DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure

Abstract

Realizing a tubular conduction channel within a one-dimensional core–shell nanowire (NW) enables better understanding of quantum phenomena and exploration of electronic device applications. Herein, we report the growth of a SiGe(P)/Si core/shell NW heterostructure using a chemical vapor deposition coupled with vapor–liquid–solid growth mechanism. The entire NW heterostructure behaves as a p-type semiconductor, which demonstrates that the high-density carriers are confined within the 4 nm-thick Si shell and form a tubular conduction channel. These findings are confirmed by both calculations and the gate-dependent current–voltage ( I d – V g ) characteristics. Atomic resolution microscopic analyses suggest a coherent epitaxial core/shell interface where strain is released by forming dislocations along the axial direction of the NW heterostructure. Additional surface passivation achieved via growing a SiGe(P)/Si/SiGe core/multishell NW heterostructure suggests potential strategies to enhance the tubular carrier density, which could be further modified by improving multishell crystallinity and structural design.

Authors:
ORCiD logo [1];  [1];  [2];  [3]; ORCiD logo [4];  [1]; ORCiD logo [4];  [1]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. National Taiwan Univ., Taipei (Taiwan)
  3. Nanyang Technological Univ. (Singapore)
  4. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  5. National Taiwan Univ., Taipei (Taiwan); Taiwan Semiconductor Research Institute (Taiwan)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA); Ministry of Science and Technology; National Taiwan University
OSTI Identifier:
1898359
Alternate Identifier(s):
OSTI ID: 1897335
Report Number(s):
LA-UR-22-21355
Journal ID: ISSN 2166-532X; TRN: US2311066
Grant/Contract Number:  
89233218CNA000001; 20200672DI; NA0003525; 110-2622-8-002-014
Resource Type:
Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 10; Journal Issue: 11; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Materials science

Citation Formats

Wang, Xuejing, Lin, Yung-Chen, Tai, Chia-Tse, Lee, Seok Woo, Lu, Tzu-Ming, Shin, Sun Ra, Addamane, Sadhvikas J., Sheehan, Chris, Li, Jiun-Yun, Kim, Yerim, and Yoo, Jinkyoung. Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure. United States: N. p., 2022. Web. doi:10.1063/5.0119654.
Wang, Xuejing, Lin, Yung-Chen, Tai, Chia-Tse, Lee, Seok Woo, Lu, Tzu-Ming, Shin, Sun Ra, Addamane, Sadhvikas J., Sheehan, Chris, Li, Jiun-Yun, Kim, Yerim, & Yoo, Jinkyoung. Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure. United States. https://doi.org/10.1063/5.0119654
Wang, Xuejing, Lin, Yung-Chen, Tai, Chia-Tse, Lee, Seok Woo, Lu, Tzu-Ming, Shin, Sun Ra, Addamane, Sadhvikas J., Sheehan, Chris, Li, Jiun-Yun, Kim, Yerim, and Yoo, Jinkyoung. Tue . "Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure". United States. https://doi.org/10.1063/5.0119654. https://www.osti.gov/servlets/purl/1898359.
@article{osti_1898359,
title = {Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure},
author = {Wang, Xuejing and Lin, Yung-Chen and Tai, Chia-Tse and Lee, Seok Woo and Lu, Tzu-Ming and Shin, Sun Ra and Addamane, Sadhvikas J. and Sheehan, Chris and Li, Jiun-Yun and Kim, Yerim and Yoo, Jinkyoung},
abstractNote = {Realizing a tubular conduction channel within a one-dimensional core–shell nanowire (NW) enables better understanding of quantum phenomena and exploration of electronic device applications. Herein, we report the growth of a SiGe(P)/Si core/shell NW heterostructure using a chemical vapor deposition coupled with vapor–liquid–solid growth mechanism. The entire NW heterostructure behaves as a p-type semiconductor, which demonstrates that the high-density carriers are confined within the 4 nm-thick Si shell and form a tubular conduction channel. These findings are confirmed by both calculations and the gate-dependent current–voltage ( I d – V g ) characteristics. Atomic resolution microscopic analyses suggest a coherent epitaxial core/shell interface where strain is released by forming dislocations along the axial direction of the NW heterostructure. Additional surface passivation achieved via growing a SiGe(P)/Si/SiGe core/multishell NW heterostructure suggests potential strategies to enhance the tubular carrier density, which could be further modified by improving multishell crystallinity and structural design.},
doi = {10.1063/5.0119654},
journal = {APL Materials},
number = 11,
volume = 10,
place = {United States},
year = {Tue Nov 08 00:00:00 EST 2022},
month = {Tue Nov 08 00:00:00 EST 2022}
}

Works referenced in this record:

Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on SixGe1–xNanowires
journal, December 2017


Composition-Tuned ZnO−CdSSe Core−Shell Nanowire Arrays
journal, June 2010

  • Myung, Yoon; Jang, Dong Myung; Sung, Tae Kwang
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn100684q

Germanium Nanowires and Core−Shell Nanostructures by Chemical Vapor Deposition of [Ge(C5H5)2]
journal, May 2004

  • Mathur, Sanjay; Shen, Hao; Sivakov, Vladimir
  • Chemistry of Materials, Vol. 16, Issue 12
  • DOI: 10.1021/cm031175l

Epitaxial core–shell and core–multishell nanowire heterostructures
journal, November 2002

  • Lauhon, Lincoln J.; Gudiksen, Mark S.; Wang, Deli
  • Nature, Vol. 420, Issue 6911, p. 57-61
  • DOI: 10.1038/nature01141

Hole gas accumulation in Si/Ge core–shell and Si/Ge/Si core–double shell nanowires
journal, January 2018

  • Zhang, Xiaolong; Jevasuwan, Wipakorn; Pradel, Ken C.
  • Nanoscale, Vol. 10, Issue 45
  • DOI: 10.1039/c8nr05590d

How Can Si/Ge Core/Shell Nanowires Outperform Their Pure Material Counterparts?
journal, March 2020

  • Lv, Yawei; Wang, Jiawei; Yang, Guanhua
  • IEEE Transactions on Electron Devices, Vol. 67, Issue 3
  • DOI: 10.1109/ted.2020.2966583

Advanced core/multishell germanium/silicon nanowire heterostructures: The Au-diffusion bottleneck
journal, July 2011

  • Dayeh, Shadi A.; Mack, Nathan H.; Huang, Jian Yu
  • Applied Physics Letters, Vol. 99, Issue 2
  • DOI: 10.1063/1.3567932

Direct Measurement of Coherency Limits for Strain Relaxation in Heteroepitaxial Core/Shell Nanowires
journal, October 2012

  • Dayeh, Shadi A.; Tang, Wei; Boioli, Francesca
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl3022434

Majorana states in prismatic core-shell nanowires
journal, September 2017


Misleading fringes in TEM images and diffraction patterns of Si nanocrystallites
journal, November 2003

  • Kohno, Hideo; Ozaki, Nobuhiko; Yoshida, Hideto
  • Crystal Research and Technology, Vol. 38, Issue 12
  • DOI: 10.1002/crat.200310140

Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins
journal, January 2009

  • Cayron, Cyril; Den Hertog, Martien; Latu-Romain, Laurence
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/s0021889808042131

Selective functionalization and loading of biomolecules in crystalline silicon nanotube field-effect-transistors
journal, January 2014

  • Kwon, Soonshin; Chen, Zack C. Y.; Noh, Hyunwoo
  • Nanoscale, Vol. 6, Issue 14
  • DOI: 10.1039/c4nr01508h

Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires
journal, January 2014


Enhanced spin–orbit coupling in core/shell nanowires
journal, August 2016

  • Furthmeier, Stephan; Dirnberger, Florian; Gmitra, Martin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12413

Resistivity and surface states density of n- and p-type silicon nanowires
journal, January 2008

  • Vaurette, F.; Nys, J. P.; Deresmes, D.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 3
  • DOI: 10.1116/1.2908438

Strong spin-orbit interaction and g -factor renormalization of hole spins in Ge/Si nanowire quantum dots
journal, January 2021


Compositional Varied Core–Shell InGaP Nanowires Grown by Metal–Organic Chemical Vapor Deposition
journal, May 2019


Interface Charge Induced p-Type Characteristics of Aligned Si 1− x Ge x Nanowires
journal, November 2008

  • Seong, Han-Kyu; Jeon, Eun-Kyoung; Kim, Myoung-Ha
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl8016362

Extraction of Doping Concentration and Interface State Density in Silicon Nanowires
journal, September 2011

  • Park, Jong Tae; Kim, Jin Young; Islam, M. Saif
  • IEEE Transactions on Nanotechnology, Vol. 10, Issue 5
  • DOI: 10.1109/tnano.2010.2094203

Carrier Mobility Enhancement of Tensile Strained Si and SiGe Nanowires via Surface Defect Engineering
journal, October 2015


Photogating in Low Dimensional Photodetectors
journal, October 2017


Advanced core/multishell germanium/silicon nanowire heterostructures: Morphology and transport
journal, April 2011

  • Dayeh, S. A.; Gin, A. V.; Picraux, S. T.
  • Applied Physics Letters, Vol. 98, Issue 16
  • DOI: 10.1063/1.3574537

Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion
journal, January 2009

  • Tak, Youngjo; Hong, Suk Joon; Lee, Jae Sung
  • Journal of Materials Chemistry, Vol. 19, Issue 33
  • DOI: 10.1039/b904993b

Silicon–Germanium Nanowires: Chemistry and Physics in Play, from Basic Principles to Advanced Applications
journal, November 2013

  • Amato, Michele; Palummo, Maurizia; Rurali, Riccardo
  • Chemical Reviews, Vol. 114, Issue 2
  • DOI: 10.1021/cr400261y

InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices
journal, October 2007

  • Jiang, Xiaocheng; Xiong, Qihua; Nam, Sungwoo
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl072024a

Tailoring Strain and Morphology of Core–Shell SiGe Nanowires by Low-Temperature Ge Condensation
journal, November 2017


Thermal Stability and Surface Passivation of Ge Nanowires Coated by Epitaxial SiGe Shells
journal, February 2012

  • Hu, Shu; Kawamura, Yoko; Huang, Kevin C. Y.
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl204053w

Quantum‐Confinement‐Enhanced Thermoelectric Properties in Modulation‐Doped GaAs–AlGaAs Core–Shell Nanowires
journal, December 2019

  • Fust, Sergej; Faustmann, Anton; Carrad, Damon J.
  • Advanced Materials, Vol. 32, Issue 4
  • DOI: 10.1002/adma.201905458

Epitaxial Pb on InAs nanowires for quantum devices
journal, May 2021


Gate Coupling and Charge Distribution in Nanowire Field Effect Transistors
journal, August 2007


Quantum Interference in Radial Heterostructure Nanowires
journal, September 2008

  • Jung, Minkyung; Lee, Joon Sung; Song, Woon
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl801506w

Conduction channels of an InAs-Al nanowire Josephson weak link
journal, September 2017


Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors
journal, July 2011

  • Tang, Jianshi; Wang, Chiu-Yen; Xiu, Faxian
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn2017777

Bicrystalline Silicon Nanowires
journal, September 2001


Facet-Selective Nucleation and Conformal Epitaxy of Ge Shells on Si Nanowires
journal, October 2015


Asymmetric strain relaxation in patterned SiGe layers: A means to enhance carrier mobilities in Si cap layers
journal, January 2007

  • Buca, D.; Holländer, B.; Feste, S.
  • Applied Physics Letters, Vol. 90, Issue 3
  • DOI: 10.1063/1.2431702

Novel Type-II InAs/AlSb Core-Shell Nanowires and Their Enhanced Negative Photocurrent for Efficient Photodetection
journal, December 2017

  • Li, Handong; Alradhi, Hayfaa; Jin, Zhiming
  • Advanced Functional Materials, Vol. 28, Issue 8
  • DOI: 10.1002/adfm.201705382

Coherently Strained Si–SixGe1–x Core–Shell Nanowire Heterostructures
journal, November 2015


Surface States on Silicon and Germanium Surfaces
journal, February 1956


Synthesis and Applications of III–V Nanowires
journal, August 2019


Significant Enhancement of Hole Mobility in [110] Silicon Nanowires Compared to Electrons and Bulk Silicon
journal, January 2008

  • Buin, A. K.; Verma, A.; Svizhenko, A.
  • Nano Letters, Vol. 8, Issue 2
  • DOI: 10.1021/nl0727314

Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core–Shell and Si/Ge/Si Core−Double Shell Nanowires
journal, October 2019

  • Zhang, Xiaolong; Jevasuwan, Wipakorn; Sugimoto, Yoshimasa
  • ACS Nano, Vol. 13, Issue 11
  • DOI: 10.1021/acsnano.9b06821