DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes

Abstract

Dendrites and dead lithium formation over prolonged cycling have long been challenges that hinder the safe implementation of metallic Li anodes. In this study, we employ polymer-stabilized liquid metal nanoparticles (LM-P NPs) of eutectic gallium indium (EGaIn) to create uniform Li nucleation sites enabling homogeneous lithium electrodeposition. Block copolymers of poly(ethylene oxide) and poly(acrylic acid) (PEO-b-PAA) were grafted onto the EGaIn surface, forming stabilized, well-dispersed NPs. Using a scalable spray coating approach, LM-P NPs were fabricated on copper current collectors, providing lithiophilic PEO sites and interactive carboxyl groups to guide Li deposition. The Li-EGaIn alloying process greatly reduced the Li+ diffusion barrier, enabling fast Li transport through the coating layer, resulting in decreased nucleation overpotential. Therefore, about five times lower Li nucleation overpotential was obtained on the LM-P modified Cu with an optimal composition of the polymers than the bare Cu substrates. DFT computations was used to reveal the binding properties between the LM-P layer and Li. Due to the regulated Li plating/stripping process, as-obtained 30 μm Li anodes paired with LiNi0.8Co0.1Mn0.1O2 (NCM811) with a negative/positive electrode capacity (N/P) ratio ~ 10 exhibited stable cycling performance at 0.5C for over 250 cycles, with an average Coulombic efficiency of 99.55%. Ultrathinmore » Li (1 μm) anodes with an N/P ratio ~ 0.6 were also demonstrated in Li|LiFePO4 cells, which examined the stabilization of Li by LM-P NPs and monitored practical loadings of Li anodes that are close to anode-free systems.« less

Authors:
 [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  2. Univ. of Pittsburgh, PA (United States)
Publication Date:
Research Org.:
Univ. of Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF); Carnegie Mellon University
OSTI Identifier:
1869217
Grant/Contract Number:  
FG02-07ER46430; 1501324; 2202747; MCF677785
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Energy Materials
Additional Journal Information:
Journal Volume: 5; Journal Issue: 3; Journal ID: ISSN 2574-0962
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium metal anode; eutectic alloys; block copolymers; ATRP; EGaln; cu current collector; liquid metal

Citation Formats

Liu, Tong, Wu, Xinsheng, Zhu, Shang, Lorandi, Francesca, Ni, Longchang, Li, Sipei, Sun, Mingkang, Bloom, Brian P., Waldeck, David H., Viswanathan, Venkatasubramanian, Whitacre, Jay F., and Matyjaszewski, Krzysztof. Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. United States: N. p., 2022. Web. doi:10.1021/acsaem.1c04106.
Liu, Tong, Wu, Xinsheng, Zhu, Shang, Lorandi, Francesca, Ni, Longchang, Li, Sipei, Sun, Mingkang, Bloom, Brian P., Waldeck, David H., Viswanathan, Venkatasubramanian, Whitacre, Jay F., & Matyjaszewski, Krzysztof. Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. United States. https://doi.org/10.1021/acsaem.1c04106
Liu, Tong, Wu, Xinsheng, Zhu, Shang, Lorandi, Francesca, Ni, Longchang, Li, Sipei, Sun, Mingkang, Bloom, Brian P., Waldeck, David H., Viswanathan, Venkatasubramanian, Whitacre, Jay F., and Matyjaszewski, Krzysztof. Mon . "Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes". United States. https://doi.org/10.1021/acsaem.1c04106. https://www.osti.gov/servlets/purl/1869217.
@article{osti_1869217,
title = {Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes},
author = {Liu, Tong and Wu, Xinsheng and Zhu, Shang and Lorandi, Francesca and Ni, Longchang and Li, Sipei and Sun, Mingkang and Bloom, Brian P. and Waldeck, David H. and Viswanathan, Venkatasubramanian and Whitacre, Jay F. and Matyjaszewski, Krzysztof},
abstractNote = {Dendrites and dead lithium formation over prolonged cycling have long been challenges that hinder the safe implementation of metallic Li anodes. In this study, we employ polymer-stabilized liquid metal nanoparticles (LM-P NPs) of eutectic gallium indium (EGaIn) to create uniform Li nucleation sites enabling homogeneous lithium electrodeposition. Block copolymers of poly(ethylene oxide) and poly(acrylic acid) (PEO-b-PAA) were grafted onto the EGaIn surface, forming stabilized, well-dispersed NPs. Using a scalable spray coating approach, LM-P NPs were fabricated on copper current collectors, providing lithiophilic PEO sites and interactive carboxyl groups to guide Li deposition. The Li-EGaIn alloying process greatly reduced the Li+ diffusion barrier, enabling fast Li transport through the coating layer, resulting in decreased nucleation overpotential. Therefore, about five times lower Li nucleation overpotential was obtained on the LM-P modified Cu with an optimal composition of the polymers than the bare Cu substrates. DFT computations was used to reveal the binding properties between the LM-P layer and Li. Due to the regulated Li plating/stripping process, as-obtained 30 μm Li anodes paired with LiNi0.8Co0.1Mn0.1O2 (NCM811) with a negative/positive electrode capacity (N/P) ratio ~ 10 exhibited stable cycling performance at 0.5C for over 250 cycles, with an average Coulombic efficiency of 99.55%. Ultrathin Li (1 μm) anodes with an N/P ratio ~ 0.6 were also demonstrated in Li|LiFePO4 cells, which examined the stabilization of Li by LM-P NPs and monitored practical loadings of Li anodes that are close to anode-free systems.},
doi = {10.1021/acsaem.1c04106},
journal = {ACS Applied Energy Materials},
number = 3,
volume = 5,
place = {United States},
year = {Mon Mar 14 00:00:00 EDT 2022},
month = {Mon Mar 14 00:00:00 EDT 2022}
}

Works referenced in this record:

A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life
journal, January 2017

  • Wu, Yingpeng; Huang, Lu; Huang, Xingkang
  • Energy & Environmental Science, Vol. 10, Issue 8
  • DOI: 10.1039/C7EE01798G

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Facile Generation of Polymer-Alloy Hybrid Layers for Dendrite-Free Lithium-Metal Anodes with Improved Moisture Stability
journal, July 2019

  • Jiang, Zhipeng; Jin, Liu; Han, Zhilong
  • Angewandte Chemie International Edition, Vol. 58, Issue 33
  • DOI: 10.1002/anie.201905712

Miniemulsion ARGET ATRP via Interfacial and Ion-Pair Catalysis: From ppm to ppb of Residual Copper
journal, November 2017


Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature
journal, April 2008

  • Dickey, Michael D.; Chiechi, Ryan C.; Larsen, Ryan J.
  • Advanced Functional Materials, Vol. 18, Issue 7
  • DOI: 10.1002/adfm.200701216

Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers
journal, July 2006

  • Jakubowski, Wojciech; Matyjaszewski, Krzysztof
  • Angewandte Chemie International Edition, Vol. 45, Issue 27
  • DOI: 10.1002/anie.200600272

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Polymer Chemistry for Improving Lithium Metal Anodes
journal, November 2019

  • Li, Sipei; Lorandi, Francesca; Whitacre, Jay F.
  • Macromolecular Chemistry and Physics, Vol. 221, Issue 1
  • DOI: 10.1002/macp.201900379

Origin of lithium whisker formation and growth under stress
journal, October 2019


A scalable 3D lithium metal anode
journal, January 2019


Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
journal, February 2020


Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
journal, February 2017


Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte
journal, April 2021


Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents
journal, October 2006

  • Matyjaszewski, K.; Jakubowski, W.; Min, K.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 42
  • DOI: 10.1073/pnas.0602675103

Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries
journal, October 2020

  • Ahmad, Zeeshan; Hong, Zijian; Viswanathan, Venkatasubramanian
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 43
  • DOI: 10.1073/pnas.2008841117

Lithium Host:Advanced architecture components for lithium metal anode
journal, June 2021


Solid-state polymer electrolytes for high-performance lithium metal batteries
journal, September 2019


Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries
journal, October 2019


Functional polymers for lithium metal batteries
journal, November 2021


A Semiliquid Lithium Metal Anode
journal, July 2019


Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method
journal, June 2010


Surface Engineering of Liquid Metal Nanodroplets by Attachable Diblock Copolymers
journal, July 2020


Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating
journal, September 2018


Catalytic Halogen Exchange in Miniemulsion ARGET ATRP: A Pathway to Well‐Controlled Block Copolymers
journal, June 2020

  • Wang, Yi; Matyjaszewski, Krzysztof
  • Macromolecular Rapid Communications, Vol. 41, Issue 14
  • DOI: 10.1002/marc.202000264

A Self-Healing Anode for Li-Ion Batteries by Rational Interface Modification of Room-Temperature Liquid Metal
journal, September 2021

  • Huang, Chenghao; Wang, Xiaodong; Cao, Qingping
  • ACS Applied Energy Materials, Vol. 4, Issue 11
  • DOI: 10.1021/acsaem.1c01951

Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries
journal, May 2021


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Stable Lithium Metal Anode Enabled by 3D Soft Host
journal, May 2020

  • Wang, Hua; Wu, Jinyi; Yuan, Lixia
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 25
  • DOI: 10.1021/acsami.0c08029

Lithium‐Metal Anodes: Advances in the Design of 3D‐Structured Electrode Materials for Lithium‐Metal Anodes (Adv. Mater. 51/2020)
journal, December 2020

  • Park, Sunwoo; Jin, Hyoung‐Joon; Yun, Young Soo
  • Advanced Materials, Vol. 32, Issue 51
  • DOI: 10.1002/adma.202070386

Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization
journal, May 2019


Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries
journal, January 2020

  • Xu, Nan; Li, Linlin; He, Yi
  • Journal of Materials Chemistry A, Vol. 8, Issue 13
  • DOI: 10.1039/D0TA01044H

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Next-Generation Liquid Metal Batteries Based on the Chemistry of Fusible Alloys
journal, July 2020


Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries
journal, March 2021


The Effect of Interfacial Deformation on Electrodeposition Kinetics
journal, January 2004

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1710893

Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries
journal, March 2021


Design principles for self-forming interfaces enabling stable lithium-metal anodes
journal, October 2020

  • Zhu, Yingying; Pande, Vikram; Li, Linsen
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.2001923117

Key Issues Hindering a Practical Lithium-Metal Anode
journal, May 2019


Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates
journal, March 2018


Liquid metal nanocomposites
journal, January 2020

  • Malakooti, Mohammad H.; Bockstaller, Michael R.; Matyjaszewski, Krzysztof
  • Nanoscale Advances, Vol. 2, Issue 7
  • DOI: 10.1039/D0NA00148A

Functional polymers by atom transfer radical polymerization
journal, April 2001

  • Coessens, Veerle; Pintauer, Tomislav; Matyjaszewski, Krzysztof
  • Progress in Polymer Science, Vol. 26, Issue 3
  • DOI: 10.1016/S0079-6700(01)00003-X

Effect of Crystallinity on Li Adsorption in Polyethylene Oxide
journal, November 2018


Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review
journal, January 2021

  • Park, Se Hwan; Jun, Dayoung; Lee, Gyu Hyeon
  • Journal of Materials Chemistry A, Vol. 9, Issue 26
  • DOI: 10.1039/D1TA02657G

A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


Self-Healing Nucleation Seeds Induced Long-Term Dendrite-Free Lithium Metal Anode
journal, September 2021


Lithium metal stripping beneath the solid electrolyte interphase
journal, August 2018

  • Shi, Feifei; Pei, Allen; Boyle, David Thomas
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 34
  • DOI: 10.1073/pnas.1806878115

Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries
journal, August 2018


How lithium dendrites form in liquid batteries
journal, October 2019


A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers
journal, May 2021


Atom Transfer Radical Polymerization
journal, September 2001

  • Matyjaszewski, Krzysztof; Xia, Jianhui
  • Chemical Reviews, Vol. 101, Issue 9
  • DOI: 10.1021/cr940534g

Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
journal, August 2018


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes
journal, August 2021


Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes
journal, June 2021


Normalized Lithium Growth from the Nucleation Stage for Dendrite‐Free Lithium Metal Anodes
journal, December 2019

  • Li, Nan; Ye, Qian; Zhang, Kun
  • Angewandte Chemie International Edition, Vol. 58, Issue 50
  • DOI: 10.1002/anie.201911267

Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes
journal, August 2018

  • Pu, Jun; Li, Jiachen; Shen, Zihan
  • Advanced Functional Materials, Vol. 28, Issue 41
  • DOI: 10.1002/adfm.201804133

Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives
journal, April 2012

  • Matyjaszewski, Krzysztof
  • Macromolecules, Vol. 45, Issue 10, p. 4015-4039
  • DOI: 10.1021/ma3001719

Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries
journal, April 2020


Room-temperature liquid metal and alloy systems for energy storage applications
journal, January 2019

  • Guo, Xuelin; Zhang, Leyuan; Ding, Yu
  • Energy & Environmental Science, Vol. 12, Issue 9
  • DOI: 10.1039/C9EE01707K

Lithiophilic Ag/Li composite anodes via a spontaneous reaction for Li nucleation with a reduced barrier
journal, January 2019

  • Liu, Tiancheng; Hu, Qiyang; Li, Xinhai
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/C9TA05335B

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Effects of Polymer Coatings on Electrodeposited Lithium Metal
journal, August 2018

  • Lopez, Jeffrey; Pei, Allen; Oh, Jin Young
  • Journal of the American Chemical Society, Vol. 140, Issue 37
  • DOI: 10.1021/jacs.8b06047

Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries
journal, May 2021


A Self‐Healing Room‐Temperature Liquid‐Metal Anode for Alkali‐Ion Batteries
journal, September 2018

  • Guo, Xuelin; Ding, Yu; Xue, Leigang
  • Advanced Functional Materials, Vol. 28, Issue 46
  • DOI: 10.1002/adfm.201804649

Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Printable, high-performance solid-state electrolyte films
journal, November 2020


A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Liquid metal batteries for future energy storage
journal, January 2021

  • Zhang, Shilin; Liu, Ye; Fan, Qining
  • Energy & Environmental Science, Vol. 14, Issue 8
  • DOI: 10.1039/D1EE00531F

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362