DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Solvent Motion on Ion Transport in Electrolytes

Abstract

We use concentrated solution theory to derive an equation governing solvent velocity in a binary electrolyte when a current passes through it. This equation, in combination with the material balance equation, enables the prediction of electrolyte concentration profiles and species velocities as a function of space and time. This framework is used to predict ion velocities in Li-Li symmetric cells containing a mixture of lithium bis(trifluoromethanesulfonyl)imide and poly(ethylene oxide) (LiTFSI/PEO), for which the cation transference number relative to the solvent velocity, t + 0 , can be either positive or negative, depending on salt concentration. Accounting for the solvent motion is increasingly important at higher concentrations. Especially for negative t + 0 , if solvent velocity is set to zero, the cation velocity, based on the electrode-electrolyte interface reference frame, is pointed opposite to the current flow. However, when solvent motion is taken into account, the cation velocity, based on the same reference frame, is in the same direction as the current. This analysismore » demonstrates the importance of accounting for solvent velocity rigorously in seemingly simple systems such as symmetric cells.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. University of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. University of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1879821
Alternate Identifier(s):
OSTI ID: 1961348
Grant/Contract Number:  
AC02-06CH11357; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 169; Journal Issue: 4; Journal ID: ISSN 0013-4651
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Mistry, Aashutosh, Grundy, Lorena S., Halat, David M., Newman, John, Balsara, Nitash P., and Srinivasan, Venkat. Effect of Solvent Motion on Ion Transport in Electrolytes. United States: N. p., 2022. Web. doi:10.1149/1945-7111/ac6329.
Mistry, Aashutosh, Grundy, Lorena S., Halat, David M., Newman, John, Balsara, Nitash P., & Srinivasan, Venkat. Effect of Solvent Motion on Ion Transport in Electrolytes. United States. https://doi.org/10.1149/1945-7111/ac6329
Mistry, Aashutosh, Grundy, Lorena S., Halat, David M., Newman, John, Balsara, Nitash P., and Srinivasan, Venkat. Thu . "Effect of Solvent Motion on Ion Transport in Electrolytes". United States. https://doi.org/10.1149/1945-7111/ac6329. https://www.osti.gov/servlets/purl/1879821.
@article{osti_1879821,
title = {Effect of Solvent Motion on Ion Transport in Electrolytes},
author = {Mistry, Aashutosh and Grundy, Lorena S. and Halat, David M. and Newman, John and Balsara, Nitash P. and Srinivasan, Venkat},
abstractNote = {We use concentrated solution theory to derive an equation governing solvent velocity in a binary electrolyte when a current passes through it. This equation, in combination with the material balance equation, enables the prediction of electrolyte concentration profiles and species velocities as a function of space and time. This framework is used to predict ion velocities in Li-Li symmetric cells containing a mixture of lithium bis(trifluoromethanesulfonyl)imide and poly(ethylene oxide) (LiTFSI/PEO), for which the cation transference number relative to the solvent velocity, t + 0 , can be either positive or negative, depending on salt concentration. Accounting for the solvent motion is increasingly important at higher concentrations. Especially for negative t + 0 , if solvent velocity is set to zero, the cation velocity, based on the electrode-electrolyte interface reference frame, is pointed opposite to the current flow. However, when solvent motion is taken into account, the cation velocity, based on the same reference frame, is in the same direction as the current. This analysis demonstrates the importance of accounting for solvent velocity rigorously in seemingly simple systems such as symmetric cells.},
doi = {10.1149/1945-7111/ac6329},
journal = {Journal of the Electrochemical Society},
number = 4,
volume = 169,
place = {United States},
year = {Thu Apr 14 00:00:00 EDT 2022},
month = {Thu Apr 14 00:00:00 EDT 2022}
}

Works referenced in this record:

The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution
journal, January 1995

  • Ma, Yanping
  • Journal of The Electrochemical Society, Vol. 142, Issue 6
  • DOI: 10.1149/1.2044206

Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part III. Transport in Vanadium Redox-Flow-Battery Separators
journal, January 2020

  • Crothers, Andrew R.; Darling, Robert M.; Kushner, Douglas I.
  • Journal of The Electrochemical Society, Vol. 167, Issue 1
  • DOI: 10.1149/1945-7111/ab6725

Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes
journal, July 2021

  • Mistry, Aashutosh; Trask, Stephen; Dunlop, Alison
  • Journal of The Electrochemical Society, Vol. 168, Issue 7
  • DOI: 10.1149/1945-7111/ac1033

Non-equilibrium thermodynamics in electrochemical complexation of Li–oxygen porous electrodes
journal, January 2019

  • Mistry, Aashutosh N.; Cano-Banda, Fernando; Law, Dickens
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/C9TA01339C

Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging
journal, January 2018

  • Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke
  • Journal of the American Chemical Society, Vol. 140, Issue 5
  • DOI: 10.1021/jacs.7b13357

Sheltering the perturbed vortical layer of electroconvection under shear flow
journal, January 2017

  • Kwak, Rhokyun; Pham, Van Sang; Han, Jongyoon
  • Journal of Fluid Mechanics, Vol. 813
  • DOI: 10.1017/jfm.2016.870

Does Oxygen Transport Affect the Cell Voltages of Metal/Air Batteries?
journal, January 2017

  • Monroe, Charles W.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0521711jes

Comparing Cycling Characteristics of Symmetric Lithium-Polymer-Lithium Cells with Theoretical Predictions
journal, January 2018

  • Pesko, Danielle M.; Feng, Zhange; Sawhney, Simar
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0921813jes

Characterising lithium-ion electrolytes via operando Raman microspectroscopy
journal, June 2021


Thermodynamics: An Advanced Treatment for Chemists and Physicists
journal, November 1957

  • Guggenheim, E. A.; Woolley, Harold W.
  • Physics Today, Vol. 10, Issue 11
  • DOI: 10.1063/1.3060168

Solute-volume effects in electrolyte transport
journal, July 2014


Perspective—Mass Conservation in Models for Electrodeposition/Stripping in Lithium Metal Batteries
journal, September 2021

  • Mishra, Lubhani; Subramaniam, Akshay; Jang, Taejin
  • Journal of The Electrochemical Society, Vol. 168, Issue 9
  • DOI: 10.1149/1945-7111/ac2091

Transport in Polymer-Electrolyte Membranes
journal, January 2004

  • Weber, Adam Z.; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1639157

Quantifying Mass Transport during Polarization in a Li Ion Battery Electrolyte by in Situ 7 Li NMR Imaging
journal, August 2012

  • Klett, Matilda; Giesecke, Marianne; Nyman, Andreas
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305461j

Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

Observation of separate cation and anion electrophoretic mobilities in pure ionic liquids
journal, February 2014

  • Zhang, Zhiyang; Madsen, Louis A.
  • The Journal of Chemical Physics, Vol. 140, Issue 8
  • DOI: 10.1063/1.4865834

Liquefied gas electrolytes for wide-temperature lithium metal batteries
journal, January 2020

  • Yang, Yangyuchen; Yin, Yijie; Davies, Daniel M.
  • Energy & Environmental Science, Vol. 13, Issue 7
  • DOI: 10.1039/D0EE01446J

Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes
journal, January 2018

  • Villaluenga, Irune; Pesko, Danielle M.; Timachova, Ksenia
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0641811jes

Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach
journal, August 2021


Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI
journal, October 2020

  • Bazak, J. David; Allen, J. P.; Krachkovskiy, S. A.
  • Journal of The Electrochemical Society, Vol. 167, Issue 14
  • DOI: 10.1149/1945-7111/abc0c9

Anion and Cation Transference Numbers Determined by Electrophoretic NMR of Polymer Electrolytes Sum to Unity
journal, January 1999

  • Walls, H. J.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 7
  • DOI: 10.1149/1.1391136

Electrolyte Transport Evolution Dynamics in Lithium–Sulfur Batteries
journal, July 2018

  • Mistry, Aashutosh N.; Mukherjee, Partha P.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 32
  • DOI: 10.1021/acs.jpcc.8b05442

A Volume Averaged Approach to the Numerical Modeling of Phase-Transition Intercalation Electrodes Presented for Li x C 6
journal, January 2012

  • Gallagher, Kevin G.; Dees, Dennis W.; Jansen, Andrew N.
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.015301jes

Fingerprinting Redox Heterogeneity in Electrodes during Extreme Fast Charging
journal, May 2020

  • Mistry, Aashutosh; Usseglio-Viretta, Francois L. E.; Colclasure, Andrew
  • Journal of The Electrochemical Society, Vol. 167, Issue 9
  • DOI: 10.1149/1945-7111/ab8fd7

Experimental Determination of the Transport Number of Water in Nafion 117 Membrane
journal, January 1992

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 139, Issue 5
  • DOI: 10.1149/1.2069407

Electrolyte Confinement Alters Lithium Electrodeposition
journal, December 2018


Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes
journal, January 2005

  • Valo̸en, Lars Ole; Reimers, Jan N.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872737

Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte
journal, January 2020

  • Steinrück, Hans-Georg; Takacs, Christopher J.; Kim, Hong-Keun
  • Energy & Environmental Science, Vol. 13, Issue 11
  • DOI: 10.1039/D0EE02193H

Restricted diffusion in binary solutions
journal, March 1973


Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes
journal, March 2018


On our Limited Understanding of Electrodeposition
journal, January 2019


Continuum Description of the Role of Negative Transference Numbers on Ion Motion in Polymer Electrolytes
journal, July 2020

  • Kim, Hong-Keun; Balsara, Nitash P.; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 167, Issue 11
  • DOI: 10.1149/1945-7111/aba790

Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells while Avoiding Lithium Plating
journal, January 2019

  • Colclasure, Andrew M.; Dunlop, Alison R.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0451908jes

A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine
journal, January 2019

  • H. Hashemi, S. Mohammad; Karnakov, Petr; Hadikhani, Pooria
  • Energy & Environmental Science, Vol. 12, Issue 5
  • DOI: 10.1039/C9EE00219G

Mass Transfer in Concentrated Binary Electrolytes
journal, September 1965

  • Newman, John; Bennion, Douglas; Tobias, Charles W.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 69, Issue 7
  • DOI: 10.1002/bbpc.19650690712

The Effect of Schmidt Number on the Faradaic Impedance of the Dissolution of a Copper Rotating Disk
journal, October 1989

  • Hauser, Alan K.; Newman, John
  • Journal of The Electrochemical Society, Vol. 136, Issue 10
  • DOI: 10.1149/1.2096316

Performance Metrics Required of Next-Generation Batteries to Electrify Vertical Takeoff and Landing (VTOL) Aircraft
journal, November 2018


Numerical Modeling of Coupled Electrochemical and Transport Processes in Lead‐Acid Batteries
journal, June 1997

  • Gu, W. B.; Wang, C. Y.; Liaw, B. Y.
  • Journal of The Electrochemical Society, Vol. 144, Issue 6
  • DOI: 10.1149/1.1837741

Electrochemical Characterization and Temperature Dependency of Mass-Transport Properties of LiPF 6 in EC:DEC
journal, December 2014

  • Lundgren, Henrik; Behm, Mårten; Lindbergh, Göran
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0641503jes

Lithium Transference Numbers in PEO/LiTFSA Electrolytes Determined by Electrophoretic NMR
journal, January 2019

  • Rosenwinkel, Mark P.; Schönhoff, Monika
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0831910jes

Determination of Lithium Ion Transference Numbers by Electrophoretic Nuclear Magnetic Resonance
journal, January 1996

  • Dai, Hongli
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836891

Theoretical Interpretation of Ion Velocities in Concentrated Electrolytes Measured by Electrophoretic NMR
journal, January 2019

  • Timachova, Ksenia; Newman, John; Balsara, Nitash P.
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0591902jes

Can a Transport Model Predict Inverse Signatures in Lithium Metal Batteries Without Modifying Kinetics?
journal, December 2020

  • Uppaluri, Maitri; Subramaniam, Akshay; Mishra, Lubhani
  • Journal of The Electrochemical Society, Vol. 167, Issue 16
  • DOI: 10.1149/1945-7111/abd2ae

Temperature and Concentration Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes
journal, January 2019

  • Landesfeind, Johannes; Gasteiger, Hubert A.
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0571912jes

Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes
journal, January 2020

  • Ferraro, Mark E.; Trembacki, Bradley L.; Brunini, Victor E.
  • Journal of The Electrochemical Society, Vol. 167, Issue 1
  • DOI: 10.1149/1945-7111/ab632b

Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells
journal, March 2020


A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase
journal, January 2004

  • Christensen, John; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1804812

Advanced Engineering Mathematics. ByErwin Kreyszig. Pp. xx, 899. 68s. (Wiley.)
journal, December 1969

  • Kellaway, F. W.
  • The Mathematical Gazette, Vol. 53, Issue 386
  • DOI: 10.2307/3612523

Modeling the Effects of Electrode Microstructural Heterogeneities on Li-Ion Battery Performance and Lifetime
journal, January 2018

  • Forouzan, Mehdi M.; Mazzeo, Brian A.; Wheeler, Dean R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.1281809jes

Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Electrolytes for Low‐Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates
journal, February 1999

  • Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.
  • Journal of The Electrochemical Society, Vol. 146, Issue 2
  • DOI: 10.1149/1.1391633

Exploring the Role of Electrode Microstructure on the Performance of Non-Aqueous Redox Flow Batteries
journal, January 2019

  • Forner-Cuenca, Antoni; Penn, Emily E.; Oliveira, Alexandra M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0611910jes

Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode
journal, April 2009


Transport Properties of Polysulfide Species in Lithium–Sulfur Battery Electrolytes: Coupling of Experiment and Theory
journal, July 2016


Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow
journal, January 2000

  • Gu, W. B.; Wang, C. Y.; Weidner, John W.
  • Journal of The Electrochemical Society, Vol. 147, Issue 2
  • DOI: 10.1149/1.1393213