DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method

Abstract

A second-order many-body perturbation correction to the relativistic Dirac–Hartree–Fock energy is evaluated stochastically by integrating 13-dimensional products of four-component spinors and Coulomb potentials. The integration in the real space of electron coordinates is carried out by the Monte Carlo (MC) method with the Metropolis sampling, whereas the MC integration in the imaginary-time domain is performed by the inverse-cumulative distribution function method. The computational cost to reach a given relative statistical error for spatially compact but heavy molecules is observed to be no worse than cubic and possibly quadratic with the number of electrons or basis functions. This is a vast improvement over the quintic scaling of the conventional, deterministic second-order many-body perturbation method. The algorithm is also easily and efficiently parallelized with 92% strong scalability going from 64 to 4096 processors.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Universidad Autónoma Metropolitana-Iztapalapa, Mexico CIty (Mexico)
  2. Nagoya Univ. (Japan)
  3. Univ. of Illinois at Urbana-Champaign, IL (United States)
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; Japan Society for the Promotion of Science (JSPS); USDOE
OSTI Identifier:
1870088
Alternate Identifier(s):
OSTI ID: 1871505; OSTI ID: 1871618
Grant/Contract Number:  
SC0006028; AC02-05CH11231; 620190; 21H01881; 21K18931; SPEC
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 156; Journal Issue: 22; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; Monte Carlo method; relativistic effects; perturbation theory; electron correlation; parallel computing

Citation Formats

Cruz, J. César, Garza, Jorge, Yanai, Takeshi, and Hirata, So. Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method. United States: N. p., 2022. Web. doi:10.1063/5.0091973.
Cruz, J. César, Garza, Jorge, Yanai, Takeshi, & Hirata, So. Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method. United States. https://doi.org/10.1063/5.0091973
Cruz, J. César, Garza, Jorge, Yanai, Takeshi, and Hirata, So. Thu . "Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method". United States. https://doi.org/10.1063/5.0091973. https://www.osti.gov/servlets/purl/1870088.
@article{osti_1870088,
title = {Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method},
author = {Cruz, J. César and Garza, Jorge and Yanai, Takeshi and Hirata, So},
abstractNote = {A second-order many-body perturbation correction to the relativistic Dirac–Hartree–Fock energy is evaluated stochastically by integrating 13-dimensional products of four-component spinors and Coulomb potentials. The integration in the real space of electron coordinates is carried out by the Monte Carlo (MC) method with the Metropolis sampling, whereas the MC integration in the imaginary-time domain is performed by the inverse-cumulative distribution function method. The computational cost to reach a given relative statistical error for spatially compact but heavy molecules is observed to be no worse than cubic and possibly quadratic with the number of electrons or basis functions. This is a vast improvement over the quintic scaling of the conventional, deterministic second-order many-body perturbation method. The algorithm is also easily and efficiently parallelized with 92% strong scalability going from 64 to 4096 processors.},
doi = {10.1063/5.0091973},
journal = {Journal of Chemical Physics},
number = 22,
volume = 156,
place = {United States},
year = {Thu May 19 00:00:00 EDT 2022},
month = {Thu May 19 00:00:00 EDT 2022}
}

Works referenced in this record:

Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams
journal, January 2014

  • Willow, Soohaeng Yoo; Hirata, So
  • The Journal of Chemical Physics, Vol. 140, Issue 2
  • DOI: 10.1063/1.4861561

Communication: Stochastic evaluation of explicitly correlated second-order many-body perturbation energy
journal, January 2014

  • Willow, Soohaeng Yoo; Zhang, Jinmei; Valeev, Edward F.
  • The Journal of Chemical Physics, Vol. 140, Issue 3
  • DOI: 10.1063/1.4862255

Expeditious Stochastic Calculation of Random-Phase Approximation Energies for Thousands of Electrons in Three Dimensions
journal, March 2013

  • Neuhauser, Daniel; Rabani, Eran; Baer, Roi
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 7
  • DOI: 10.1021/jz3021606

Essentials of relativistic quantum chemistry
journal, May 2020

  • Liu, Wenjian
  • The Journal of Chemical Physics, Vol. 152, Issue 18
  • DOI: 10.1063/5.0008432

Relativistic atomic structure calculations
journal, April 1979


Communication: Explicitly correlated four-component relativistic second-order Møller-Plesset perturbation theory
journal, October 2012

  • Ten-no, Seiichiro; Yamaki, Daisuke
  • The Journal of Chemical Physics, Vol. 137, Issue 13
  • DOI: 10.1063/1.4757415

Low-order scaling local electron correlation methods. I. Linear scaling local MP2
journal, October 1999

  • Schütz, Martin; Hetzer, Georg; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 111, Issue 13
  • DOI: 10.1063/1.479957

A new implementation of four-component relativistic density functional method for heavy-atom polyatomic systems
journal, November 2001

  • Yanai, Takeshi; Iikura, Hisayoshi; Nakajima, Takahito
  • The Journal of Chemical Physics, Vol. 115, Issue 18
  • DOI: 10.1063/1.1412252

Relativistic Hamiltonians for Chemistry: A Primer
journal, November 2011


Direct relativistic MP2: properties of ground state CuF, AgF and AuF
journal, October 1997

  • Laerdahl, Jon K.; Saue, Trond; Faegri Jr., Knut
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 97, Issue 1-4
  • DOI: 10.1007/s002140050251

Projector Monte Carlo method based on Slater determinants: a new sampling method for singlet state calculations
journal, September 2011


Electron correlation within the relativistic no-pair approximation
journal, August 2016

  • Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa.
  • The Journal of Chemical Physics, Vol. 145, Issue 7
  • DOI: 10.1063/1.4959452

Foundations of the relativistic theory of many-electron atoms
journal, August 1980


Error estimates on averages of correlated data
journal, July 1989

  • Flyvbjerg, H.; Petersen, H. G.
  • The Journal of Chemical Physics, Vol. 91, Issue 1
  • DOI: 10.1063/1.457480

Introduction to Relativistic Quantum Chemistry
January 2007


A new computational scheme for the Dirac–Hartree–Fock method employing an efficient integral algorithm
journal, April 2001

  • Yanai, Takeshi; Nakajima, Takahito; Ishikawa, Yasuyuki
  • The Journal of Chemical Physics, Vol. 114, Issue 15
  • DOI: 10.1063/1.1356012

Projector Monte Carlo method based on configuration state functions. Test applications to the H4 system and dissociation of LiH
journal, October 2008


Recent Development of Relativistic Molecular Theory
journal, May 2005

  • Nakajima, Takahito; Hirao, Kimihiko
  • Monatshefte für Chemie - Chemical Monthly, Vol. 136, Issue 6
  • DOI: 10.1007/s00706-005-0304-0

The calculation of excited state properties with quantum Monte Carlo
journal, November 1988

  • Ceperley, D. M.; Bernu, B.
  • The Journal of Chemical Physics, Vol. 89, Issue 10
  • DOI: 10.1063/1.455398

Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory
journal, July 2006

  • Liu, Wenjian; Peng, Daoling
  • The Journal of Chemical Physics, Vol. 125, Issue 4
  • DOI: 10.1063/1.2222365

A direct MP2 gradient method
journal, February 1990


Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems
journal, December 2012

  • Neuhauser, Daniel; Rabani, Eran; Baer, Roi
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 1
  • DOI: 10.1021/ct300946j

A Guided Stochastic Energy-Domain Formulation of the Second Order Møller–Plesset Perturbation Theory
journal, December 2013

  • Ge, Qinghui; Gao, Yi; Baer, Roi
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 1
  • DOI: 10.1021/jz402206m

Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory
journal, July 2017

  • Garniron, Yann; Scemama, Anthony; Loos, Pierre-François
  • The Journal of Chemical Physics, Vol. 147, Issue 3
  • DOI: 10.1063/1.4992127

A four-index transformation in Dirac's four-component relativistic theory
journal, April 2004


Laplace transform techniques in Mo/ller–Plesset perturbation theory
journal, January 1992

  • Häser, Marco; Almlöf, Jan
  • The Journal of Chemical Physics, Vol. 96, Issue 1
  • DOI: 10.1063/1.462485

Construction of the hamiltonian matrix in large configuration interaction calculations
journal, March 1973


Stochastic evaluation of second-order Dyson self-energies
journal, April 2013

  • Willow, Soohaeng Yoo; Kim, Kwang S.; Hirata, So
  • The Journal of Chemical Physics, Vol. 138, Issue 16
  • DOI: 10.1063/1.4801862

Multireference Stochastic Coupled Cluster
journal, October 2019

  • Filip, Maria-Andreea; Scott, Charles J. C.; Thom, Alex J. W.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 12
  • DOI: 10.1021/acs.jctc.9b00741

Large scale parallelization in stochastic coupled cluster
journal, November 2018

  • Spencer, J. S.; Neufeld, V. A.; Vigor, W. A.
  • The Journal of Chemical Physics, Vol. 149, Issue 20
  • DOI: 10.1063/1.5047420

Monte Carlo MP2-F12 for Noncovalent Interactions: The C 60 Dimer
journal, August 2021

  • Doran, Alexander E.; Qiu, David L.; Hirata, So
  • The Journal of Physical Chemistry A, Vol. 125, Issue 33
  • DOI: 10.1021/acs.jpca.1c05021

The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian
journal, December 2006

  • Abe, Minori; Nakajima, Takahito; Hirao, Kimihiko
  • The Journal of Chemical Physics, Vol. 125, Issue 23
  • DOI: 10.1063/1.2404666

Stochastic evaluation of second-order many-body perturbation energies
journal, November 2012

  • Willow, Soohaeng Yoo; Kim, Kwang S.; Hirata, So
  • The Journal of Chemical Physics, Vol. 137, Issue 20
  • DOI: 10.1063/1.4768697

Efficient recursive computation of molecular integrals over Cartesian Gaussian functions
journal, April 1986

  • Obara, S.; Saika, A.
  • The Journal of Chemical Physics, Vol. 84, Issue 7
  • DOI: 10.1063/1.450106

Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling
journal, September 2020

  • Doran, Alexander E.; Hirata, So
  • The Journal of Chemical Physics, Vol. 153, Issue 10
  • DOI: 10.1063/5.0020583

Equation of State Calculations by Fast Computing Machines
journal, June 1953

  • Metropolis, Nicholas; Rosenbluth, Arianna W.; Rosenbluth, Marshall N.
  • The Journal of Chemical Physics, Vol. 21, Issue 6
  • DOI: 10.1063/1.1699114

Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models
journal, June 2012

  • Shepherd, James J.; Booth, George H.; Alavi, Ali
  • The Journal of Chemical Physics, Vol. 136, Issue 24
  • DOI: 10.1063/1.4720076

Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates
journal, September 2020

  • Doran, Alexander E.; Hirata, So
  • The Journal of Chemical Physics, Vol. 153, Issue 9
  • DOI: 10.1063/5.0020584

Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”
journal, September 2007

  • Peng, Daoling; Liu, Wenjian; Xiao, Yunlong
  • The Journal of Chemical Physics, Vol. 127, Issue 10
  • DOI: 10.1063/1.2772856

A fully relativistic Dirac–Hartree–Fock and second-order Mo/ller–Plesset study of the lanthanide and actinide contraction
journal, December 1998

  • Laerdahl, J. K.; Fægri, K.; Visscher, L.
  • The Journal of Chemical Physics, Vol. 109, Issue 24
  • DOI: 10.1063/1.477686

Convergence Acceleration of Parallel Monte Carlo Second-Order Many-Body Perturbation Calculations Using Redundant Walkers
journal, September 2013

  • Willow, Soohaeng Yoo; Hermes, Matthew R.; Kim, Kwang S.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 10
  • DOI: 10.1021/ct400557z

Electronic structures of PtCu, PtAg, and PtAu molecules: a Dirac four-component relativistic study
journal, April 2005


Negative energy states in relativistic quantum chemistry
journal, January 2012


Relativistic Dirac-Fock and many-body perturbation calculations on He, He-like ions, Ne, and Ar
journal, August 1990


Exact two-component Hamiltonians revisited
journal, July 2009

  • Liu, Wenjian; Peng, Daoling
  • The Journal of Chemical Physics, Vol. 131, Issue 3
  • DOI: 10.1063/1.3159445

Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space
journal, January 2009

  • Booth, George H.; Thom, Alex J. W.; Alavi, Ali
  • The Journal of Chemical Physics, Vol. 131, Issue 5
  • DOI: 10.1063/1.3193710

A new determinant-based full configuration interaction method
journal, November 1984


Monte Carlo Second- and Third-Order Many-Body Green’s Function Methods with Frequency-Dependent, Nondiagonal Self-Energy
journal, October 2019

  • Doran, Alexander E.; Hirata, So
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 11
  • DOI: 10.1021/acs.jctc.9b00693

MP2 energy evaluation by direct methods
journal, December 1988


Quantum Monte Carlo for Ab Initio calculations of energy-relevant materials
journal, August 2013

  • Wagner, Lucas K.
  • International Journal of Quantum Chemistry, Vol. 114, Issue 2
  • DOI: 10.1002/qua.24526

Advances in relativistic molecular quantum mechanics
journal, April 2014


Introduction to the Variational and Diffusion Monte Carlo Methods
book, January 2016


Metropolis Evaluation of the Hartree–Fock Exchange Energy
journal, September 2014

  • Cytter, Yael; Neuhauser, Daniel; Baer, Roi
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 10
  • DOI: 10.1021/ct500450w

Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers
journal, March 1996


Monte Carlo MP2 on Many Graphical Processing Units
journal, September 2016

  • Doran, Alexander E.; Hirata, So
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 10
  • DOI: 10.1021/acs.jctc.6b00588

M ONTE C ARLO M ETHODS IN E LECTRONIC S TRUCTURES FOR L ARGE S YSTEMS
journal, October 2000


Stochastic Self-Consistent Second-Order Green’s Function Method for Correlation Energies of Large Electronic Systems
journal, October 2017

  • Neuhauser, Daniel; Baer, Roi; Zgid, Dominika
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00792

Perspective: Relativistic effects
journal, April 2012

  • Autschbach, Jochen
  • The Journal of Chemical Physics, Vol. 136, Issue 15
  • DOI: 10.1063/1.3702628

Semi-direct algorithms for the MP2 energy and gradient
journal, February 1990


Monte Carlo explicitly correlated second-order many-body perturbation theory
journal, October 2016

  • Johnson, Cole M.; Doran, Alexander E.; Zhang, Jinmei
  • The Journal of Chemical Physics, Vol. 145, Issue 15
  • DOI: 10.1063/1.4964854

The zero‐order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules
journal, October 1996

  • van Lenthe, E.; Snijders, J. G.; Baerends, E. J.
  • The Journal of Chemical Physics, Vol. 105, Issue 15
  • DOI: 10.1063/1.472460

Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
journal, January 2010

  • Cleland, Deidre; Booth, George H.; Alavi, Ali
  • The Journal of Chemical Physics, Vol. 132, Issue 4
  • DOI: 10.1063/1.3302277

Basis-set expansion calculations with the Dirac Hamiltonian
journal, March 1984

  • Ishikawa, Yasuyuki
  • International Journal of Quantum Chemistry, Vol. 26, Issue S18
  • DOI: 10.1002/qua.560260835

Applications of quantum Monte Carlo methods in condensed systems
journal, January 2011


Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method
journal, January 2017

  • Jeanmairet, Guillaume; Sharma, Sandeep; Alavi, Ali
  • The Journal of Chemical Physics, Vol. 146, Issue 4
  • DOI: 10.1063/1.4974177

Multi-state effective Hamiltonian and size-consistency corrections in stochastic configuration interactions
journal, December 2017

  • Ten-no, Seiichiro L.
  • The Journal of Chemical Physics, Vol. 147, Issue 24
  • DOI: 10.1063/1.5003222

A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules
journal, October 1995

  • Yang, Weitao; Lee, Tai‐Sung
  • The Journal of Chemical Physics, Vol. 103, Issue 13
  • DOI: 10.1063/1.470549

Linear-scaling and parallelisable algorithms for stochastic quantum chemistry
journal, January 2014


Stochastic many-body perturbation theory for electron correlation energies
journal, December 2019

  • Li, Zhendong
  • The Journal of Chemical Physics, Vol. 151, Issue 24
  • DOI: 10.1063/1.5128719

Quantum Monte Carlo and Related Approaches
journal, December 2011

  • Austin, Brian M.; Zubarev, Dmitry Yu.; Lester, William A.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr2001564

Stochastic Perturbation Theory: A Low-Scaling Approach to Correlated Electronic Energies
journal, October 2007


The ZORA formalism applied to the Dirac-Fock equation
journal, December 1995


Ideas of relativistic quantum chemistry
journal, July 2010


Local Treatment of Electron Correlation
journal, October 1993


Projector Monte Carlo method based on Slater determinants: Test application to singlet excited states of H2O and LiF
journal, January 2010


Stochastic Resolution of Identity for Real-Time Second-Order Green’s Function: Ionization Potential and Quasi-Particle Spectrum
journal, October 2019

  • Dou, Wenjie; Takeshita, Tyler Y.; Chen, Ming
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 12
  • DOI: 10.1021/acs.jctc.9b00918

Monte Carlo explicitly correlated many-body Green’s function theory
journal, November 2018

  • Johnson, Cole M.; Doran, Alexander E.; Ten-no, Seiichiro L.
  • The Journal of Chemical Physics, Vol. 149, Issue 17
  • DOI: 10.1063/1.5054610

An ab initio study based on a finite nucleus model for isotope fractionation in the U(III)–U(IV) exchange reaction system
journal, April 2008

  • Abe, Minori; Suzuki, Tatsuya; Fujii, Yasuhiko
  • The Journal of Chemical Physics, Vol. 128, Issue 14
  • DOI: 10.1063/1.2898541

Density functional theory for systems of very many atoms
journal, November 1995


Stochastic Formulation of the Resolution of Identity: Application to Second Order Møller–Plesset Perturbation Theory
journal, September 2017

  • Takeshita, Tyler Y.; de Jong, Wibe A.; Neuhauser, Daniel
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 10
  • DOI: 10.1021/acs.jctc.7b00343