DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation

Abstract

Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to β-lactam antibiotics by producing β-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of b-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen’s production of carbapenem-hydrolyzing class D β-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-β-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with themore » carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections. Carbapenem antibiotics are the drugs of choice for treatment of deadly infections caused by Gram-negative bacteria. However, their efficacy is severely compromised by the wide spread of carbapenem-hydrolyzing class D β-lactamases (CHDLs). The importance of this research is the discovery that substitution of the canonical hydroxyethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens« less

Authors:
 [1];  [1];  [2];  [2];  [2];  [2];  [1];  [2];  [3]; ORCiD logo [1]
  1. University of Notre Dame, IN (United States)
  2. Southern Methodist University, Dallas, TX (United States)
  3. SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); Stanford University, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); University of Notre Dame, IN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER); National Institutes of Health (NIH)
OSTI Identifier:
1903998
Grant/Contract Number:  
1R01AI155723; 1R15AI142699; P41 RR001209
Resource Type:
Accepted Manuscript
Journal Name:
mBio (Online)
Additional Journal Information:
Journal Name: mBio (Online); Journal Volume: 13; Journal Issue: 3; Journal ID: ISSN 2150-7511
Publisher:
American Society for Microbiology (ASM)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; beta-lactamase; OXA-23; Acinetobacter; inhibitor; carbapenem; crystal structure; catalytic mechanism; antibiotic resistance

Citation Formats

Stewart, Nichole K., Toth, Marta, Alqurafi, Maha A., Chai, Weirui, Nguyen, Thu Q., Quan, Pojun, Lee, Mijoon, Buynak, John D., Smith, Clyde A., and Vakulenko, Sergei B. C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation. United States: N. p., 2022. Web. doi:10.1128/mbio.00367-22.
Stewart, Nichole K., Toth, Marta, Alqurafi, Maha A., Chai, Weirui, Nguyen, Thu Q., Quan, Pojun, Lee, Mijoon, Buynak, John D., Smith, Clyde A., & Vakulenko, Sergei B. C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation. United States. https://doi.org/10.1128/mbio.00367-22
Stewart, Nichole K., Toth, Marta, Alqurafi, Maha A., Chai, Weirui, Nguyen, Thu Q., Quan, Pojun, Lee, Mijoon, Buynak, John D., Smith, Clyde A., and Vakulenko, Sergei B. Thu . "C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation". United States. https://doi.org/10.1128/mbio.00367-22. https://www.osti.gov/servlets/purl/1903998.
@article{osti_1903998,
title = {C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation},
author = {Stewart, Nichole K. and Toth, Marta and Alqurafi, Maha A. and Chai, Weirui and Nguyen, Thu Q. and Quan, Pojun and Lee, Mijoon and Buynak, John D. and Smith, Clyde A. and Vakulenko, Sergei B.},
abstractNote = {Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to β-lactam antibiotics by producing β-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of b-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen’s production of carbapenem-hydrolyzing class D β-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-β-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections. Carbapenem antibiotics are the drugs of choice for treatment of deadly infections caused by Gram-negative bacteria. However, their efficacy is severely compromised by the wide spread of carbapenem-hydrolyzing class D β-lactamases (CHDLs). The importance of this research is the discovery that substitution of the canonical hydroxyethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens},
doi = {10.1128/mbio.00367-22},
journal = {mBio (Online)},
number = 3,
volume = 13,
place = {United States},
year = {Thu Apr 14 00:00:00 EDT 2022},
month = {Thu Apr 14 00:00:00 EDT 2022}
}

Works referenced in this record:

Biased Probability Monte Carlo Conformational Searches and Electrostatic Calculations for Peptides and Proteins
journal, January 1994


Colistin-Resistant Acinetobacter Baumannii Bacteremia: A Serious Threat for Critically Ill Patients
journal, February 2020


Mechanistic Basis of OXA-48-like β-Lactamases’ Hydrolysis of Carbapenems
journal, January 2021


Structures of the Class D Carbapenemase OXA-24 from Acinetobacter baumannii in Complex with Doripenem
journal, March 2011

  • Schneider, Kyle D.; Ortega, Caleb J.; Renck, Nicholas A.
  • Journal of Molecular Biology, Vol. 406, Issue 4
  • DOI: 10.1016/j.jmb.2010.12.042

The role of conserved surface hydrophobic residues in the carbapenemase activity of the class D β-lactamases
journal, July 2017

  • Toth, Marta; Smith, Clyde A.; Antunes, Nuno T.
  • Acta Crystallographica Section D Structural Biology, Vol. 73, Issue 8
  • DOI: 10.1107/S2059798317008671

Docking and scoring with ICM: the benchmarking results and strategies for improvement
journal, May 2012

  • Neves, Marco A. C.; Totrov, Maxim; Abagyan, Ruben
  • Journal of Computer-Aided Molecular Design, Vol. 26, Issue 6
  • DOI: 10.1007/s10822-012-9547-0

Critical involvement of a carbamylated lysine in catalytic function of class D  -lactamases
journal, November 2001

  • Golemi, D.; Maveyraud, L.; Vakulenko, S.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 25
  • DOI: 10.1073/pnas.241442898

Kinetic interactions of tazobactam with beta-lactamases from all major structural classes
journal, April 1993

  • Bush, K.; Macalintal, C.; Rasmussen, B. A.
  • Antimicrobial Agents and Chemotherapy, Vol. 37, Issue 4
  • DOI: 10.1128/AAC.37.4.851

A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design
journal, February 2018


Acquired Class D β-Lactamases
journal, August 2014


Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308

Structural Basis for Carbapenemase Activity of the OXA-23 β-Lactamase from Acinetobacter baumannii
journal, September 2013


Three Decades of  -Lactamase Inhibitors
journal, January 2010

  • Drawz, S. M.; Bonomo, R. A.
  • Clinical Microbiology Reviews, Vol. 23, Issue 1
  • DOI: 10.1128/CMR.00037-09

How good are my data and what is the resolution?
journal, June 2013

  • Evans, Philip R.; Murshudov, Garib N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/S0907444913000061

Extended-spectrum β-lactamases: structure and kinetic mechanism
journal, January 2008


Effects of Inactivation of d , d -Transpeptidases of Acinetobacter baumannii on Bacterial Growth and Susceptibility to β-Lactam Antibiotics
journal, January 2022

  • Toth, Marta; Lee, Mijoon; Stewart, Nichole K.
  • Antimicrobial Agents and Chemotherapy, Vol. 66, Issue 1
  • DOI: 10.1128/AAC.01729-21

Substrate-induced inactivation of the OXA2 β-lactamase
journal, November 1993

  • Ledent, P.; Frère, J. M.
  • Biochemical Journal, Vol. 295, Issue 3
  • DOI: 10.1042/bj2950871

Atypically Modified Carbapenem Antibiotics Display Improved Antimycobacterial Activity in the Absence of β-Lactamase Inhibitors
journal, June 2021

  • Gupta, Rashmi; Al-Kharji, Noora M. S. A.; Alqurafi, Maha A.
  • ACS Infectious Diseases, Vol. 7, Issue 8
  • DOI: 10.1021/acsinfecdis.1c00185

Synthesis and antibacterial activity of some novel 6-methyl- and 6-propenyl-substituted carbapenems
journal, March 1992

  • Mastalerz, Harold; Menard, Marcel; Ruediger, Edward
  • Journal of Medicinal Chemistry, Vol. 35, Issue 5
  • DOI: 10.1021/jm00083a022

Role of the Hydrophobic Bridge in the Carbapenemase Activity of Class D β-Lactamases
journal, December 2018

  • Stewart, Nichole K.; Smith, Clyde A.; Antunes, Nuno T.
  • Antimicrobial Agents and Chemotherapy, Vol. 63, Issue 2
  • DOI: 10.1128/AAC.02191-18

Acinetobacter baumannii Infections in Times of COVID-19 Pandemic
journal, August 2021

  • Rangel, Karyne; Chagas, Thiago Pavoni Gomes; De-Simone, Salvatore Giovanni
  • Pathogens, Vol. 10, Issue 8
  • DOI: 10.3390/pathogens10081006

Conformational Intermediate That Controls KPC-2 Catalysis and Beta-Lactam Drug Resistance
journal, February 2018


XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Synthetic Carbapenem Antibiotics. I. 1-b-Methylcarbapenem
journal, January 1984


Structural Insights into the Mechanism of Carbapenemase Activity of the OXA-48 β-Lactamase
journal, October 2019

  • Smith, Clyde A.; Stewart, Nichole K.; Toth, Marta
  • Antimicrobial Agents and Chemotherapy, Vol. 63, Issue 10
  • DOI: 10.1128/AAC.01202-19

Northienamycin and 8-epi-thienamycin, new carbapenems from Streptomyces cattleya.
journal, January 1983

  • Wilson, Kenneth E.; Kempf, August J.; Liesch, Jerrold M.
  • The Journal of Antibiotics, Vol. 36, Issue 9
  • DOI: 10.7164/antibiotics.36.1109

Nosé–Hoover chains: The canonical ensemble via continuous dynamics
journal, August 1992

  • Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463940

Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge by the Common Class A β-Lactamases from the Antibiotic-Resistant Bacteria
journal, September 1998

  • Maveyraud, Laurent; Mourey, Lionel; Kotra, Lakshmi P.
  • Journal of the American Chemical Society, Vol. 120, Issue 38
  • DOI: 10.1021/ja9818001

Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients
journal, November 2020


Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Inhibition of Class A β-Lactamases by Carbapenems: Crystallographic Observation of Two Conformations of Meropenem in SHV-1
journal, September 2008

  • Nukaga, Michiyosi; Bethel, Christopher R.; Thomson, Jodi M.
  • Journal of the American Chemical Society, Vol. 130, Issue 38
  • DOI: 10.1021/ja7111146

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

ICM?A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation
journal, May 1994

  • Abagyan, Ruben; Totrov, Maxim; Kuznetsov, Dmitry
  • Journal of Computational Chemistry, Vol. 15, Issue 5
  • DOI: 10.1002/jcc.540150503

Molecular dynamics---Scalable algorithms for molecular dynamics simulations on commodity clusters
conference, January 2006

  • Bowers, Kevin J.; Sacerdoti, Federico D.; Salmon, John K.
  • Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC '06
  • DOI: 10.1145/1188455.1188544

Analysis of β-lactone formation by clinically observed carbapenemases informs on a novel antibiotic resistance mechanism
journal, December 2020

  • Aertker, Kristina M. J.; Chan, H. T. Henry; Lohans, Christopher T.
  • Journal of Biological Chemistry, Vol. 295, Issue 49
  • DOI: 10.1074/jbc.RA120.014607

Simulation of activation free energies in molecular systems
journal, August 1996

  • Neria, Eyal; Fischer, Stefan; Karplus, Martin
  • The Journal of Chemical Physics, Vol. 105, Issue 5
  • DOI: 10.1063/1.472061

Attributable mortality of Acinetobacter baumannii: no longer a controversial issue
journal, January 2007

  • Falagas, Matthew E.; Rafailidis, Petros I.
  • Critical Care, Vol. 11, Issue 3
  • DOI: 10.1186/cc5911

The structure of a doripenem-bound OXA-51 class D β-lactamase variant with enhanced carbapenemase activity: Structure of OXA-51 I129L with Doripenem Bound
journal, September 2016

  • June, Cynthia M.; Muckenthaler, Taylor J.; Schroder, Emma C.
  • Protein Science, Vol. 25, Issue 12
  • DOI: 10.1002/pro.3040

Multiple substitutions lead to increased loop flexibility and expanded specificity in Acinetobacter baumannii carbapenemase OXA-239
journal, January 2018

  • Harper, Thomas M.; June, Cynthia M.; Taracila, Magdalena A.
  • Biochemical Journal, Vol. 475, Issue 1
  • DOI: 10.1042/BCJ20170702

OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules
journal, January 2019

  • Roos, Katarina; Wu, Chuanjie; Damm, Wolfgang
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 3
  • DOI: 10.1021/acs.jctc.8b01026

Antibiotic Resistance and Substrate Profiles of the Class A Carbapenemase KPC-6
journal, August 2012

  • Lamoureaux, Toni L.; Frase, Hilary; Antunes, Nuno T.
  • Antimicrobial Agents and Chemotherapy, Vol. 56, Issue 11
  • DOI: 10.1128/AAC.01338-12

Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network meta-analysis
journal, October 2017

  • Kengkla, Kirati; Kongpakwattana, Khachen; Saokaew, Surasak
  • Journal of Antimicrobial Chemotherapy, Vol. 73, Issue 1
  • DOI: 10.1093/jac/dkx368

Kinetic and Structural Requirements for Carbapenemase Activity in GES-Type β-Lactamases
journal, December 2014

  • Stewart, Nichole K.; Smith, Clyde A.; Frase, Hilary
  • Biochemistry, Vol. 54, Issue 2
  • DOI: 10.1021/bi501052t

KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate
journal, January 2021

  • Mehta, Shrenik C.; Furey, Ian M.; Pemberton, Orville A.
  • Journal of Biological Chemistry, Vol. 296
  • DOI: 10.1074/jbc.RA120.015050

An Amino Acid Position at Crossroads of Evolution of Protein Function
journal, March 2012

  • Kumarasiri, Malika; Llarrull, Leticia I.; Borbulevych, Oleg
  • Journal of Biological Chemistry, Vol. 287, Issue 11
  • DOI: 10.1074/jbc.M111.333179

Class D β-Lactamases: Are They All Carbapenemases?
journal, January 2014

  • Antunes, Nuno T.; Lamoureaux, Toni L.; Toth, Marta
  • Antimicrobial Agents and Chemotherapy, Vol. 58, Issue 4
  • DOI: 10.1128/AAC.02522-13

MOLREP an Automated Program for Molecular Replacement
journal, December 1997


Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies
journal, March 2012

  • Cai, Y.; Chai, D.; Wang, R.
  • Journal of Antimicrobial Chemotherapy, Vol. 67, Issue 7
  • DOI: 10.1093/jac/dks084

The kinetics of substrate-induced inactivation
journal, October 1991


Mechanistic Basis for the Emergence of Catalytic Competence against Carbapenem Antibiotics by the GES Family of β-Lactamases
journal, October 2009

  • Frase, Hilary; Shi, Qicun; Testero, Sebastian A.
  • Journal of Biological Chemistry, Vol. 284, Issue 43
  • DOI: 10.1074/jbc.M109.011262

A Triple Mutant in the Ω-loop of TEM-1 β-Lactamase Changes the Substrate Profile via a Large Conformational Change and an Altered General Base for Catalysis
journal, February 2015

  • Stojanoski, Vlatko; Chow, Dar-Chone; Hu, Liya
  • Journal of Biological Chemistry, Vol. 290, Issue 16
  • DOI: 10.1074/jbc.M114.633438

Biocide resistance in Acinetobacter baumannii: appraising the mechanisms
journal, November 2021


Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review
journal, September 2021

  • Gedefie, Alemu; Demsiss, Wondmagegn; Belete, Melaku Ashagrie
  • Infection and Drug Resistance, Vol. Volume 14
  • DOI: 10.2147/IDR.S332051

Genetic Mechanisms of Antimicrobial Resistance of Acinetobacter Baumannii
journal, February 2011

  • Esterly, John S.; Richardson, Chad L.; Eltoukhy, Noha S.
  • Annals of Pharmacotherapy, Vol. 45, Issue 2
  • DOI: 10.1345/aph.1P084

A New Mechanism for β-Lactamases: Class D Enzymes Degrade 1β-Methyl Carbapenems through Lactone Formation
journal, January 2018

  • Lohans, Christopher T.; van Groesen, Emma; Kumar, Kiran
  • Angewandte Chemie International Edition, Vol. 57, Issue 5
  • DOI: 10.1002/anie.201711308