DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO2 Reduction

Abstract

Protection of enzymes with synthetic materials is a viable strategy to stabilize, and hence to retain, the reactivity of these highly active biomolecules in non-native environments. Active synthetic supports, coupled to encapsulated enzymes, can enable efficient cascade reactions which are necessary for processes like light-driven CO2 reduction, providing a promising pathway for alternative energy generation. Herein, a semi-artificial system—containing an immobilized enzyme, formate dehydrogenase, in a light harvesting scaffold—is reported for the conversion of CO2 to formic acid using white light. The electron-mediator Cp*Rh(2,2'-bipyridyl-5,5'-dicarboxylic acid)Cl was anchored to the nodes of the metal–organic framework NU-1006 to facilitate ultrafast photo-induced electron transfer when irradiated, leading to the reduction of the coenzyme nicotinamide adenine dinucleotide at a rate of about 28 mM·h-1. Most importantly, the immobilized enzyme utilizes the reduced coenzyme to generate formic acid selectively from CO2 at a high turnover frequency of about 865 h-1 in 24 h. The outcome of this research is the demonstration of a feasible pathway for solar-driven carbon fixation.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
  3. Northwestern Univ., Evanston, IL (United States); Tianjin Univ. (China). Institute for Molecular Design and Synthesis; Univ. of New South Wales, Sydney, NSW (Australia)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Light Energy Activated Redox Processes (LEAP)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1865071
Grant/Contract Number:  
SC0000989; SC0001059; CHE-1048773; DMR0521267; NSF NNCI-1542205; NSF DMR-1720139
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 142; Journal Issue: 4; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Metal organic frameworks; Peptides and proteins; Photosensitization; Irradiation; Light

Citation Formats

Chen, Yijing, Li, Peng, Zhou, Jiawang, Buru, Cassandra T., Đorđević, Luka, Li, Penghao, Zhang, Xuan, Cetin, M. Mustafa, Stoddart, J. Fraser, Stupp, Samuel I., Wasielewski, Michael R., and Farha, Omar K. Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO2 Reduction. United States: N. p., 2020. Web. doi:10.1021/jacs.9b12828.
Chen, Yijing, Li, Peng, Zhou, Jiawang, Buru, Cassandra T., Đorđević, Luka, Li, Penghao, Zhang, Xuan, Cetin, M. Mustafa, Stoddart, J. Fraser, Stupp, Samuel I., Wasielewski, Michael R., & Farha, Omar K. Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO2 Reduction. United States. https://doi.org/10.1021/jacs.9b12828
Chen, Yijing, Li, Peng, Zhou, Jiawang, Buru, Cassandra T., Đorđević, Luka, Li, Penghao, Zhang, Xuan, Cetin, M. Mustafa, Stoddart, J. Fraser, Stupp, Samuel I., Wasielewski, Michael R., and Farha, Omar K. Mon . "Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO2 Reduction". United States. https://doi.org/10.1021/jacs.9b12828. https://www.osti.gov/servlets/purl/1865071.
@article{osti_1865071,
title = {Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO2 Reduction},
author = {Chen, Yijing and Li, Peng and Zhou, Jiawang and Buru, Cassandra T. and Đorđević, Luka and Li, Penghao and Zhang, Xuan and Cetin, M. Mustafa and Stoddart, J. Fraser and Stupp, Samuel I. and Wasielewski, Michael R. and Farha, Omar K.},
abstractNote = {Protection of enzymes with synthetic materials is a viable strategy to stabilize, and hence to retain, the reactivity of these highly active biomolecules in non-native environments. Active synthetic supports, coupled to encapsulated enzymes, can enable efficient cascade reactions which are necessary for processes like light-driven CO2 reduction, providing a promising pathway for alternative energy generation. Herein, a semi-artificial system—containing an immobilized enzyme, formate dehydrogenase, in a light harvesting scaffold—is reported for the conversion of CO2 to formic acid using white light. The electron-mediator Cp*Rh(2,2'-bipyridyl-5,5'-dicarboxylic acid)Cl was anchored to the nodes of the metal–organic framework NU-1006 to facilitate ultrafast photo-induced electron transfer when irradiated, leading to the reduction of the coenzyme nicotinamide adenine dinucleotide at a rate of about 28 mM·h-1. Most importantly, the immobilized enzyme utilizes the reduced coenzyme to generate formic acid selectively from CO2 at a high turnover frequency of about 865 h-1 in 24 h. The outcome of this research is the demonstration of a feasible pathway for solar-driven carbon fixation.},
doi = {10.1021/jacs.9b12828},
journal = {Journal of the American Chemical Society},
number = 4,
volume = 142,
place = {United States},
year = {Mon Jan 13 00:00:00 EST 2020},
month = {Mon Jan 13 00:00:00 EST 2020}
}

Works referenced in this record:

Solar cell efficiency tables (version 41): Solar cell efficiency tables
journal, December 2012

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 21, Issue 1
  • DOI: 10.1002/pip.2352

Opportunities and challenges for combining chemo- and biocatalysis
journal, January 2018


Metal–Organic Frameworks for Light Harvesting and Photocatalysis
journal, November 2012

  • Wang, Jin-Liang; Wang, Cheng; Lin, Wenbin
  • ACS Catalysis, Vol. 2, Issue 12
  • DOI: 10.1021/cs3005874

MOF-based electronic and opto-electronic devices
journal, January 2014

  • Stavila, V.; Talin, A. A.; Allendorf, M. D.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00096J

Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis
journal, October 2018

  • Kornienko, Nikolay; Zhang, Jenny Z.; Sakimoto, Kelsey K.
  • Nature Nanotechnology, Vol. 13, Issue 10
  • DOI: 10.1038/s41565-018-0251-7

Biomimetic Artificial Photosynthesis by Light-Harvesting Synthetic Wood
journal, April 2011


Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates
journal, January 2013

  • Liu, Jian; Antonietti, Markus
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee40696b

Rhodium-Coordinated Poly(arylene-ethynylene)- alt -Poly(arylene-vinylene) Copolymer Acting as Photocatalyst for Visible-Light-Powered NAD + /NADH Reduction
journal, September 2014

  • Oppelt, Kerstin T.; Gasiorowski, Jacek; Egbe, Daniel Ayuk Mbi
  • Journal of the American Chemical Society, Vol. 136, Issue 36
  • DOI: 10.1021/ja506060u

Post-synthetic metalation of metal–organic frameworks
journal, January 2014

  • Evans, Jack D.; Sumby, Christopher J.; Doonan, Christian J.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00076E

Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach
journal, May 2017

  • Liao, Fu-Siang; Lo, Wei-Shang; Hsu, Yu-Shen
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01794

Acid-Resistant Mesoporous Metal–Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release
journal, April 2018

  • Chen, Yijing; Li, Peng; Modica, Justin A.
  • Journal of the American Chemical Society, Vol. 140, Issue 17
  • DOI: 10.1021/jacs.8b02089

A Photocatalyst–Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO 2
journal, July 2012

  • Yadav, Rajesh K.; Baeg, Jin-Ook; Oh, Gyu Hwan
  • Journal of the American Chemical Society, Vol. 134, Issue 28
  • DOI: 10.1021/ja3009902

Photochemical synthesis of formic acid from CO2 with formate dehydrogenase and water-soluble zinc porphyrin
journal, February 2004


Photochemical and enzymatic synthesis of formic acid from CO2 with chlorophyll and dehydrogenase system
journal, March 2006


De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities
journal, September 2010

  • Farha, Omar K.; Özgür Yazaydın, A.; Eryazici, Ibrahim
  • Nature Chemistry, Vol. 2, Issue 11, p. 944-948
  • DOI: 10.1038/nchem.834

Highly controlled acetylene accommodation in a metal–organic microporous material
journal, July 2005

  • Matsuda, Ryotaro; Kitaura, Ryo; Kitagawa, Susumu
  • Nature, Vol. 436, Issue 7048
  • DOI: 10.1038/nature03852

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

CD-MOF: A Versatile Separation Medium
journal, February 2016

  • Hartlieb, Karel J.; Holcroft, James M.; Moghadam, Peyman Z.
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b12860

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework
journal, September 2018


Catalytic chemoselective functionalization of methane in a metal−organic framework
journal, May 2018


The role of reticular chemistry in the design of CO2 reduction catalysts
journal, February 2018


Metal–organic framework materials for light-harvesting and energy transfer
journal, January 2015

  • So, Monica C.; Wiederrecht, Gary P.; Mondloch, Joseph E.
  • Chemical Communications, Vol. 51, Issue 17
  • DOI: 10.1039/C4CC09596K

Light Harvesting in Microscale Metal–Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching
journal, August 2011

  • Kent, Caleb A.; Liu, Demin; Ma, Liqing
  • Journal of the American Chemical Society, Vol. 133, Issue 33
  • DOI: 10.1021/ja204214t

Energy Transfer from Quantum Dots to Metal–Organic Frameworks for Enhanced Light Harvesting
journal, January 2013

  • Jin, Shengye; Son, Ho-Jin; Farha, Omar K.
  • Journal of the American Chemical Society, Vol. 135, Issue 3
  • DOI: 10.1021/ja3097114

Light-Harvesting Metal–Organic Frameworks (MOFs) Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs
journal, October 2011

  • Lee, Chang Yeon; Farha, Omar K.; Hong, Bong Jin
  • Journal of the American Chemical Society, Vol. 133, Issue 40, p. 15858-15861
  • DOI: 10.1021/ja206029a

Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework
journal, January 2016

  • Liu, Yangyang; Buru, Cassandra T.; Howarth, Ashlee J.
  • Journal of Materials Chemistry A, Vol. 4, Issue 36
  • DOI: 10.1039/C6TA05903A

Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems
journal, May 2018


A Redox-Active Bistable Molecular Switch Mounted inside a Metal–Organic Framework
journal, October 2016

  • Chen, Qishui; Sun, Junling; Li, Peng
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b09880

Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis
journal, October 2016


Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal-Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard
journal, November 2016

  • Howarth, Ashlee J.; Buru, Cassandra T.; Liu, Yangyang
  • Chemistry - A European Journal, Vol. 23, Issue 1
  • DOI: 10.1002/chem.201604972

Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2
journal, June 2019

  • Chen, Yijing; Li, Peng; Noh, Hyunho
  • Angewandte Chemie International Edition, Vol. 58, Issue 23
  • DOI: 10.1002/anie.201901981

Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies
journal, October 2013

  • Deria, Pravas; Mondloch, Joseph E.; Tylianakis, Emmanuel
  • Journal of the American Chemical Society, Vol. 135, Issue 45, p. 16801-16804
  • DOI: 10.1021/ja408959g

Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-type Metal–Organic Framework
journal, May 2017


Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828