp3091123

Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms
journal, August 2017

  • Carter, Korey P.; Kalaj, Mark; Surbella, Robert G.
  • Chemistry - A European Journal, Vol. 23, Issue 61
  • DOI: 10.1002/chem.201702744

Structural and Spectroscopic Characterization of Plutonyl(VI) Nitrate under Acidic Conditions
journal, May 2011

  • Gaunt, Andrew J.; May, Iain; Neu, Mary P.
  • Inorganic Chemistry, Vol. 50, Issue 10
  • DOI: 10.1021/ic200525u

Structure and spectroscopy of hydrated neptunyl(vi) nitrate complexes
journal, January 2013

  • Lindqvist-Reis, Patric; Apostolidis, Christos; Walter, Olaf
  • Dalton Transactions, Vol. 42, Issue 43
  • DOI: 10.1039/c3dt51650d

Structure of rubidium uranyl(VI) trinitrate
journal, May 1989

  • Zalkin, A.; Templeton, L. K.; Templeton, D. H.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 45, Issue 5
  • DOI: 10.1107/s0108270188013149

Crystal Structure of K[UO 2 (NO 3 ) 3 ] and Some Features of Compounds M[UO 2 (NO 3 ) 3 ] (M = K, Rb, and Cs)
journal, January 2004


Crystal and molecular structure of ammonium trinitratouranylate NH4[UO2(NO3)3]
journal, December 2011

  • Belomestnykh, V. I.; Sveshnikova, L. B.; Mikhailov, Yu. N.
  • Russian Journal of Inorganic Chemistry, Vol. 56, Issue 12
  • DOI: 10.1134/s0036023611120278

Coordination Trends in Alkali Metal Crown Ether Uranyl Halide Complexes:  The Series [A(Crown)] 2 [UO 2 X 4 ] Where A = Li, Na, K and X = Cl, Br
journal, July 2001

  • Danis, Janet A.; Lin, Mavis R.; Scott, Brian L.
  • Inorganic Chemistry, Vol. 40, Issue 14
  • DOI: 10.1021/ic0011056

Quantitative proton affinities, ionization potentials, and hydrogen affinities of alkylamines
journal, January 1976

  • Aue, Donald H.; Webb, Hugh M.; Bowers, Michael T.
  • Journal of the American Chemical Society, Vol. 98, Issue 2
  • DOI: 10.1021/ja00418a001

Rubidium tetranitratodioxouranate(VI), Rb2[UO2(NO3)4]
journal, July 1985

  • Irish, D. E.; Pursel, R.; Taylor, N. J.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 41, Issue 7
  • DOI: 10.1107/s0108270185006382

Crystal structure of uranyl tetranitrates
journal, January 1971

  • Kapshukov, I. I.; Volkov, Yu. F.; Moskvichev, E. P.
  • Journal of Structural Chemistry, Vol. 12, Issue 1
  • DOI: 10.1007/bf00744542

Theoretical Studies of the Properties and Solution Chemistry of AnO 2 2+ and AnO 2 + Aquo Complexes for An = U, Np, and Pu
journal, July 2000

  • Hay, P. Jeffrey; Martin, Richard L.; Schreckenbach, Georg
  • The Journal of Physical Chemistry A, Vol. 104, Issue 26
  • DOI: 10.1021/jp000519h

An interpretation of potential interaction constants in terms of low-lying excited states
journal, March 1960


Matrix Infrared Spectra and Theoretical Studies of Thorium Oxide Species: ThO x and Th 2 O y
journal, December 2011

  • Andrews, Lester; Gong, Yu; Liang, Binyong
  • The Journal of Physical Chemistry A, Vol. 115, Issue 50
  • DOI: 10.1021/jp208926m

Infrared spectra and structure of some matrix‐isolated lanthanide and actinide oxides
journal, February 1974

  • Gabelnick, S. D.; Reedy, G. T.; Chasanov, M. G.
  • The Journal of Chemical Physics, Vol. 60, Issue 3
  • DOI: 10.1063/1.1681128

Prediction of Vibrational Frequencies of UO 2 2+ at the CCSD(T) Level
journal, May 2008

  • Jackson, Virgil E.; Craciun, Raluca; Dixon, David A.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 17
  • DOI: 10.1021/jp710334b

Thermodynamic properties of gas-phase hydrogen-bonded complexes
journal, September 1988


NBO 7.0 : New vistas in localized and delocalized chemical bonding theory
journal, June 2019

  • Glendening, Eric D.; Landis, Clark R.; Weinhold, Frank
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.25873

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
journal, August 1980

  • Vosko, S. H.; Wilk, L.; Nusair, M.
  • Canadian Journal of Physics, Vol. 58, Issue 8
  • DOI: 10.1139/p80-159

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
journal, January 1993

  • Woon, David E.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.464303

Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited
journal, June 2001

  • Dunning, Thom H.; Peterson, Kirk A.; Wilson, Angela K.
  • The Journal of Chemical Physics, Vol. 114, Issue 21
  • DOI: 10.1063/1.1367373

Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide
journal, May 1994

  • Küchle, W.; Dolg, M.; Stoll, H.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466847

Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials
journal, January 2003

  • Cao, Xiaoyan; Dolg, Michael; Stoll, Hermann
  • The Journal of Chemical Physics, Vol. 118, Issue 2
  • DOI: 10.1063/1.1521431

Segmented contraction scheme for small-core actinide pseudopotential basis sets
journal, March 2004


A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples
journal, February 1982

  • Purvis, George D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 76, Issue 4
  • DOI: 10.1063/1.443164

A fifth-order perturbation comparison of electron correlation theories
journal, May 1989


Quantum electrodynamical corrections to the fine structure of helium
journal, January 1974


The generalized Douglas–Kroll transformation
journal, November 2002

  • Wolf, Alexander; Reiher, Markus; Hess, Bernd Artur
  • The Journal of Chemical Physics, Vol. 117, Issue 20
  • DOI: 10.1063/1.1515314

Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets
journal, January 2001

  • de Jong, W. A.; Harrison, R. J.; Dixon, D. A.
  • The Journal of Chemical Physics, Vol. 114, Issue 1
  • DOI: 10.1063/1.1329891

Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
journal, December 2002

  • Peterson, Kirk A.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 117, Issue 23
  • DOI: 10.1063/1.1520138

Reliable Potential Energy Surfaces for the Reactions of H 2 O with ThO 2 , PaO 2 + , UO 2 2+ , and UO 2 +
journal, November 2015

  • Vasiliu, Monica; Peterson, Kirk A.; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpca.5b08618

Correlation consistent basis sets for actinides. I. The Th and U atoms
journal, February 2015

  • Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 142, Issue 7
  • DOI: 10.1063/1.4907596

Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr
journal, August 2017

  • Feng, Rulin; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 147, Issue 8
  • DOI: 10.1063/1.4994725

Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories
journal, September 1994


An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen
journal, June 1988

  • Rittby, Magnus; Bartlett, Rodney J.
  • The Journal of Physical Chemistry, Vol. 92, Issue 11
  • DOI: 10.1021/j100322a004

Coupled cluster theory for high spin, open shell reference wave functions
journal, October 1993

  • Knowles, Peter J.; Hampel, Claudia; Werner, Hans‐Joachim
  • The Journal of Chemical Physics, Vol. 99, Issue 7
  • DOI: 10.1063/1.465990

Molpro: a general-purpose quantum chemistry program package: Molpro
journal, July 2011

  • Werner, Hans-Joachim; Knowles, Peter J.; Knizia, Gerald
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 2
  • DOI: 10.1002/wcms.82