DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction

Abstract

Here, the response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of ~80 GPa. Ultrafast x-ray diffraction using ~100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [1];  [3]; ORCiD logo [1];  [4];  [1];  [3];  [5];  [3];  [3]; ORCiD logo [6];  [7];  [8];  [1]; ORCiD logo [3] more »; ORCiD logo [4]; ORCiD logo [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. University of Nevada, Las Vegas, NV (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Carnegie Institute of Science, Washington, DC (United States)
  5. University of Potsdam (Germany)
  6. Argonne National Lab. (ANL), Argonne, IL (United States)
  7. University of Freiburg (Germany)
  8. Stanford University, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Laboratory Directed Research and Development (LDRD) Program; Defense Threat Reduction Agency (DTRA); US Army Research Office (ARO); Carnegie Institution of Washington; National Science Foundation (NSF); USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1886935
Alternate Identifier(s):
OSTI ID: 1879254; OSTI ID: 1891225
Report Number(s):
LLNL-JRNL-822386
Journal ID: ISSN 0021-8979; TRN: US2309743
Grant/Contract Number:  
AC02-76SF00515; AC52-07NA27344; SF00515; HDTRA1-16-1-0020; HDTRA1-20-2-0001; 56122-CH-H; 71650-CH W911NF-19-2-0172; EAR-1634415; FG02-94ER14466; 16-ERD-037; DEFG02-94ER14466
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 132; Journal Issue: 5; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; shock compression; shock waves; ultrafast x-ray diffraction; lasers; wave mechanics; phase transitions; crystal structure; carbon based materials; hydrodynamics simulations; diamond; Physics - Solid state physics, Materials science, Physics - Condensed matter physics, Chemistry; solid state physics; condensed matter physics; chemistry

Citation Formats

Armstrong, Michael R., Radousky, Harry B., Austin, Ryan A., Tschauner, Oliver, Brown, Shaughnessy, Gleason, Arianna E., Goldman, Nir, Granados, Eduardo, Grivickas, Paulius, Holtgrewe, Nicholas, Kroonblawd, Matthew P., Lee, Hae Ja, Lobanov, Sergey, Nagler, Bob, Nam, Inhyuk, Prakapenka, Vitali, Prescher, Clemens, Reed, Evan J., Stavrou, Elissaios, Walter, Peter, Goncharov, Alexander F., and Belof, Jonathan L. Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction. United States: N. p., 2022. Web. doi:10.1063/5.0085297.
Armstrong, Michael R., Radousky, Harry B., Austin, Ryan A., Tschauner, Oliver, Brown, Shaughnessy, Gleason, Arianna E., Goldman, Nir, Granados, Eduardo, Grivickas, Paulius, Holtgrewe, Nicholas, Kroonblawd, Matthew P., Lee, Hae Ja, Lobanov, Sergey, Nagler, Bob, Nam, Inhyuk, Prakapenka, Vitali, Prescher, Clemens, Reed, Evan J., Stavrou, Elissaios, Walter, Peter, Goncharov, Alexander F., & Belof, Jonathan L. Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction. United States. https://doi.org/10.1063/5.0085297
Armstrong, Michael R., Radousky, Harry B., Austin, Ryan A., Tschauner, Oliver, Brown, Shaughnessy, Gleason, Arianna E., Goldman, Nir, Granados, Eduardo, Grivickas, Paulius, Holtgrewe, Nicholas, Kroonblawd, Matthew P., Lee, Hae Ja, Lobanov, Sergey, Nagler, Bob, Nam, Inhyuk, Prakapenka, Vitali, Prescher, Clemens, Reed, Evan J., Stavrou, Elissaios, Walter, Peter, Goncharov, Alexander F., and Belof, Jonathan L. Mon . "Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction". United States. https://doi.org/10.1063/5.0085297. https://www.osti.gov/servlets/purl/1886935.
@article{osti_1886935,
title = {Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction},
author = {Armstrong, Michael R. and Radousky, Harry B. and Austin, Ryan A. and Tschauner, Oliver and Brown, Shaughnessy and Gleason, Arianna E. and Goldman, Nir and Granados, Eduardo and Grivickas, Paulius and Holtgrewe, Nicholas and Kroonblawd, Matthew P. and Lee, Hae Ja and Lobanov, Sergey and Nagler, Bob and Nam, Inhyuk and Prakapenka, Vitali and Prescher, Clemens and Reed, Evan J. and Stavrou, Elissaios and Walter, Peter and Goncharov, Alexander F. and Belof, Jonathan L.},
abstractNote = {Here, the response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of ~80 GPa. Ultrafast x-ray diffraction using ~100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events.},
doi = {10.1063/5.0085297},
journal = {Journal of Applied Physics},
number = 5,
volume = 132,
place = {United States},
year = {Mon Aug 01 00:00:00 EDT 2022},
month = {Mon Aug 01 00:00:00 EDT 2022}
}

Works referenced in this record:

HOPG as powerful x-ray optics
journal, January 2003

  • Grigorieva, I. G.; Antonov, A. A.
  • X-Ray Spectrometry, Vol. 32, Issue 1
  • DOI: 10.1002/xrs.617

Pressure-Induced Transformation Path of Graphite to Diamond
journal, May 1995


Impact shock origin of diamonds in ureilite meteorites
journal, September 2020

  • Nestola, Fabrizio; Goodrich, Cyrena A.; Morana, Marta
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 41
  • DOI: 10.1073/pnas.1919067117

The α→ϵ phase transition in iron at strain rates up to ∼10 9  s −1
journal, March 2014

  • Crowhurst, Jonathan C.; Reed, Bryan W.; Armstrong, Michael R.
  • Journal of Applied Physics, Vol. 115, Issue 11
  • DOI: 10.1063/1.4868676

Communication: From graphite to diamond: Reaction pathways of the phase transition
journal, September 2012

  • Xiao, Penghao; Henkelman, Graeme
  • The Journal of Chemical Physics, Vol. 137, Issue 10
  • DOI: 10.1063/1.4752249

Elastic moduli of hexagonal diamond and cubic diamond formed under shock compression
journal, March 2021


Sub-100 ps laser-driven dynamic compression of solid deuterium with a ∼40  μ J laser pulse
journal, July 2014

  • Armstrong, Michael R.; Crowhurst, Jonathan C.; Bastea, Sorin
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4890087

Mechanochemical formation of heterogeneous diamond structures during rapid uniaxial compression in graphite
journal, May 2018


Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
journal, March 2016

  • Kraus, D.; Ravasio, A.; Gauthier, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10970

Molecular Dynamics Simulations of Shock Compressed Graphite
journal, June 2013

  • Pineau, Nicolas
  • The Journal of Physical Chemistry C, Vol. 117, Issue 24
  • DOI: 10.1021/jp403568m

Time resolved x-ray diffraction in shock compressed systems
journal, January 2021

  • Radousky, H. B.; Armstrong, M. R.; Goldman, N.
  • Journal of Applied Physics, Vol. 129, Issue 4
  • DOI: 10.1063/5.0034929

Structural transformations in carbon under extreme pressure: Beyond diamond
journal, May 2009

  • Sun, Jian; Klug, Dennis D.; Martoňák, Roman
  • The Journal of Chemical Physics, Vol. 130, Issue 19
  • DOI: 10.1063/1.3139060

Mechanochemistry
journal, October 1996


Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses
journal, October 2010


Giant dielectric permittivity of detonation-produced nanodiamond is caused by water
journal, January 2012

  • Batsanov, Stepan S.; Gavrilkin, Sergei M.; Batsanov, Andrei S.
  • Journal of Materials Chemistry, Vol. 22, Issue 22
  • DOI: 10.1039/c2jm30836c

DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Evidence of superdense aluminium synthesized by ultrafast microexplosion
journal, August 2011

  • Vailionis, Arturas; Gamaly, Eugene G.; Mizeikis, Vygantas
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1449

Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter
journal, October 2013


Ultrashort shock waves in nickel induced by femtosecond laser pulses
journal, February 2013


The elastic-plastic response of aluminum films to ultrafast laser-generated shocks
journal, January 2011

  • Whitley, V. H.; McGrane, S. D.; Eakins, D. E.
  • Journal of Applied Physics, Vol. 109, Issue 1
  • DOI: 10.1063/1.3506696

The properties and applications of nanodiamonds
journal, December 2011

  • Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.209

Reconstructive transitions between ordered phases: The martensitic fcc-hcp and the graphite-diamond transitions
journal, May 1989


Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments
journal, July 2009

  • Kennett, D. J.; Kennett, J. P.; West, A.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 31
  • DOI: 10.1073/pnas.0906374106

Detonation-induced transformation of graphite to hexagonal diamond
journal, September 2020


The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond
journal, February 2012

  • Kurdyumov, A. V.; Britun, V. F.; Yarosh, V. V.
  • Journal of Superhard Materials, Vol. 34, Issue 1
  • DOI: 10.3103/S1063457612010029

Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression
journal, May 2008

  • Mundy, Christopher J.; Curioni, Alessandro; Goldman, Nir
  • The Journal of Chemical Physics, Vol. 128, Issue 18
  • DOI: 10.1063/1.2913201

Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM
journal, March 2013


Invariance of the Dissipative Action at Ultrahigh Strain Rates Above the Strong Shock Threshold
journal, September 2011


Shock Induced Reaction Observed via Ultrafast Infrared Absorption in Poly(vinyl nitrate) Films
journal, October 2004

  • McGrane, S. D.; Moore, D. S.; Funk, D. J.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 43
  • DOI: 10.1021/jp048464x

Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide
journal, October 2013

  • Armstrong, Michael R.; Zaug, Joseph M.; Goldman, Nir
  • The Journal of Physical Chemistry A, Vol. 117, Issue 49
  • DOI: 10.1021/jp407595u

Carbon at pressures in the range 0.1–1 TPa (10 Mbar)
journal, July 2001

  • Nellis, W. J.; Mitchell, A. C.; McMahan, A. K.
  • Journal of Applied Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.1381047

Two-Zone Elastic-Plastic Single Shock Waves in Solids
journal, September 2011


Diffusionless Nucleation of Lonsdaleite and Diamond in Hexagonal Graphite under Static Compression
journal, January 2004

  • Britun, Viktor F.; Kurdyumov, Alexander V.; Petrusha dep20@ipms. kiev. ua, Igor A.
  • Powder Metallurgy and Metal Ceramics, Vol. 43, Issue 1/2
  • DOI: 10.1023/B:PMMC.0000028276.63784.8e

Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material
journal, November 2014

  • Németh, Péter; Garvie, Laurence A. J.; Aoki, Toshihiro
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6447

Mechanism for direct graphite-to-diamond phase transition
journal, August 2014

  • Xie, Hongxian; Yin, Fuxing; Yu, Tao
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05930

Probing the Complex Ion Structure in Liquid Carbon at 100 GPa
journal, December 2013


Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations
journal, January 2012


Shock-induced martensitic phase transformation of oriented graphite to diamond
journal, January 1991

  • Erskine, D. J.; Nellis, W. J.
  • Nature, Vol. 349, Issue 6307
  • DOI: 10.1038/349317a0

A Revisited Mechanism of the Graphite-to-Diamond Transition at High Temperature
journal, September 2020


Nanodiamond: A high impact nanomaterial
journal, February 2017

  • Nunn, Nicholas; Torelli, Marco; McGuire, Gary
  • Current Opinion in Solid State and Materials Science, Vol. 21, Issue 1
  • DOI: 10.1016/j.cossms.2016.06.008

Extreme Physics
book, November 2013


Shock‐induced martensitic transformation of highly oriented graphite to diamond
journal, May 1992

  • Erskine, David J.; Nellis, William J.
  • Journal of Applied Physics, Vol. 71, Issue 10
  • DOI: 10.1063/1.350633

Observation of Fundamental Mechanisms in Compression-Induced Phase Transformations Using Ultrafast X-ray Diffraction
journal, January 2021


Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
journal, October 2017

  • Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.
  • Science Advances, Vol. 3, Issue 10
  • DOI: 10.1126/sciadv.aao3561

POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns
journal, June 1996


Lonsdaleite, a Hexagonal Polymorph of Diamond
journal, May 1967

  • Frondel, Clifford; Marvin, Ursula B.
  • Nature, Vol. 214, Issue 5088
  • DOI: 10.1038/214587a0

Melting and refreezing of zirconium observed using ultrafast x-ray diffraction
journal, February 2020


X-ray Thomson scattering on shocked graphite
journal, March 2012


Carbon Phase Diagram from Ab Initio Molecular Dynamics
journal, October 2005


Chemical reactions at detonation fronts in solids
journal, June 1995


The equilibrium boundary between graphite and diamond
journal, May 1976

  • Kennedy, C. Scott; Kennedy, George C.
  • Journal of Geophysical Research, Vol. 81, Issue 14
  • DOI: 10.1029/JB081i014p02467