DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique

Abstract

Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure—Bi2Te3/Ni80Fe20 because of diffusion of Ni in Bi2Te3 (Ni-Bi2Te3). The AFM property of the Ni-Bi2Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni=Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2Te4 in the Ni-Bi2Te3 interface layer. The Neél temperature of the Ni-Bi2Te3 layer is ≈ 63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantummore » devices.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [3];  [1]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Northeastern University, Boston, MA (United States)
  2. Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Tata Institute of Fundamental Research, Mumbai (India)
  5. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Army; National Institutes of Health (NIH); National Science Foundation (NSF); US Air Force Office of Scientific Research (AFOSR); Air Force Research Laboratory (AFRL)
OSTI Identifier:
1883675
Grant/Contract Number:  
AC05-00OR22725; W911NF20P0009; UF1NS107694; 1160504; DMR-1905662; FA9550-20-1-0247; SC0019275; FG02-07ER46352; AC02-05CH11231; FA8650-19-F-5403 TO3; FA8650-18-2-5295
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 34; Journal Issue: 15; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; topological Insulator; ferromagnet; magnetic topological insulator; interface; van der Waals materials

Citation Formats

Bhattacharjee, Nirjhar, Mahalingam, Krishnamurthy, Fedorko, Adrian, Lauter, Valeria, Matzelle, Matthew, Singh, Bahadur, Grutter, Alexander, Will‐Cole, Alexandria, Page, Michael, McConney, Michael, Markiewicz, Robert, Bansil, Arun, Heiman, Don, and Sun, Nian Xiang. Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique. United States: N. p., 2022. Web. doi:10.1002/adma.202108790.
Bhattacharjee, Nirjhar, Mahalingam, Krishnamurthy, Fedorko, Adrian, Lauter, Valeria, Matzelle, Matthew, Singh, Bahadur, Grutter, Alexander, Will‐Cole, Alexandria, Page, Michael, McConney, Michael, Markiewicz, Robert, Bansil, Arun, Heiman, Don, & Sun, Nian Xiang. Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique. United States. https://doi.org/10.1002/adma.202108790
Bhattacharjee, Nirjhar, Mahalingam, Krishnamurthy, Fedorko, Adrian, Lauter, Valeria, Matzelle, Matthew, Singh, Bahadur, Grutter, Alexander, Will‐Cole, Alexandria, Page, Michael, McConney, Michael, Markiewicz, Robert, Bansil, Arun, Heiman, Don, and Sun, Nian Xiang. Tue . "Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique". United States. https://doi.org/10.1002/adma.202108790. https://www.osti.gov/servlets/purl/1883675.
@article{osti_1883675,
title = {Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique},
author = {Bhattacharjee, Nirjhar and Mahalingam, Krishnamurthy and Fedorko, Adrian and Lauter, Valeria and Matzelle, Matthew and Singh, Bahadur and Grutter, Alexander and Will‐Cole, Alexandria and Page, Michael and McConney, Michael and Markiewicz, Robert and Bansil, Arun and Heiman, Don and Sun, Nian Xiang},
abstractNote = {Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure—Bi2Te3/Ni80Fe20 because of diffusion of Ni in Bi2Te3 (Ni-Bi2Te3). The AFM property of the Ni-Bi2Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni=Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2Te4 in the Ni-Bi2Te3 interface layer. The Neél temperature of the Ni-Bi2Te3 layer is ≈ 63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.},
doi = {10.1002/adma.202108790},
journal = {Advanced Materials},
number = 15,
volume = 34,
place = {United States},
year = {Tue Feb 08 00:00:00 EST 2022},
month = {Tue Feb 08 00:00:00 EST 2022}
}

Works referenced in this record:

Spin-orientation dependence in neutron reflection from a single magnetic film
journal, April 1995


Metallicity and Paramagnetism of Single‐Crystalline NiTe and NiTe 2
journal, August 2019

  • Mao, Qianhui; Zhang, Yannan; Chen, Qin
  • physica status solidi (b), Vol. 257, Issue 1
  • DOI: 10.1002/pssb.201900224

Proximitized materials
journal, January 2019


Tunable interlayer magnetism and band topology in van der Waals heterostructures of Mn Bi 2 Te 4 -family materials
journal, August 2020


Comparing magnetic ground-state properties of the V- and Cr-doped topological insulator ( Bi , Sb ) 2 Te 3
journal, January 2020


Magnetic off-specular neutron scattering from Fe/Cr multilayers
journal, June 2000


Bi1Te1 is a dual topological insulator
journal, April 2017

  • Eschbach, Markus; Lanius, Martin; Niu, Chengwang
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14976

EELS analysis of cation valence states and oxygen vacancies in magnetic oxides
journal, October 2000


Efficient Spin–Orbit Torque Switching with Nonepitaxial Chalcogenide Heterostructures
journal, January 2020

  • Chen, Tian-Yue; Peng, Cheng-Wei; Tsai, Tsung-Yu
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 6
  • DOI: 10.1021/acsami.9b20844

Highlights from the magnetism reflectometer at the SNS
journal, September 2009

  • Lauter, Valeria; Ambaye, Hailemariam; Goyette, Richard
  • Physica B: Condensed Matter, Vol. 404, Issue 17, p. 2543-2546
  • DOI: 10.1016/j.physb.2009.06.021

Mn‐Rich MnSb 2 Te 4 : A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45–50 K
journal, September 2021

  • Wimmer, Stefan; Sánchez‐Barriga, Jaime; Küppers, Philipp
  • Advanced Materials, Vol. 33, Issue 42
  • DOI: 10.1002/adma.202102935

Heterostructured ferromagnet–topological insulator with dual-phase magnetic properties
journal, January 2018

  • Chang, Shu-Jui; Chuang, Pei-Yu; Chong, Cheong-Wei
  • RSC Advances, Vol. 8, Issue 14
  • DOI: 10.1039/C8RA00068A

Proximity‐Induced Magnetism Enhancement Emerged in Chiral Magnet MnSi/Topological Insulator Bi 2 Se 3 Bilayer
journal, December 2020

  • Choi, Won‐Young; Jeon, Jae Ho; Bang, Hyun‐Woo
  • Advanced Quantum Technologies, Vol. 4, Issue 2
  • DOI: 10.1002/qute.202000124

Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering*
journal, May 2020


Coercivity Enhancement in Exchange Biased Systems Driven by Interfacial Magnetic Frustration
journal, April 2000


Exchange Bias in Magnetic Topological Insulator Superlattices
journal, June 2020


Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films
journal, July 2018


A cryogenic solid-state reaction at the interface between Ti and the Bi2Se3 topological insulator
journal, January 2020

  • Ferfolja, Katja; Fanetti, Mattia; Gardonio, Sandra
  • Journal of Materials Chemistry C, Vol. 8, Issue 33
  • DOI: 10.1039/D0TC00863J

Superconductivity in Cu x Bi 2 Se 3 and its Implications for Pairing in the Undoped Topological Insulator
journal, February 2010


Interface Chemistry of Contact Metals and Ferromagnets on the Topological Insulator Bi 2 Se 3
journal, October 2017

  • Walsh, Lee A.; Smyth, Christopher M.; Barton, Adam T.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 42
  • DOI: 10.1021/acs.jpcc.7b08480

Mechanisms for exchange bias
journal, November 2000


Heterogeneous catalysis at the surface of topological materials
journal, February 2020

  • Li, Guowei; Felser, Claudia
  • Applied Physics Letters, Vol. 116, Issue 7
  • DOI: 10.1063/1.5143800

Techniques de diffusion des neutrons en incidence rasante pour les nanosciences
journal, January 2007

  • Lauter-Pasyuk, V.
  • École thématique de la Société Française de la Neutronique, Vol. 12
  • DOI: 10.1051/sfn:2007024

Direct evidence of ferromagnetism in a quantum anomalous Hall system
journal, May 2018


Intrinsic magnetic topological insulators in van der Waals layered MnBi 2 Te 4 -family materials
journal, June 2019


Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
journal, December 2019


Ferromagnetism of magnetically doped topological insulators in Cr x Bi 2−x Te 3 thin films
journal, May 2015

  • Ni, Y.; Zhang, Z.; Nlebedim, I. C.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4918560

Room-temperature spin-to-charge conversion in sputtered bismuth selenide thin films via spin pumping from yttrium iron garnet
journal, March 2019

  • Dc, Mahendra; Liu, Tao; Chen, Jun-Yang
  • Applied Physics Letters, Vol. 114, Issue 10
  • DOI: 10.1063/1.5054806

Observation of bulk states and spin-polarized topological surface states in transition metal dichalcogenide Dirac semimetal candidate NiTe 2
journal, November 2019


Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films*
journal, June 2021


High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
journal, March 2015

  • Chang, Cui-Zu; Zhao, Weiwei; Kim, Duk Y.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4204

Magnetic topological insulators
journal, January 2019

  • Tokura, Yoshinori; Yasuda, Kenji; Tsukazaki, Atsushi
  • Nature Reviews Physics, Vol. 1, Issue 2
  • DOI: 10.1038/s42254-018-0011-5

Induced spin texture in semiconductor/topological insulator heterostructures
journal, August 2011


Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators
journal, May 2000

  • Nesbitt, H. W.; Legrand, D.; Bancroft, G. M.
  • Physics and Chemistry of Minerals, Vol. 27, Issue 5
  • DOI: 10.1007/s002690050265

Spontaneous exchange bias: Unidirectional anisotropy in an otherwise isotropic system
journal, September 2007


Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
journal, March 2013


Mn-doped topological insulators: a review
journal, August 2019


Exchange bias and quantum anomalous nomalous Hall effect in the MnBi 2 Te 4 /CrI 3 heterostructure
journal, March 2020


High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice
journal, August 2020


Magnetic ground state in FeTe 2 , VS 2 , and NiTe 2 monolayers: Antiparallel magnetic moments at chalcogen atoms
journal, February 2020


Proximity-Induced Magnetic Order in a Transferred Topological Insulator Thin Film on a Magnetic Insulator
journal, April 2018


Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet
journal, June 2016

  • Lee, Changmin; Katmis, Ferhat; Jarillo-Herrero, Pablo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12014

Experimental Realization of an Intrinsic Magnetic Topological Insulator *
journal, June 2019


Incipient antiferromagnetism in the Eu-doped topological insulatorBi2Te3
journal, November 2020


Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi 2 Te 4
journal, January 2020


Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"
journal, October 1988


Proximity Band Structure and Spin Textures on Both Sides of Topological-Insulator/Ferromagnetic-Metal Interface and Their Charge Transport Probes
journal, August 2017


Cooling field and temperature dependent exchange bias in spin glass/ferromagnet bilayers
journal, September 2015

  • Rui, W. B.; Hu, Y.; Du, A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13640

Topological Type-II Dirac Fermions Approaching the Fermi Level in a Transition Metal Dichalcogenide NiTe 2
journal, June 2018


Natural van der Waals heterostructural single crystals with both magnetic and topological properties
journal, November 2019


A high-temperature ferromagnetic topological insulating phase by proximity coupling
journal, May 2016

  • Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17635

First-principles discovery of novel quantum physics and materials: From theory to experiment
journal, April 2021


Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings
journal, July 1974

  • Thornton, John A.
  • Journal of Vacuum Science and Technology, Vol. 11, Issue 4
  • DOI: 10.1116/1.1312732

Effects of Ni vacancies and crystallite size on the O 1s and Ni 2p x-ray absorption spectra of nanocrystalline NiO
journal, November 2013

  • Mossanek, R. J. O.; Domínguez-Cañizares, G.; Gutiérrez, A.
  • Journal of Physics: Condensed Matter, Vol. 25, Issue 49
  • DOI: 10.1088/0953-8984/25/49/495506

Quantized Anomalous Hall Effect in Magnetic Topological Insulators
journal, June 2010


Superspin Glass Mediated Giant Spontaneous Exchange Bias in a Nanocomposite of BiFeO 3 Bi 2 Fe 4 O 9
journal, March 2013