DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems

Abstract

Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO2, the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advancesmore » in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [1];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15]; ORCiD logo [16];  [1];  [17];  [17] more »;  [12];  [18];  [19];  [12];  [7];  [11];  [20];  [21];  [22];  [23];  [24];  [1];  [25] « less
  1. Brigham Young Univ., Provo, UT (United States)
  2. Innovative Breakthrough Energy Technology Ltd., Colwood, BC (Canada); Cascade Inst., Colwood, BC (Canada)
  3. Babson College, Wellesley, MA (United States)
  4. Univ. of New Hampshire, Durham, NH (United States)
  5. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  6. Univ. of Wisconsin, Milwaukee, WI (United States)
  7. Stockholm Univ. (Sweden). Bolin Center for Climate Research
  8. Inst. of Ocean Science (IOS), Sidney, BC (Canada)
  9. Northumbria Univ., Newcastle-upon-Tyne (United Kingdom)
  10. Colgate University, Hamilton, NY (United States)
  11. Woodwell Climate Research Center, Falmouth, MA (United States)
  12. Univ. of Alberta, Edmonton, AB (Canada)
  13. International Cryosphere Climate Initiative, Pawlet, VT (United States)
  14. Univ. of Vermont, Burlington, VT (United States)
  15. Wildlife Conservation Society, Fairbanks, AK (United States)
  16. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst.
  17. Northern Arizona Univ., Flagstaff, AZ (United States)
  18. Univ. of Alabama, Tuscaloosa, AL (United States)
  19. Helmholtz Centre for Polar and Marine Research, Potsdam (Germany). Alfred Wegener Inst., Permafrost Research Section
  20. Univ. of Colorado, Boulder, CO (United States). Inst. of Arctic and Alpine Research (INSTAAR)
  21. Univ. of Eastern Finland, Kuopio (Finland)
  22. Cascade Inst., Colwood, BC (Canada)
  23. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany, State Key Lab. of Vegetation and Environmental Change; University of Chinese Academy of Sciences, Beijing (China)
  24. Michigan State Univ., East Lansing, MI (United States)
  25. Woodwell Climate Research Center, Falmouth, MA (United States); Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF)
OSTI Identifier:
1875338
Alternate Identifier(s):
OSTI ID: 1877156
Report Number(s):
SAND2022-9151J
Journal ID: ISSN 2296-665X
Grant/Contract Number:  
AC05-00OR22725; 916565; 1916567; 1916576; 1906381; 1931333; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Frontiers in Environmental Science
Additional Journal Information:
Journal Volume: 10; Journal Issue: X; Journal ID: ISSN 2296-665X
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; permafrost climate feedback; Arctic; Boreal; climate policy; renewable energy; ecosystem feedback; Earth stewardship; permafrost domain

Citation Formats

Abbott, Benjamin W., Brown, Michael, Carey, Joanna C., Ernakovich, Jessica, Frederick, Jennifer M., Guo, Laodong, Hugelius, Gustaf, Lee, Raymond M., Loranty, Michael M., Macdonald, Robie, Mann, Paul J., Natali, Susan M., Olefeldt, David, Pearson, Pam, Rec, Abigail, Robards, Martin, Salmon, Verity G., Sayedi, Sayedeh Sara, Schädel, Christina, Schuur, Edward G., Shakil, Sarah, Shogren, Arial J., Strauss, Jens, Tank, Suzanne E., Thornton, Brett F., Treharne, Rachael, Turetsky, Merritt, Voigt, Carolina, Wright, Nancy, Yang, Yuanhe, Zarnetske, Jay P., Zhang, Qiwen, and Zolkos, Scott. We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. United States: N. p., 2022. Web. doi:10.3389/fenvs.2022.889428.
Abbott, Benjamin W., Brown, Michael, Carey, Joanna C., Ernakovich, Jessica, Frederick, Jennifer M., Guo, Laodong, Hugelius, Gustaf, Lee, Raymond M., Loranty, Michael M., Macdonald, Robie, Mann, Paul J., Natali, Susan M., Olefeldt, David, Pearson, Pam, Rec, Abigail, Robards, Martin, Salmon, Verity G., Sayedi, Sayedeh Sara, Schädel, Christina, Schuur, Edward G., Shakil, Sarah, Shogren, Arial J., Strauss, Jens, Tank, Suzanne E., Thornton, Brett F., Treharne, Rachael, Turetsky, Merritt, Voigt, Carolina, Wright, Nancy, Yang, Yuanhe, Zarnetske, Jay P., Zhang, Qiwen, & Zolkos, Scott. We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. United States. https://doi.org/10.3389/fenvs.2022.889428
Abbott, Benjamin W., Brown, Michael, Carey, Joanna C., Ernakovich, Jessica, Frederick, Jennifer M., Guo, Laodong, Hugelius, Gustaf, Lee, Raymond M., Loranty, Michael M., Macdonald, Robie, Mann, Paul J., Natali, Susan M., Olefeldt, David, Pearson, Pam, Rec, Abigail, Robards, Martin, Salmon, Verity G., Sayedi, Sayedeh Sara, Schädel, Christina, Schuur, Edward G., Shakil, Sarah, Shogren, Arial J., Strauss, Jens, Tank, Suzanne E., Thornton, Brett F., Treharne, Rachael, Turetsky, Merritt, Voigt, Carolina, Wright, Nancy, Yang, Yuanhe, Zarnetske, Jay P., Zhang, Qiwen, and Zolkos, Scott. Wed . "We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems". United States. https://doi.org/10.3389/fenvs.2022.889428. https://www.osti.gov/servlets/purl/1875338.
@article{osti_1875338,
title = {We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems},
author = {Abbott, Benjamin W. and Brown, Michael and Carey, Joanna C. and Ernakovich, Jessica and Frederick, Jennifer M. and Guo, Laodong and Hugelius, Gustaf and Lee, Raymond M. and Loranty, Michael M. and Macdonald, Robie and Mann, Paul J. and Natali, Susan M. and Olefeldt, David and Pearson, Pam and Rec, Abigail and Robards, Martin and Salmon, Verity G. and Sayedi, Sayedeh Sara and Schädel, Christina and Schuur, Edward G. and Shakil, Sarah and Shogren, Arial J. and Strauss, Jens and Tank, Suzanne E. and Thornton, Brett F. and Treharne, Rachael and Turetsky, Merritt and Voigt, Carolina and Wright, Nancy and Yang, Yuanhe and Zarnetske, Jay P. and Zhang, Qiwen and Zolkos, Scott},
abstractNote = {Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO2, the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions.},
doi = {10.3389/fenvs.2022.889428},
journal = {Frontiers in Environmental Science},
number = X,
volume = 10,
place = {United States},
year = {Wed Jun 29 00:00:00 EDT 2022},
month = {Wed Jun 29 00:00:00 EDT 2022}
}

Works referenced in this record:

Submarine Permafrost Map in the Arctic Modeled Using 1‐D Transient Heat Flux (SuPerMAP)
journal, June 2019

  • Overduin, P. P.; Schneider von Deimling, T.; Miesner, F.
  • Journal of Geophysical Research: Oceans, Vol. 124, Issue 6
  • DOI: 10.1029/2018JC014675

Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean
journal, May 2016


Recent changes to Arctic river discharge
journal, November 2021


Advances in Thermokarst Research: Recent Advances in Research Investigating Thermokarst Processes
journal, April 2013

  • Kokelj, S. V.; Jorgenson, M. T.
  • Permafrost and Periglacial Processes, Vol. 24, Issue 2
  • DOI: 10.1002/ppp.1779

The status and stability of permafrost carbon on the Tibetan Plateau
journal, December 2020


Extensive loss of past permafrost carbon but a net accumulation into present-day soils
journal, August 2018


The impact of peat harvesting and natural regeneration on the water balance of an abandoned cutover bog, Quebec
journal, January 2001

  • Van Seters, Tim E.; Price, Jonathan S.
  • Hydrological Processes, Vol. 15, Issue 2
  • DOI: 10.1002/hyp.145

An earth system model shows self-sustained thawing of permafrost even if all man-made GHG emissions stop in 2020
journal, November 2020


Circumpolar distribution and carbon storage of thermokarst landscapes
journal, October 2016

  • Olefeldt, D.; Goswami, S.; Grosse, G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13043

Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia
journal, August 2012

  • Vonk, J. E.; Sánchez-García, L.; van Dongen, B. E.
  • Nature, Vol. 489, Issue 7414
  • DOI: 10.1038/nature11392

Stream Dissolved Organic Matter in Permafrost Regions Shows Surprising Compositional Similarities but Negative Priming and Nutrient Effects
journal, January 2021

  • Wologo, Ethan; Shakil, Sarah; Zolkos, Scott
  • Global Biogeochemical Cycles, Vol. 35, Issue 1
  • DOI: 10.1029/2020GB006719

Recent advances in the study of Arctic submarine permafrost
journal, July 2020

  • Angelopoulos, Michael; Overduin, Pier P.; Miesner, Frederieke
  • Permafrost and Periglacial Processes, Vol. 31, Issue 3
  • DOI: 10.1002/ppp.2061

Increasing Alkalinity Export from Large Russian Arctic Rivers
journal, June 2018

  • Drake, Travis W.; Tank, Suzanne E.; Zhulidov, Alexander V.
  • Environmental Science & Technology, Vol. 52, Issue 15
  • DOI: 10.1021/acs.est.8b01051

Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach
journal, May 2020

  • Tank, Suzanne E.; Vonk, Jorien E.; Walvoord, Michelle A.
  • Permafrost and Periglacial Processes, Vol. 31, Issue 3
  • DOI: 10.1002/ppp.2057

Using multi-tracer inference to move beyond single-catchment ecohydrology
journal, September 2016


Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks
journal, February 2021

  • Mishra, Umakant; Hugelius, Gustaf; Shelef, Eitan
  • Science Advances, Vol. 7, Issue 9
  • DOI: 10.1126/sciadv.aaz5236

Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion
journal, January 2021


Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas
journal, March 2011

  • Holmes, Robert Max; McClelland, James W.; Peterson, Bruce J.
  • Estuaries and Coasts, Vol. 35, Issue 2
  • DOI: 10.1007/s12237-011-9386-6

Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia
journal, November 2016

  • Forbes, Bruce C.; Kumpula, Timo; Meschtyb, Nina
  • Biology Letters, Vol. 12, Issue 11
  • DOI: 10.1098/rsbl.2016.0466

International policy, recommendations, actions and mitigation efforts of anthropogenic underwater noise
journal, March 2021


‘Bog here, marshland there’: tensions in co-producing scientific knowledge on solar geoengineering in the Arctic
journal, March 2022

  • Mettiäinen, Ilona; Buck, Holly Jean; MacMartin, Douglas G.
  • Environmental Research Letters, Vol. 17, Issue 4
  • DOI: 10.1088/1748-9326/ac5715

Synergistic interactions among growing stressors increase risk to an Arctic ecosystem
journal, December 2020


Arctic concentration–discharge relationships for dissolved organic carbon and nitrate vary with landscape and season
journal, December 2020

  • Shogren, Arial J.; Zarnetske, Jay P.; Abbott, Benjamin W.
  • Limnology and Oceanography, Vol. 66, Issue S1
  • DOI: 10.1002/lno.11682

Combating ecosystem collapse from the tropics to the Antarctic
journal, February 2021

  • Bergstrom, Dana M.; Wienecke, Barbara C.; Hoff, John
  • Global Change Biology, Vol. 27, Issue 9
  • DOI: 10.1111/gcb.15539

Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs
journal, January 2015

  • Stevens, Jens T.; Latimer, Andrew M.
  • Global Change Biology, Vol. 21, Issue 6
  • DOI: 10.1111/gcb.12824

Estimating global agricultural effects of geoengineering using volcanic eruptions
journal, August 2018


Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances
journal, October 2021

  • Veraverbeke, Sander; Delcourt, Clement J. F.; Kukavskaya, Elena
  • Current Opinion in Environmental Science & Health, Vol. 23
  • DOI: 10.1016/j.coesh.2021.100277

Soft Geoengineering: A Gentler Approach to Addressing Climate Change
journal, September 2012


Current forest carbon fixation fuels stream CO2 emissions
journal, April 2019


Human domination of the global water cycle absent from depictions and perceptions
journal, June 2019


Riverine source of Arctic Ocean mercury inferred from atmospheric observations
journal, May 2012

  • Fisher, Jenny A.; Jacob, Daniel J.; Soerensen, Anne L.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1478

Methane fluxes from the sea to the atmosphere across the Siberian shelf seas: CH
journal, June 2016

  • Thornton, Brett F.; Geibel, Marc C.; Crill, Patrick M.
  • Geophysical Research Letters, Vol. 43, Issue 11
  • DOI: 10.1002/2016GL068977

On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study
journal, January 2022

  • Calì Quaglia, Filippo; Meloni, Daniela; Muscari, Giovanni
  • Remote Sensing, Vol. 14, Issue 2
  • DOI: 10.3390/rs14020313

Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling
journal, February 2019

  • Breyer, Christian; Fasihi, Mahdi; Aghahosseini, Arman
  • Mitigation and Adaptation Strategies for Global Change, Vol. 25, Issue 1
  • DOI: 10.1007/s11027-019-9847-y

Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows
journal, May 2010


Temperature response of soil respiration largely unaltered with experimental warming
journal, November 2016

  • Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 48
  • DOI: 10.1073/pnas.1605365113

Abrupt permafrost collapse enhances organic carbon, CO 2 , nutrient and metal release into surface waters
journal, November 2017


The Fearful Symmetry of Arctic Climate Change: Accumulation by Degradation
journal, January 2010

  • Johnson, Leigh
  • Environment and Planning D: Society and Space, Vol. 28, Issue 5
  • DOI: 10.1068/d9308

A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
journal, July 2014

  • Anthony, K. M. Walter; Zimov, S. A.; Grosse, G.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13560

Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability
journal, September 2017


Changes in phytoplankton concentration now drive increased Arctic Ocean primary production
journal, July 2020


Patterns of permafrost formation and degradation in relation to climate and ecosystems
journal, January 2007

  • Shur, Y. L.; Jorgenson, M. T.
  • Permafrost and Periglacial Processes, Vol. 18, Issue 1
  • DOI: 10.1002/ppp.582

Degrading permafrost river catchments and their impact on Arctic Ocean nearshore processes
journal, November 2021


Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon
journal, April 2016

  • Semiletov, Igor; Pipko, Irina; Gustafsson, Örjan
  • Nature Geoscience, Vol. 9, Issue 5
  • DOI: 10.1038/ngeo2695

Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage
journal, January 2022


The Arctic Carbon Cycle and Its Response to Changing Climate
journal, February 2021

  • Bruhwiler, Lori; Parmentier, Frans-Jan W.; Crill, Patrick
  • Current Climate Change Reports, Vol. 7, Issue 1
  • DOI: 10.1007/s40641-020-00169-5

Recently amplified arctic warming has contributed to a continual global warming trend
journal, November 2017


Is arctic greening consistent with the ecology of tundra? Lessons from an ecologically informed mass balance model
journal, December 2018


Community collaboration and climate change research in the Canadian Arctic
journal, January 2009


A pan-Arctic synthesis of CH 4 and CO 2 production from anoxic soil incubations
journal, March 2015

  • Treat, Claire C.; Natali, Susan M.; Ernakovich, Jessica
  • Global Change Biology, Vol. 21, Issue 7
  • DOI: 10.1111/gcb.12875

Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Earth stewardship: Shaping a sustainable future through interacting policy and norm shifts
journal, April 2022


Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: Wetting, drying, and fires
journal, April 2016


Vulnerability of high-latitude soil organic carbon in North America to disturbance
journal, January 2011

  • Grosse, Guido; Harden, Jennifer; Turetsky, Merritt
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JG001507

Key indicators of Arctic climate change: 1971–2017
journal, April 2019

  • Box, Jason E.; Colgan, William T.; Christensen, Torben Røjle
  • Environmental Research Letters, Vol. 14, Issue 4
  • DOI: 10.1088/1748-9326/aafc1b

Climate change and impacts on human health in the Arctic: an international workshop on emerging threats and the response of Arctic communities to climate change
journal, February 2009

  • Parkinson, Alan J.; Berner, James
  • International Journal of Circumpolar Health, Vol. 68, Issue 1
  • DOI: 10.3402/ijch.v68i1.18295

Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost: YUKON RIVER BASIN CHEMICAL FLUXES
journal, December 2016

  • Toohey, R. C.; Herman-Mercer, N. M.; Schuster, P. F.
  • Geophysical Research Letters, Vol. 43, Issue 23
  • DOI: 10.1002/2016GL070817

Collapsing Arctic coastlines
journal, January 2017

  • Fritz, Michael; Vonk, Jorien E.; Lantuit, Hugues
  • Nature Climate Change, Vol. 7, Issue 1
  • DOI: 10.1038/nclimate3188

Too late for indigenous climate justice: Ecological and relational tipping points
journal, October 2019

  • Whyte, Kyle
  • Wiley Interdisciplinary Reviews: Climate Change, Vol. 11, Issue 1
  • DOI: 10.1002/wcc.603

Permafrost Stores a Globally Significant Amount of Mercury
journal, February 2018

  • Schuster, Paul F.; Schaefer, Kevin M.; Aiken, George R.
  • Geophysical Research Letters, Vol. 45, Issue 3
  • DOI: 10.1002/2017GL075571

Low-cost renewable electricity as the key driver of the global energy transition towards sustainability
journal, July 2021


Degrading permafrost puts Arctic infrastructure at risk by mid-century
journal, December 2018


Building adaptive capacity in a changing Arctic by use of technology
journal, January 2021

  • Schmidt, Jennifer I.; Hausner, Vera H.; Monz, Christopher
  • Ecology and Society, Vol. 26, Issue 4
  • DOI: 10.5751/ES-12605-260401

Contributions of traditional knowledge to understanding climate change in the Canadian Arctic
journal, October 2001


Protect the last of the wild
journal, October 2018


Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen
journal, September 2018

  • Hewitt, Rebecca E.; Taylor, D. Lee; Genet, Hélène
  • Journal of Ecology, Vol. 107, Issue 2
  • DOI: 10.1111/1365-2745.13062

Overshooting tipping point thresholds in a changing climate
journal, April 2021


Decline in Ecosystem δ13C and Mid-Successional Nitrogen Loss in a Two-Century Postglacial Chronosequence
journal, April 2018


Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams
journal, May 2020


Indigeneity in Geoengineering Discourses: Some Considerations
journal, September 2018


Large loss of CO2 in winter observed across the northern permafrost region
journal, October 2019

  • Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.
  • Nature Climate Change, Vol. 9, Issue 11
  • DOI: 10.1038/s41558-019-0592-8

Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
journal, December 2020

  • Kropp, Heather; Loranty, Michael M.; Natali, Susan M.
  • Environmental Research Letters, Vol. 16, Issue 1
  • DOI: 10.1088/1748-9326/abc994

The changing thermal state of permafrost
journal, January 2022

  • Smith, Sharon L.; O’Neill, H. Brendan; Isaksen, Ketil
  • Nature Reviews Earth & Environment, Vol. 3, Issue 1
  • DOI: 10.1038/s43017-021-00240-1

The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes
journal, May 2008


Emergent biogeochemical risks from Arctic permafrost degradation
journal, September 2021

  • Miner, Kimberley R.; D’Andrilli, Juliana; Mackelprang, Rachel
  • Nature Climate Change, Vol. 11, Issue 10
  • DOI: 10.1038/s41558-021-01162-y

Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline
journal, August 2010

  • Bhatt, Uma S.; Walker, Donald A.; Raynolds, Martha K.
  • Earth Interactions, Vol. 14, Issue 8
  • DOI: 10.1175/2010EI315.1

Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau
journal, March 2020


Land-use emissions play a critical role in land-based mitigation for Paris climate targets
journal, August 2018


Groundwater as a major source of dissolved organic matter to Arctic coastal waters
journal, March 2020

  • Connolly, Craig T.; Cardenas, M. Bayani; Burkart, Greta A.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-15250-8

Concerns of climate intervention: understanding geoengineering security concerns in the Arctic and beyond
journal, April 2022


Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency
journal, September 2018


Permafrost-derived dissolved organic matter composition varies across permafrost end-members in the western Canadian Arctic
journal, February 2021

  • MacDonald, Erin N.; Tank, Suzanne E.; Kokelj, Steven V.
  • Environmental Research Letters, Vol. 16, Issue 2
  • DOI: 10.1088/1748-9326/abd971

Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States
journal, November 2021

  • Shindell, Drew; Ru, Muye; Zhang, Yuqiang
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 46
  • DOI: 10.1073/pnas.2104061118

Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth
journal, April 2021

  • Zarnetske, Phoebe L.; Gurevitch, Jessica; Franklin, Janet
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 15
  • DOI: 10.1073/pnas.1921854118

Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results
journal, March 2018

  • Bamber, J. L.; Tedstone, A. J.; King, M. D.
  • Journal of Geophysical Research: Oceans, Vol. 123, Issue 3
  • DOI: 10.1002/2017JC013605

The impact of mercury contamination on human health in the Arctic: A state of the science review
journal, July 2022


Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue
journal, March 2022


Terawatt-scale photovoltaics: Transform global energy
journal, May 2019


Submarine groundwater discharge as a possible formation mechanism for permafrost-associated gas hydrate on the circum-Arctic continental shelf: ARCTIC HYDRATE FORMATION VIA S.G.D.
journal, March 2016

  • Frederick, Jennifer M.; Buffett, Bruce A.
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 3
  • DOI: 10.1002/2015JB012627

Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave
journal, August 2021

  • Froitzheim, Nikolaus; Majka, Jaroslaw; Zastrozhnov, Dmitry
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 32
  • DOI: 10.1073/pnas.2107632118

Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios
journal, May 2021


A roadmap for rapid decarbonization
journal, March 2017


Solutions for a cultivated planet
journal, October 2011

  • Foley, Jonathan A.; Ramankutty, Navin; Brauman, Kate A.
  • Nature, Vol. 478, Issue 7369
  • DOI: 10.1038/nature10452

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Towards Integrated Ethical and Scientific Analysis of Geoengineering: A Research Agenda
journal, June 2012


Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages
journal, January 2008

  • Walter, K. M.; Chanton, J. P.; Chapin, F. S.
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2007JG000569

Chronic leak detection for single and multiphase flow: A critical review on onshore and offshore subsea and arctic conditions
journal, September 2020

  • Behari, Niresh; Sheriff, M. Ziyan; Rahman, Mohammad Azizur
  • Journal of Natural Gas Science and Engineering, Vol. 81
  • DOI: 10.1016/j.jngse.2020.103460

Interactions between changing climate and biodiversity: Shaping humanity’s future
journal, March 2020

  • Chapin, F. Stuart; Díaz, Sandra
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 12
  • DOI: 10.1073/pnas.2001686117

Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment
journal, March 2016

  • Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.
  • Environmental Research Letters, Vol. 11, Issue 3
  • DOI: 10.1088/1748-9326/11/3/034014

Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions
journal, September 2015


High Arctic wetting reduces permafrost carbon feedbacks to climate warming
journal, December 2013

  • Lupascu, M.; Welker, J. M.; Seibt, U.
  • Nature Climate Change, Vol. 4, Issue 1
  • DOI: 10.1038/nclimate2058

Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review
journal, December 2008

  • Kreutzweiser, David P.; Hazlett, Paul W.; Gunn, John M.
  • Environmental Reviews, Vol. 16, Issue NA
  • DOI: 10.1139/A08-006

Increase in the rate and uniformity of coastline erosion in Arctic Alaska: HIGHER AND MORE UNIFORM ARCTIC EROSION
journal, February 2009

  • Jones, B. M.; Arp, C. D.; Jorgenson, M. T.
  • Geophysical Research Letters, Vol. 36, Issue 3
  • DOI: 10.1029/2008GL036205

Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat
journal, August 2020

  • King, Michalea D.; Howat, Ian M.; Candela, Salvatore G.
  • Communications Earth & Environment, Vol. 1, Issue 1
  • DOI: 10.1038/s43247-020-0001-2

Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost
journal, January 2015


Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering
journal, May 2020


The climate change mitigation potential of bioenergy with carbon capture and storage
journal, August 2020


Drivers, dynamics and impacts of changing Arctic coasts
journal, January 2022

  • Irrgang, Anna M.; Bendixen, Mette; Farquharson, Louise M.
  • Nature Reviews Earth & Environment, Vol. 3, Issue 1
  • DOI: 10.1038/s43017-021-00232-1

Cumulative Environmental Impacts in the Gwich’in Cultural Landscape
journal, June 2020

  • Proverbs, Tracey; Lantz, Trevor
  • Sustainability, Vol. 12, Issue 11
  • DOI: 10.3390/su12114667

Permafrost is warming at a global scale
journal, January 2019

  • Biskaborn, Boris K.; Smith, Sharon L.; Noetzli, Jeannette
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-018-08240-4

Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
journal, January 2021


Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model
journal, January 2009


Onshore Thermokarst Primes Subsea Permafrost Degradation
journal, October 2021

  • Angelopoulos, Michael; Overduin, Pier P.; Jenrich, Maren
  • Geophysical Research Letters, Vol. 48, Issue 20
  • DOI: 10.1029/2021GL093881

Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change
journal, April 2021


Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015
journal, December 2017

  • Masrur, Arif; Petrov, Andrey N.; DeGroote, John
  • Environmental Research Letters, Vol. 13, Issue 1
  • DOI: 10.1088/1748-9326/aa9a76

Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations
journal, November 2010

  • Rawlins, Michael A.; Steele, Michael; Holland, Marika M.
  • Journal of Climate, Vol. 23, Issue 21
  • DOI: 10.1175/2010JCLI3421.1

Aragonite Undersaturation in the Arctic Ocean: Effects of Ocean Acidification and Sea Ice Melt
journal, November 2009


Brown carbon from biomass burning imposes strong circum-Arctic warming
journal, March 2022


Identifying Barriers to Estimating Carbon Release From Interacting Feedbacks in a Warming Arctic
journal, January 2022


Spiraling Down Hillslopes: Nutrient Uptake from Water Tracks in a Warming Arctic
journal, March 2019


Complexity revealed in the greening of the Arctic
journal, January 2020

  • Myers-Smith, Isla H.; Kerby, Jeffrey T.; Phoenix, Gareth K.
  • Nature Climate Change, Vol. 10, Issue 2
  • DOI: 10.1038/s41558-019-0688-1

Mercury reallocation in thawing subarctic peatlands
journal, October 2019


Permafrost Carbon and CO2 Pathways Differ at Contrasting Coastal Erosion Sites in the Canadian Arctic
journal, March 2021


Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw
journal, August 2021

  • Yang, Guibiao; Peng, Yunfeng; Abbott, Benjamin W.
  • Global Change Biology, Vol. 27, Issue 22
  • DOI: 10.1111/gcb.15845

Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point
journal, May 2021

  • Boers, Niklas; Rypdal, Martin
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 21
  • DOI: 10.1073/pnas.2024192118

Overwintering fires in boreal forests
journal, May 2021


Ice sheet contributions to future sea-level rise from structured expert judgment
journal, May 2019

  • Bamber, Jonathan L.; Oppenheimer, Michael; Kopp, Robert E.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 23
  • DOI: 10.1073/pnas.1817205116

Permafrost carbon feedbacks threaten global climate goals
journal, May 2021

  • Natali, Susan M.; Holdren, John P.; Rogers, Brendan M.
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 21
  • DOI: 10.1073/pnas.2100163118

Potential impacts of future ocean acidification on marine ecosystems and fisheries: current knowledge and recommendations for future research
journal, May 2011

  • Denman, K.; Christian, J. R.; Steiner, N.
  • ICES Journal of Marine Science, Vol. 68, Issue 6
  • DOI: 10.1093/icesjms/fsr074

Ocean Acidification: The Other CO 2 Problem
journal, January 2009


Substantial twentieth-century Arctic warming caused by ozone-depleting substances
journal, January 2020


Estimation of Permafrost SOC Stock and Turnover Time Using a Land Surface Model With Vertical Heterogeneity of Permafrost Soils
journal, November 2020

  • Shu, Shijie; Jain, Atul K.; Koven, Charles D.
  • Global Biogeochemical Cycles, Vol. 34, Issue 11
  • DOI: 10.1029/2020GB006585

Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests
journal, April 2022

  • Hammond, William M.; Williams, A. Park; Abatzoglou, John T.
  • Nature Communications, Vol. 13, Issue 1
  • DOI: 10.1038/s41467-022-29289-2

Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services
journal, November 2018


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks
journal, January 2021

  • Kokelj, Steven V.; Kokoszka, Justin; van der Sluijs, Jurjen
  • The Cryosphere, Vol. 15, Issue 7
  • DOI: 10.5194/tc-15-3059-2021

Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-based approach
journal, April 2014

  • Lamers, Leon P. M.; Vile, Melanie A.; Grootjans, Ab P.
  • Biological Reviews, Vol. 90, Issue 1
  • DOI: 10.1111/brv.12102

JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1)
journal, January 2021

  • Wiltshire, Andrew J.; Burke, Eleanor J.; Chadburn, Sarah E.
  • Geoscientific Model Development, Vol. 14, Issue 4
  • DOI: 10.5194/gmd-14-2161-2021

A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands
journal, January 2022

  • Chadburn, Sarah E.; Burke, Eleanor J.; Gallego-Sala, Angela V.
  • Geoscientific Model Development, Vol. 15, Issue 4
  • DOI: 10.5194/gmd-15-1633-2022

Pervasive human-driven decline of life on Earth points to the need for transformative change
journal, December 2019


Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic
journal, January 2021

  • Abbott, Benjamin W.; Rocha, Adrian V.; Shogren, Arial
  • Global Change Biology, Vol. 27, Issue 7
  • DOI: 10.1111/gcb.15507

Unprecedented Increases in Total and Methyl Mercury Concentrations Downstream of Retrogressive Thaw Slumps in the Western Canadian Arctic
journal, November 2018

  • St. Pierre, Kyra A.; Zolkos, Scott; Shakil, Sarah
  • Environmental Science & Technology, Vol. 52, Issue 24
  • DOI: 10.1021/acs.est.8b05348

Siberian taiga and tundra fire regimes from 2001–2020
journal, January 2022

  • Talucci, Anna C.; Loranty, Michael M.; Alexander, Heather D.
  • Environmental Research Letters, Vol. 17, Issue 2
  • DOI: 10.1088/1748-9326/ac3f07

Sea ice extents continue to set new records: Arctic, Antarctic, and global results
journal, December 2021


People have shaped most of terrestrial nature for at least 12,000 years
journal, April 2021

  • Ellis, Erle C.; Gauthier, Nicolas; Klein Goldewijk, Kees
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 17
  • DOI: 10.1073/pnas.2023483118

Estimating the Economic Impact of the Permafrost Carbon Feedback
journal, April 2017


Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean
journal, June 2020


Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem
journal, April 2021


The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines
journal, February 2011

  • Lantuit, Hugues; Overduin, Pier Paul; Couture, Nicole
  • Estuaries and Coasts, Vol. 35, Issue 2
  • DOI: 10.1007/s12237-010-9362-6

Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor
journal, June 2017


Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment
journal, December 2020

  • Sayedi, Sayedeh Sara; Abbott, Benjamin W.; Thornton, Brett F.
  • Environmental Research Letters, Vol. 15, Issue 12
  • DOI: 10.1088/1748-9326/abcc29

Protection of Permafrost Soils from Thawing by Increasing Herbivore Density
journal, March 2020


Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils
journal, June 2016


Solar photovoltaics is ready to power a sustainable future
journal, May 2021


Quantifying climate feedbacks in polar regions
journal, May 2018


Direct observation of permafrost degradation and rapid soil carbon loss in tundra
journal, July 2019


Expanding infrastructure and growing anthropogenic impacts along Arctic coasts
journal, November 2021

  • Bartsch, Annett; Pointner, Georg; Nitze, Ingmar
  • Environmental Research Letters, Vol. 16, Issue 11
  • DOI: 10.1088/1748-9326/ac3176

A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands
journal, March 2012


Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects
journal, March 2020

  • Holloway, Jean E.; Lewkowicz, Antoni G.; Douglas, Thomas A.
  • Permafrost and Periglacial Processes, Vol. 31, Issue 3
  • DOI: 10.1002/ppp.2048

Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia
journal, March 2022


Saltwater Intrusion Intensifies Coastal Permafrost Thaw
journal, October 2021

  • Guimond, Julia A.; Mohammed, Aaron A.; Walvoord, Michelle A.
  • Geophysical Research Letters, Vol. 48, Issue 19
  • DOI: 10.1029/2021GL094776

The Arctic Ocean Estuary
journal, September 2011


Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees
journal, April 2021

  • Mack, Michelle C.; Walker, Xanthe J.; Johnstone, Jill F.
  • Science, Vol. 372, Issue 6539
  • DOI: 10.1126/science.abf3903

North American boreal forests are a large carbon source due to wildfires from 1986 to 2016
journal, April 2021


Trajectories of the Earth System in the Anthropocene
journal, August 2018

  • Steffen, Will; Rockström, Johan; Richardson, Katherine
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 33
  • DOI: 10.1073/pnas.1810141115

Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals
journal, September 2018


Accelerating permafrost collapse on the eastern Tibetan Plateau
journal, April 2021

  • Gao, Tanguang; Zhang, Yulan; Kang, Shichang
  • Environmental Research Letters, Vol. 16, Issue 5
  • DOI: 10.1088/1748-9326/abf7f0

Nitrous oxide emissions from permafrost-affected soils
journal, July 2020

  • Voigt, Carolina; Marushchak, Maija E.; Abbott, Benjamin W.
  • Nature Reviews Earth & Environment, Vol. 1, Issue 8
  • DOI: 10.1038/s43017-020-0063-9

Arctic fires re-emerging
journal, September 2020

  • McCarty, Jessica L.; Smith, Thomas E. L.; Turetsky, Merritt R.
  • Nature Geoscience, Vol. 13, Issue 10
  • DOI: 10.1038/s41561-020-00645-5

Future increases in Arctic lightning and fire risk for permafrost carbon
journal, April 2021


Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils
journal, June 2020


Arctic River Dissolved and Biogenic Silicon Exports—Current Conditions and Future Changes With Warming
journal, March 2020

  • Carey, Joanna C.; Gewirtzman, Jonathan; Johnston, Sarah Ellen
  • Global Biogeochemical Cycles, Vol. 34, Issue 3
  • DOI: 10.1029/2019GB006308

We cannot shrug off the shoulder seasons: addressing knowledge and data gaps in an Arctic headwater
journal, September 2020

  • Shogren, Arial J.; Zarnetske, Jay P.; Abbott, Benjamin W.
  • Environmental Research Letters, Vol. 15, Issue 10
  • DOI: 10.1088/1748-9326/ab9d3c

Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic
journal, June 2019

  • Farquharson, Louise M.; Romanovsky, Vladimir E.; Cable, William L.
  • Geophysical Research Letters, Vol. 46, Issue 12
  • DOI: 10.1029/2019GL082187

Multiple Feedbacks Contribute to a Centennial Legacy of Reindeer on Tundra Vegetation
journal, March 2018


Warming Effects of Spring Rainfall Increase Methane Emissions From Thawing Permafrost
journal, February 2019

  • Neumann, Rebecca B.; Moorberg, Colby J.; Lundquist, Jessica D.
  • Geophysical Research Letters, Vol. 46, Issue 3
  • DOI: 10.1029/2018GL081274

How does climate change influence arctic mercury?
journal, January 2012


Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes
journal, July 2013

  • Torre Jorgenson, M.; Harden, Jennifer; Kanevskiy, Mikhail
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035017

Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
journal, January 2018

  • Loranty, Michael M.; Abbott, Benjamin W.; Blok, Daan
  • Biogeosciences, Vol. 15, Issue 17
  • DOI: 10.5194/bg-15-5287-2018